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Abstract: In this work we study the mean value of the difference between the number of 

integer points and the volume of a ball as a function of the center of a ball in the unit cube [0, 

1]3, applying new method. This mean value is estimated by its possible exact value. Using 

methods of Fourier analysis, we lead the question to the estimates of double trigonometric 

integrals. This method allows consider the question on lattice points in domains of arbitrary 

nature without any symmetry. 
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1. Introduction 

Through the paper we shall use following notations. 

The expression 𝐴 << 𝐵 (called the Vinogradov’s symbol) for quantities 𝐴 and 

positive 𝐵  means that there exists a constant c that 𝐴 ≤ 𝑐𝐵 . In some cases it is 

equivalent to the symbol 𝐴 = 𝑂(𝐵). 

The symbol 𝛺  for real functions 𝐹(𝑡)  and 𝑓(𝑡)  (which is positive) is the 

negation of the symbol o. So, the notation 𝐹(𝑡) = 𝛺(𝑓(𝑡)) means that there exists a 

positive constant A  such that 𝐹(𝑡) > 𝐴𝑓(𝑡), as 𝑡 → ∞. 

The expression 𝐹(𝑡) = 𝛺±(𝑓(𝑡))  means that there are sequences 𝑥𝑛 → +∞x 

and 𝑦𝑚 → +∞ such that for positive constant A  the relations both 𝐹(𝑥𝑛) > 𝐴𝑓(𝑥𝑛) 

and 𝐹(𝑦𝑚) < −𝐴𝑓(𝑦𝑚) are satisfied for all n and m, large enough. 

In Number Theory one studies the question on the number of lattice points 

enclosed into various domains of multidimensional spaces. Let 𝑟(𝑛)  denote the 

number of representations of the natural number 𝑛 in the form 

𝑛 = 𝑥2 + 𝑦2 + 𝑧2, 

with integral numbers 𝑥, 𝑦, 𝑧. Then the function 𝑇(𝑁) defined as 

T(𝑁) = ∑ 𝑟(𝑛)𝑁
𝑚=0   

expresses the number of lattice points in the sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑁 . From 

geometric arguments it is clear that the approximate value for the number 𝑇(𝑁) will 

be volume of the ball enclosed in the taken sphere. Denote 

R = 𝑅(𝑟) = 𝑇(𝑟2) −
4

3
𝜋𝑟3. 

The question on estimation of this variance is known as Sphere Problem. From 

the result of Gauss on lattice points in a circle it follows that 𝑅 << 𝑟2.  

In 1935 I. M. Vinogradov using transformation of trigonometric sums found an 

estimation (see [1]) 
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𝑅 << 𝑟1.4+𝜀, 

with arbitrary small constant 0 ,as r  is large. This result was improved by him 

[2], and independently by Chen [3]. They have proved that 

𝑅 << 𝑟4/3+𝜀. 

Further error term was improved as indicated below: 

𝑅 << 𝑟
29

22
+𝜀

, by Chamizo and Ivaniec [4], 

𝑅 << 𝑟
21

16
+𝜀

, by Heath-Brown [5], 

𝑅 << 𝑟
17

14
+𝜀

, by Arkhipova [6]. 

In 1926 Szego G. proved that 𝑅 = 𝛺(𝑟√𝑙𝑜𝑔 𝑟). Tsang [7] has shown that  

R = 𝛺±(𝑟 𝑙𝑜𝑔1/2 𝑟). 

There is a conjecture [2,6] which states that  

𝑅 << 𝑟1+𝜀 . (1) 

2. Materials and methods 

Besides, in series of works [8–10] the problem was studied from other points of 

view. Authors of those works investigated the fluctuations in the number 𝑁𝛼(𝑟) of 

lattice points reminder term inside a sphere of radius r centered at a point 𝛼 ∈ [0,1)3 

different from the origin. VinogradovА and SkriganovM [8] got 𝛺 -type results. 

Despite that in two dimensional case it was established that the relative deviation 

tends, as radius grows unboundedly, to some mean value which is an absolutely 

continuous function of the center of a circle, the problem is very difficult in three 

dimensional case. In the work [9] a similar result was established for shifted balls 

when a center of a ball satisfies some Diophantine conditions (which is generically 

fulfilled). In the work [11] it was considered the question on lattice points in the 

shifted ellipsoids in dimensions 𝑑 ≥ 8.  

In this work we study the question by applying new estimates for trigonometric 

integrals. This method is useful for other similar problems to which the methods of 

indicated works are not applicable.  

3. Results and discussion 

Denote by 𝑁(𝑟; 𝜃, 𝜂, 𝜉) the number of lattice points in the sphere of radius r  

and the center at the point (𝜃, 𝜂, 𝜉) ∈ [0,1)3. 

