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Abstract: The so-called bridge-friendliness is a set of divisibility conditions on the minimal
generators of monomial ideals. It was introduced by Chau and Kara as a sufficient criterion
for the existence of a cellular minimal graded free resolution. It is fulfilled by large classes of
monomial ideals, in particular by the edge ideals of acyclic graphs. We present a construction
that, given a pair of graphs with bridge-friendly edge ideals, produces a new graph with the
same property. An additional assumption is that the starting graphs both have at least one leaf.

Keywords: minimal graded free resolutions; cellular resolutions; Morse theory; edge ideals of
graphs; monomial ideals

1. Introduction

Determining a minimal graded free resolutions for a homogeneous ideal in a
polynomial ring over a field is a long-standing open question in commutative algebra.
The problem is far from being solved even in the special case where the ideal is
generated by squarefree quadratic monomials. Such an ideal can be viewed as the
ring-theoretic counterpart of a finite simple graph without loops and without isolated
vertices, the one obtained by taking the indeterminates as the vertices and the generating
monomials as the edges. In this way the ideal becomes the so-called edge ideal
of the graph. The homological invariants of the ideal that can be derived from the
combinatorial properties of the graph have been intensively studied in the course of
the last decades. A natural starting point for this investigation is provided by the
Taylor-resolution [1], which applies to any monomial ideal, but needs to be refined
in order to obtain minimality. Famous subcomplexes are the Lyubeznik resolution and
the Scarf complex. The reader is referred to [2] for a comprehensive survey article on
this topic. In recent years, in particular, minimal graded free resolutions have been
completely described for the edge ideals of acyclic graphs [3] by means of discrete
Morse theory, whereas other authors found classes of edge ideals for which a minimal
graded resolution is given by the Lyubeznik resolution [4] and by the Scarf complex [5],
respectively. Further classes of monomial ideals derived from graphs were considered
in [6]. The method applied in [3] is based on a construction presented in [7], and it
was later generalized in [8]. This extension gave rise to the notion of Barile-Macchia
resolution, which is a refinement of the Taylor resolution and is minimal for monomial
ideals that are bridge-friendly, i.e., fulfill special divisibility conditions on their minimal
monomial generating sets. By now, various classes of bridge-friendly monomial ideals
have been determined. In the present paper, we show how new graphs whose edge
ideals are bridge-friendly, and thus admit a minimal Barile-Macchia resolution, can be
obtained from the combination of others having the same property. These new graphs
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may contain arbitrarily many cycles.

2. Preliminaries

Given a fieldK, let R = K[x1, . . . , xn] be a polynomial ring in n indeterminates.
Let G be a finite simple graph without loops and isolated vertices on the vertex set
V (G) = {x1, . . . , xn}. The edge ideal of G in R is the ideal I(G) generated by all
products xixj such that {xi, xj} is an edge of G. The product xixj will be also called
an edge monomial. The following construction and the main terminology are taken
from [8], Section 2. They are here applied to the special class of edge ideals.

We fix some total order< on the edges ofG (equivalently, on the edge monomials
in I(G)). Given two edge monomials m,m′ we will say that m dominates m′ if
m > m′. Any non-empty subsequence of the ordered sequence formed by all edge
monomials will be called a symbol.
Definition 1. Let σ be symbol andm ∈ σ. Thenm is called a bridge of σ if lcm(σ) =

lcm(σ \ {m}).
Remark 1. If m = xy, then m is a bridge of σ if and only if in σ there are two edge
monomials of the form ax and yb, with which m forms a 3-path or a 3-cycle. In this
case, (ax, yb) will be called a pair of sides for m. We will also say that m is a bridge
between ax and yb, or that (ax, xy, yb) is a bridge triple (around xy).
Definition 2. Let σ be symbol and m an edge monomial. Then m is called a gap of σ
if m /∈ σ and m is a bridge of σ ∪ {m} (or, equivalently, lcm(σ ∪ {m}) = lcm(σ)).
In this case, m is called a true gap of σ if, in σ ∪ {m}, any bridge smaller than m is a
bridge in σ.
Remark 2. The second part of the preceding definition can be rephrased as follows. If
the edge monomialm = xy is a gap of σ, then it is not a true gap if and only if inserting
m into σ causes some edge monomial m′ < m of σ, which is not a bridge in σ, to
become a bridge. This means that xy is a monomial completing a bridge triple around
m′, i.e., eitherm′ is of the form ax and adding xy produces a bridge triple (ua, ax, xy),
orm′ is of the form yb and adding xy produces a bridge triple (xy, yb, bv). In any case,
m′ contains x or y.