Theorem 1. Following inequality holds for sufficiently large 𝑟 > 0:  

∫ ∫ ∫ |𝑁(𝑟; 𝜃, 𝜂, 𝜉) −
4

3
𝜋𝑟3|

2
𝑑𝜃𝑑𝜂𝑑𝜉 <<

1

0

1

0
𝑟2 𝑙𝑜𝑔4 𝑟

1

0
. 

Corollary 1. There exists a point (𝜃, 𝜂, 𝜉) ∈ [0,1)3 for which  

|𝑁(𝑟; 𝜃, 𝜂, 𝜉) −
4

3
𝜋𝑟3| << 𝑟 𝑙𝑜𝑔2 𝑟. 
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3.1. Some auxiliary lemmas 

The statement of the following lemma is known as Sonin’s formula [12]. 

Lemma 1. Let a and b bereal numbers𝑎 < 𝑏. Then the equality  

∑ 𝑓(𝑛) = ∫ 𝑓(𝑥)𝑑𝑥 + 𝜌(𝑏)𝑓(𝑏) − 𝜌(𝑎)𝑓(𝑎)
𝑏

𝑎𝑎<𝑛≤𝑏 − 𝜎(𝑏)𝑓′(𝑏) + +𝜎(𝑎)𝑓′(𝑎) + ∫ 𝑓″(𝑥)𝜎(𝑥)𝑑𝑥
𝑏

𝑎
, 

holds, where 𝑓(𝑥)  is a function defined in the interval (𝑎, 𝑏]  having continuous 

derivative of second order, 

𝜌(𝑥) = {𝑥} − 1/2, 𝜎(𝑥) = ∫ 𝜌(𝑡)𝑑𝑡
𝑥

0
.  

Lemma 2. The function 𝜌(𝑥) has following Fourier expansion  

ρ(𝑥)~ ∑ 𝑔𝑚𝑒2𝜋𝑖𝑚𝑥∞
𝑚=−∞,𝑚≠0   

with 𝑔𝑚 = −1/(2𝜋𝑖𝑚). 

This lemma is evident.  

Lemma 3. Let the function 𝑓′(𝑥) ≥ 𝛿 > 0 be monotonically non-increasing in [𝑎, 𝑏], 

and 𝑓′(𝑥) ≥ 𝛿 > 0 in this segment. Then 

|∫ 𝑒2𝜋𝑖𝑓(𝑥)𝑑𝑥
𝑏

𝑎
| ≤ 4𝛿−1. 

Lemma 4. Let  

𝑓″(𝑥) ≥ 𝐴 > 0 

function 𝑓(𝑥) at the interval [a, b]. Then  

|∫ 𝑒2𝜋𝑖𝑓(𝑥)𝑑𝑥
𝑏

𝑎
| ≤ 12𝐴−1/2. 

Let’s denote by 𝑀(𝑟; 𝜃, 𝜂) the number of lattice points in the circle (𝑥 + 𝜃)2 +

(𝑦 + 𝜂)2 ≤ 𝑟2. 

Lemma 5. We have: 

M(𝑟; 𝜃, 𝜂) = 𝜋𝑟2 + ∑ (
1

2
− {−𝜂 + √𝑟2 − (𝑛 + 𝜃)2})

−
𝑟

√2
−𝜃<𝑛<

𝑟

√2
−𝜃 +  

+ ∑ (
1

2
− {𝜂 + √𝑟2 − (𝑛 + 𝜃)2})

−
𝑟

√2
−𝜃<𝑛<

𝑟

√2
−𝜃 +  

∑ (
1

2
− {−𝜃 + √𝑟2 − (𝑛 + 𝜂)2})

−
𝑟

√2
−𝜂<𝑛<

𝑟

√2
−𝜂 +  

+ ∑ (
1

2
− {𝜃 + √𝑟2 − (𝑛 + 𝜂)2})

−
𝑟

√2
−𝜂<𝑛<

𝑟

√2
−𝜂 + 𝛿0(𝑟; 𝜃, 𝜂); |𝛿0| ≤ 3. 

This Lemma is a consequence of the Sonin’s formula [12]. 

3.2. Lattice points in shifted balls 

The Sphere Problem is consisted in finding of asymptotic relation for the 

number 𝑁(𝑟) of lattice points in the sphere 

𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑟2, 

as 𝑟 → ∞, with the possible better error term. The same problem we shall investigate 

in sifted spheres. 
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Consider a shifted ball  

(𝑥 + 𝜃)2 + (𝑦 + 𝜂)2 + (𝑧 + 𝜉)2 ≤ 𝑟2 

with a center (−𝜃, −𝜂, −𝜉) ∈ [−1,0]3. If we intersect the ball by the plane 𝑧 = 𝑘 ∈ 𝑍, 

we get a disc at the section. The number 𝑁(𝑟; 𝜃, 𝜂, 𝜉) of all lattice points in the ball is 

represented as a sum of number of lattice points laying in all of these discs, as 𝑧 =

𝑘 ∈ 𝑍  takes such values for which the sections mentioned above is not empty 

(Figure 1). 