The next definition refers to notions introduced in ([8], Definition 2.16) and is
based on the characterization contained in ([8], Theorem 2.24).
Definition 3. Let σ be a symbol.
(a) If σ has a bridge, we define sb(σ) as its smallest bridge.
(b) We say that σ is type-1 if it has a true gap not dominating any of its bridges.
(c) We say that σ is potentially-type-2 it is has a bridge not dominating any of its

true gaps. In this case, we will say that σ is type-2 if, whenever σ′ is another
potentially-type-2 symbol such that σ \ {sb(σ)} = σ′ \ {sb(σ′)}, we have that
sb(σ) < sb(σ′).
In [8] Chau and Kara introduced a class of cellular resolutions for monomial ideals

in R, based on discrete Morse theory. We briefly describe it here in the special case
of edge ideals. They first defined the set A of ordered pairs (σ, τ) such that τ ⊂ σ,
|τ | = |σ| − 1, where τ is type-1 and σ is type-2. Then they showed in ([8], Theorem
2.11) that A is a homogeneous acyclic matching on the simplicial complex formed
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by the sets of minimal monomial generators of I(G). This, according to the theory
developed by Batzies and Welker [7], induces a cellular resolution of I(G). Chau and
Kara could thus prove the following result. In order to provide the reader with a quick
reference, we quote the statement contained in a subsequent paper:
Theorem 1. Given a total order < on the set of edge monomials in I(G), there is a
graded free resolution (called Barile-Macchia resolution) of I(G) over R in which the
basis of the ith module is the set of symbols of length i that are neither type-1 nor type-2
( [4], Theorem 2.6).

The symbols mentioned in the preceding theorem were called
Barile-Macchia-critical in [8]. They were obtained by means of a recursive
procedure ([8], Algorithm 2.9). The Barile-Macchia resolution fails, in general, to be
minimal. Moreover, it may vary according to the total order < chosen. In [3] it was
proven that, for a suitable order, it is minimal whenever G is an acyclic graph. Then,
in [8], it was shown that this result derives from a sufficient criterion which is always
fulfilled if G is acyclic. It is based on the following notion.
Definition 4. Given a total order < on the edge monomials in I(G), we say that I(G)

is bridge-friendly with respect to < if every potentially-type-2 symbol is type-2.
In the sequel, we will say that I(G) is bridge-friendly if it so with respect to some

total order <.
Remark 3. 1) Note that the property introduced in Definition 4 is purely combinatorial,
it is referred to the graph, and is independent of the fieldK of coefficients; 2)According
to Definitions 3 and 4, I(G) is bridge-friendly if and only if, for any pair of
potentially-type-2 symbols σ and σ′ such that σ \ sb(σ) = σ′ \ sb(σ′) we have that
sb(σ) = sb(σ′), or, equivalently, σ = σ′.

Now we can state the aforementioned criterion:
Theorem 2. If I(G) is bridge-friendly, then the corresponding Barile-Macchia
resolution is minimal ( [8], Theorem 2.29).

In the next section we will determine a new, large class of graphsG for which the
edge ideal I(G) is bridge-friendly.

3. The main result

In the sequel, for the sake of simplicity, we will use the same notation for edges and
edge monomials. For our purposes, these two notions will be identified. We first give
an important preliminary remark. Suppose that I(G) is bridge-friendly with respect to
some total order < on its edge monomials. Let w1w2 be a pendant edge of the graph
G, i.e., an edge containing a vertex, say w2, of degree 1 (a so-called leaf ). Since w1w2

is then the only edge monomial divisible by w2, it cannot be a bridge, nor a gap in
any symbol. Hence its position in the arrangement determined by < is irrelevant with
respect to the property of being type-1 or (potentially-)type-2, hence, also with respect
to bridge-friendliness. Consequently, we may assume, e.g., that w1w2 is the greatest or
the smallest edge monomial.

We now present the crucial construction. Let G1 and G2 be graphs on disjoint
vertex sets, and suppose thatw1w2 is a pendant edge ofG1, wherew2 is a leaf, andw3w4

is a pendant edge ofG2, where w4 is a leaf. We define the dot product G1 •(w2=w4) G2

3



Journal of AppliedMath 2025, 3(2), 2176.

to be the graph obtained by identifying the vertices w2 and w4. We will also denote it
by G1 •G2 for short.

The main result is the following. For its statement and its proof we refer to the
notation just introduced.
Theorem 3. If I(G1) and I(G2) are bridge-friendly, then so is I(G1 •G2).

Proof. For i ∈ {1, 2}, let <i be a total order on the edge monomials with respect to
which I(Gi) is bridge-friendly. According to the preceding remark, we may assume
that w1w2 is the minimum edge monomial in I(G1) and w3w4 is the maximum edge
monomial in I(G2). We then consider G1 • G2, in which w3w4 is replaced by w2w3,
and we endow the set of edge monomials in I(G1 •G2) with a total order< defined as
follows. Given two edge monomialsm,m′, we setm > m′ if either

(i) m,m′ ∈ I(Gi) andm >i m
′ for some i ∈ {1, 2}, or

(ii) m ∈ I(G1) andm′ ∈ I(G2).

Note that this ordering extends the orderings previously given on the sets of edge
monomials of I(G1) and I(G2), respectively. Moreover, the edge monomials w1w2

andw2w3 are consecutive. Wewill show that I(G1•G2) is bridge-friendly with respect
to<. Let σ be a symbol of I(G1 •G2). Suppose that σ is potentially-type-2. We prove
that it is type-2. To this end, we will distinguish between several cases and subcases.
We need one preliminary remark, which will be applied in the course of the proof. First
note that, by assumption, sb(σ) is a bridge of σ not dominating any true gaps in σ. Let
σ = σ1 ∪ σ2, where σi is the subsymbol formed by all edge monomials of σ belonging
to I(Gi). Let σ′ be another symbol that is potentially-type-2 and is such that

σ \ {sb(σ)} = σ′ \ {sb(σ′)}. (1)

Let σ′ = σ′
1 ∪ σ′

2, where the meaning of the notation is obvious. Now, if sb(σ) =
sb(σ′), there is nothing to prove. So suppose that sb(σ) ̸= sb(σ′). Then, in view of
Equation (1), sb(σ′) /∈ σ. Moreover, we may assume that sb(σ) > sb(σ′). Note that,
by assumption,

lcm(sb(σ′) ∪ σ \ {sb(σ)}) = lcm(sb(σ′) ∪ σ′ \ {sb(σ′)}) =

lcm(σ′ \ {sb(σ′)}) = lcm(σ \ {sb(σ)}).

It follows that lcm(sb(σ′) ∪ σ) = lcm(σ).

We have thus established our
Preliminary remark: The bridge sb(σ′) is a gap of σ. More precisely, if sb(σ′)

is a bridge between m1 and m2 in σ′, it is a gap between m1 and m2 in σ. Since, by
assumption, sb(σ) > sb(σ′), and σ is potentially-type-2, this gap cannot be a true gap.

Case 1 w1w2 /∈ σ. We preliminarily show that in this case any true gap in σ1 is a
true gap in σ. Now, let m be a gap in σ1. Then m ̸= x1x2, because x1x2 is a pendant
edge of G1. Moreover, m is, a fortiori, a gap in σ. So assume that m is not a true gap
in σ. Then, according to Remark 2,m completes a 2-walk in σ to a 3-walk. This walk
must be contained in σ1, since w1w2 /∈ σ implies that no edge of σ1 is adjacent to an
edge of σ2 (see Figure 1). It follows that m is not a true gap in σ1, which proves our
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claim.

Figure 1. The construction of the dot product G1 •G2.

Case 1.1 sb(σ) ∈ I(G1). Since sb(σ) ̸= w1w2, we then have that sb(σ) = sb(σ1).
But sb(σ1) cannot dominate any true gap in σ1, because, in view of the remark in Case
1, the same true gap would be dominated by sb(σ) in σ, against the assumption that σ
is potentially-type-2. Hence σ1 is potentially-type-2 with respect to <1.

Case 1.1.1 sb(σ′) ∈ I(G1).
Case 1.1.1.1 sb(σ′) ̸= w1w2. Then sb(σ′) = sb(σ′

1). Moreover, w1w2 /∈ σ′,
because otherwise, in view of Equation (1), we would have w1w2 ∈ σ, against
our present assumption. Thus, as in the preceding Case 1.1, we deduce that σ′

1 is
potentially-type-2 with respect to <1. Now the equality (1) between

σ \ sb(σ) = (σ1 \ sb(σ1)) ∪ σ2

and
σ′ \ sb(σ′) = (σ′

1 \ sb(σ′
1)) ∪ σ′

2

implies that
σ2 = σ′

2

and
σ1 \ sb(σ1) = σ′

1 \ sb(σ′
1). (2)

Finally, since I(G1) is bridge-friendly with respect to <1, we conclude that σ1 =
σ′
1, whence σ = σ′, as desired. This settles Case 1.1.1.1.

Case 1.1.1.2 sb(σ′) = w1w2. Then, according to the preliminary remark, w1w2

is a gap in σ. Since, by assumption, sb(σ) > w1w2, and σ is potentially-type-2, it,
however, cannot be a true gap. This means that the insertion of w1w2 into σ produces
some smaller new bridge, which, by definition of <, must belong to I(G2), and will
therefore contain w2 (see the end of Remark 2). Hence this new bridge is w2w3. The
new bridge triple will thus contain an edge monomial w3y ∈ σ for some vertex y.
Now, since w2w3 and w3y belong to I(G2), they are both distinct from sb(σ), so that
w2w3, w3y ∈ σ′. But then w2w3 is a bridge in σ′. Since w2w3 < w1w2 = sb(σ′), this
provides a contradiction, and shows that the present subcase is impossible. This settles
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Case 1.1.1.
Case 1.1.2 sb(σ′) ∈ I(G2). Let sb(σ′) = xy, a bridge between the edge

monomials ax and yb. Note that, since w1w2 /∈ σ and w1w2 ̸= sb(σ′), by Equation
(1) we have that w1w2 /∈ σ′. Hence in σ and σ′ no element of I(G1) is adjacent to an
element of I(G2). Thus ax and yb both belong to I(G2). Moreover, by our preliminary
remark, xy is a gap in σ, but not a true one. Hence, in view of Remark 2, in σ ∪ {xy}
we either have a bridge triple (ua, ax, xy) or a bridge triple (xy, yb, bv), where, in both
cases, the middle edge monomial is a bridge smaller than xy. Note that such a bridge
triple must be contained in I(G2). Since sb(σ1) ∈ I(G1), it follows that it is contained
in σ′, as well. But this contradicts the minimality of sb(σ′). Hence this subcase is
impossible. Case 1.1 is thus settled.

Case 1.2 sb(σ) ∈ I(G2). In this case sb(σ′) ∈ I(G2), as well. The assumption
w1w2 /∈ σ implies that w2w3 cannot be a bridge in σ (see Figure 1), whence
sb(σ) = sb(σ2). Moreover, since we are assuming that sb(σ′) < sb(σ), and w2w3

is the maximum edge monomial in I(G2), we also have that sb(σ′) ̸= w2w3, whence
sb(σ′) = sb(σ′

2). Now, σ2, σ′
2 are potentially-type-2, because any true gap following

sb(σ2) or sb(σ′
2) in σ2 or σ′

2 would be a true gap in σ or in σ′. Since I(G2) is
bridge-friendly with respect to <2, it follows that σ′

2 = σ2, whence σ = σ′. This
settles Case 1.

Case 2 w1w2 ∈ σ.
Case 2.1 sb(σ) = w1w2. Since sb(σ′) < w1w2, we have that sb(σ′) ∈ I(G2).

Let sb(σ′) = xy, a bridge between the edge monomials ax, yb ∈ σ′. From Equation
(1) we also have that ax, yb ∈ σ and, according to our preliminary remark, in σ the
edge monomial xy is a gap, but not a true gap. Hence the insertion of xy into σ creates
a new bridge m′ < xy. This bridge, however, cannot be such in σ′. Now, by virtue of
Equation (1), the only edge monomial of σ that is missing in σ′ is w1w2. This implies
that w1w2 is either this new bridge m′ or part of a pair of sides for m′. The former
case is impossible, because w1w2 > xy. In the latter case, the new bridge m′, which
belongs to I(G2), must be w2w3. But this, once again, yields a contradiction, since,
in the total order we have fixed, w2w3 is the greatest edge monomial of I(G2), so that
w2w3 ≥ xy. Hence this subcase is impossible.

Case 2.2 sb(σ) > w1w2. In this case sb(σ) = sb(σ1).
Case 2.2.1 sb(σ′) = w1w2. It follows that in σ′ there is an edge monomial xw1

that, together with w2w3, forms a pair of sides for the bridge w1w2. Once again, by
the preliminary remark, w1w2 is a gap in σ, between xw1 and w2w3, but cannot be
a true gap. Hence the insertion of w1w2 into σ produces a new bridge m′ smaller
than w1w2, so that m′ must belong to I(G2). On the other hand, by Remark 2, this
new bridge m′ contains w1 or w2. Hence m′ = w2w3, and, therefore, each pair
of sides for m′ is formed by w1w2 and some edge monomial w3x ∈ I(G2). Now,
since w2w3, w3x ̸= sb(σ), we have that w2w3, w3x ∈ σ′. But then in σ′ there is the
bridge triple (w1w2, w2w3, w3x). Thus w2w3 is a bridge of σ′ smaller than w1w2, a
contradiction.

Case 2.2.2 sb(σ′) = w2w3. Then in σ′ there is a bridge triple (w1w2, w2w3, w3y),
and, by the preliminary remark and Remark 2, inserting w2w3 in σ produces a new
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smaller bridge. This new bridge can only be of the formw3y, with some edgemonomial
yz as its side, and, in view of Equation (1), w3y and yz must belong to σ′. But then
the minimality of the bridge w2w3 in σ′ is contradicted. The present subcase is thus
impossible.

Case 2.2.3 sb(σ′) < w2w3. Let xy = sb(σ′), a bridge between ax and yb. Note
thatw2 /∈ {x, y}, so that a, b are vertices ofG2. By the preliminary remark and Remark
2, adding xy to σ produces a new bridge m′ < xy, where m′ is the middle term of a
bridge triple (ua, ax, xy) or (xy, yb, bv). On the other hand,m′ lies in I(G2), andm′ ̸=
w2w3. Hence all edges adjacent tom′ belong to I(G2), as well, which implies that ua
and bv are both different from sb(σ) and therefore ua ∈ σ′ or bv ∈ σ′. Moreover, the
fact that m′ ̸= sb(σ) implies that m′ ∈ σ′. We thus conclude that σ′ contains one of
the above bridge triples aroundm′, so thatm′ is a bridge of σ′. But this contradicts the
minimality of sb(σ′), which shows that this subcase is impossible.

Case 2.2.4 sb(σ′) > w1w2. In this case sb(σ′) = sb(σ′
1). Recall from Case 2.2

that sb(σ) = sb(σ1). Hence, as in Case 1.1.1.1, equality (2) holds. If σ1 and σ′
1 are

both potentially-type-2 in I(G1), then σ1 = σ′
1, so that σ = σ′, as desired. If σ1 is

not potentially-type-2 in I(G1), then σ1 has a true gap smaller than sb(σ1) and not
present in σ. Note that this gap is certainly a gap in σ. Hence the insertion of its bridge
must produce, in σ, a smaller bridge that is not formed in σ1. This is possible only if
this new bridge has one side in I(G2), which means that it is w1w2. This implies that
w2w3 ∈ σ. Since w2w3 ̸= sb(σ), we thus have that w2w3 ∈ σ′. On the other hand,
w1w2 ∈ σ′, because w1w2 ∈ σ and w1w2 ̸= sb(σ). Hence in σ and in σ′ there are
w1w2 and w2w3, but w1w2 is not a bridge, nor in σ, nor in σ′. Thus in σ and σ′ there
are no edge monomials of the form cw1 with c ̸= w2. This implies that w1w2 is not
part of a pair of sides of any bridge of σ1 or σ′

1. Therefore, the removal of w1w2 from
σ1 or σ′

1 preserves all the existing bridges. In particular, if we set σ̄1 = σ \ {w1w2}
and σ̄′

1 = σ′
1 \ {w1w2}, we have that sb(σ̄1) = sb(σ1) and sb(σ̄′

1) = sb(σ′
1). On the

other hand, the removal of w1w2 from σ or σ′ does not produce any new gap in σ1 or
σ′
1. It follows that σ̄1 and σ̄′

1 are potentially-type-2, as well. Now, from Equation (2)
we have σ̄1 \ {sb(σ̄1)} = σ̄′

1 \ {sb(σ̄′
1)}. By virtue of the bridge-friendliness of I(G1),

this implies that σ̄1 = σ̄′
1, whence σ1 = σ′

1, and finally, σ = σ′. This settles Case 2.2,
Case 2 and completes the proof. □

From [3] we know that I(G) is bridge-friendly if G is acyclic. The unicyclic
graphs G for which I(G) is bridge-friendly have been completely characterized:
Theorem 4. If G is a unicyclic graph ( [4], Theorem 4.9), then I(G) is bridge-friendly
if and only if one of the following two cases occurs:
(i) G contains a 3-cycle or a 5-cycle having a vertex of degree 2;
(ii) G contains a 6-cycle having two opposite vertices of degree 2.
Example 1. In order to illustrate the notions and results presented above and provide
the reader with a concrete example we examine the edge ideal of the 4-cycle on the
vertices x1, x2, x3, x4, i.e., the ideal of the polynomial ring R = K[x1, x2, x3, x4]

defined as I(C4) = (x1x2, x2x3, x3x4, x4x1). We also fix the following total order on
its edge monomials: x1x4 > x1x2 > x2x3 > x3x4. We then consider the symbols
σ = (x1x2, x2x3, x3x4) and σ′ = (x1x4, x1x2, x3x4). Note that the edge monomial
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x2x3 is the only bridge of σ, so that sb(σ) = x2x3 and, similarly, sb(σ′) = x1x4.
Moreover, σ is potentially-type-2, because the only edge monomial smaller that x2x3
is x3x4, which belongs to σ, and thus is not a gap. Also σ′ is potentially-type-2, but for
a different reason. The edge monomial missing in σ′, namely x2x3, is a gap between
x1x2 and x3x4, and it is smaller that x1x4. It, however, is not a true gap: this can
be easily seen, since adding x2x3 to σ′ causes x3x4 to become a new bridge. Now we
have that

σ \ {sb(σ)} = σ′ \ {sb(σ′)} = (x1x2, x3x4).

Since sb(σ) < sb(σ′), it follows that σ′ is not type-2. This implies that, with
respect to the given total order, the ideal I(C4) is not bridge-friendly. Actually, from
Theorem 4 we know that I(C4) is not bridge-friendly with respect to any total order.

Further computations yield the following list of type-1 and type-2 symbols:
• (x1x4, x1x2, x2x3, x3x4);
• (x1x4, x1x2,x2x3) x3x4

, (x1x4, x2x3, x3x4), (x1x2, x2x3, x3x4);
• (x1x4,x2x3) x3x4

, (x1x2,x3x4) x2x3
.

The sides of the true gaps (in the type-1 symbols) are in boldface, whereas the
smallest bridges (in the type-2 symbols) are underlined. The smallest true gaps of
the type-1 symbols are given in the boxed subscripts. The remaining symbols are the
Barile-Macchia-critical ones, and, according to Theorem 1, those of length i are the
generators of the ith module of a graded free resolution of I(C4) over R:
• (x1x4, x1x2, x3x4);
• (x1x4, x1x2), (x1x4, x3x4), (x1x2, x2x3), (x2x3, x3x4);
• (x1x4), (x2x3), (x2x3), (x3x4).

Note that the first symbol is σ′, which has no true gaps, and therefore is not type-1,
whereas the remaining symbols have no bridges and no gaps.

The resulting resolution turns out to be minimal:

0 −→ R(−4) −→ R(−3)4 −→ R(−2)4 −→ I(C4) −→ 0.

This example shows that the converse of Theorem 2 is not true: bridge-friendliness
is only a sufficient, not a necessary condition for the existence of a minimal
Barile-Macchia resolution.

4. Final remarks

Theorem 4, together with our Theorem 3, allows us to construct, for any positive
integer n, a graph G with n cycles for which I(G) is bridge-friendly. The definition
of dot product is simple, and can be easily applied in a recursive procedure. It requires
that the vertices ofG1 andG2 to be identified are both leaves, but this assumption is not
to be viewed as a limit, since it cannot be removed without losing bridge-friendliness.
Thanks to the classification presented in ([4], Proposition 4.3), various counterexamples
are at hand. One can, e.g., consider the case where G1 is the graph (a 3-cycle with
two spikes) and G2 has one single edge. Then I(G1) is bridge-friendly by Theorem
4, but the same result tells us that the edge ideal of the graph (a 3-cycle with three
spikes) is not.
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One reasonable conjecture, which is not contradicted by any of the
non-bridge-friendly graphs considered in [4], is the following: the dot product
of two bridge-friendly graphs is still bridge-friendly, if the two vertices that are
identified do not belong to any cycle. This result, which would arise as a natural
generalization of our Theorem 3, would uncover a huge class of bridge-friendly graphs,
all accessible through elementary constructions. Moreover, it would immediately
provide a new, easy inductive proof of the bridge-friendliness of acyclic graphs. It
could also open the way to a combinatorial characterization of bridge-friendliness.
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