Denote by 𝑁𝑘(𝑟; 𝜃, 𝜂, 𝜉) the number of lattice points in the ball lying on the 

section. Then we have 

𝑁(𝑟; 𝜃, 𝜂, 𝜉) = ∑ 𝑁𝑘(𝑟; 𝜃, 𝜂, 𝜉)
[𝑟+𝜉]+1
𝑘=−[𝑟+𝜉] . 

 
Figure 1. Sections. 

The section of the ball by a plane 𝑧 = 𝑘 is a disc of a radius √𝑟2 − 𝑘2. By the 

lemma 1, one deduces: 

𝑁𝑘(𝑟; 𝜃, 𝜂, 𝜉) = 𝜋(𝑟2 − (𝑘 + 𝜉)2) + 

+ ∑ (
1

2
− {−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2})

−
√𝑟2−(𝑘+𝜉)2

√2
−𝜃<𝑛<

√𝑟2−(𝑘+𝜉)2

√2
−𝜃

+  

+ ∑ (
1

2
− {𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2})

−
√𝑟2−(𝑘+𝜉)2

√2
−𝜃<𝑛<

√𝑟2−(𝑘+𝜉)2

√2
−𝜃

+  

+ ∑ (
1

2
− {−𝜃 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑚 + 𝜂)2})

−
√𝑟2−(𝑘+𝜉)2

√2
−𝜂<𝑚<

√𝑟2−(𝑘+𝜉)2

√2
−𝜂

+  
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+ ∑ (
1

2
− {𝜃 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑚 + 𝜂)2})

−
√𝑟2−(𝑘+𝜉)2

√2
−𝜂<𝑚<

√𝑟2−(𝑘+𝜉)2

√2
−𝜂

+  

+𝛿0(𝑟; 𝜃, 𝜂, 𝜉); |𝛿0| ≤ 3. 

Then we receive (since we shall integrate over 𝜉, one can assume −𝜉 ± 𝑟 non-

integral), using Sonin’s formula: 

∑ 𝜋(𝑟2 − (𝑘 + 𝜉)2)−𝑟−𝜉≤𝑘≤𝑟−𝜉 = ∫ 𝜋(𝑟2 − (𝑧 + 𝜉)2)
𝑟−𝜉

−𝑟−𝜉
𝑑𝑧 + 𝑂(𝑟) =  

= 2𝜋𝑟3 − 𝜋
(𝑥+𝜉)3

3
|−𝑟−𝜉

𝑟−𝜉
+ 𝑂(𝑟) =

4𝜋𝑟3

3
+ 𝑂(𝑟). 

So, 

|𝑁(𝑟; 𝜃, 𝜂, 𝜉) −
4𝜋𝑟3

3
| ≤ 𝑂(𝑟) + 

+ |∑−𝑟−𝜉≤𝑘≤𝑟−𝜉 ∑ (
1

2
− {−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2})

−
√𝑟2−(𝑘+𝜃)2

√2
−𝜃<𝑛<

√𝑟2−(𝑘+𝜃)2

√2
−𝜃

| +

+ |∑−𝑟−𝜉≤𝑘≤𝑟−𝜉 ∑ (
1

2
− {𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2})

−
√𝑟2−(𝑘+𝜃)2

√2
−𝜃<𝑛<

√𝑟2−(𝑘+𝜃)2

√2
−𝜃

| +

+ |∑−𝑟−𝜉≤𝑘≤𝑟−𝜉 ∑ (
1

2
− {−𝜃 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜂)2})

−
√𝑟2−(𝑘+𝜃)2

√2
−𝜂<𝑛<

√𝑟2−(𝑘+𝜃)2

√2
−𝜂

| +

+ |∑−𝑟−𝜉≤𝑘≤𝑟−𝜉 ∑ (
1

2
− {𝜃 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜂)2})

−
√𝑟2−(𝑘+𝜃)2

√2
−𝜂<𝑛<

√𝑟2−(𝑘+𝜃)2

√2
−𝜂

|.

 

3.3. Completion of Theorem’s proof  

Estimate now the integral 

∫ ∫ ∫
1

0

1

0

|𝑁(𝑟; 𝜃, 𝜂, 𝜉) −
4𝜋𝑟3

3
|

1

0

2

𝑑𝜃𝑑𝜂𝑑𝜉 

noting that the all moduli at the right hand side of the previous inequality allows a 

similar estimation in average. Consequently, we have: 

∫ ∫ ∫
1

0

1

0
|𝑁(𝑟; 𝜃, 𝜂, 𝜉) −

4𝜋𝑟3

3
|

1

0

2

𝑑𝜃𝑑𝜂𝑑𝜉 << 𝑟2 +  

+ ∫ ∫ ∫ |∑ ∑ (
1

2
− {−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2})

−
√𝑟2−(𝑘+𝜉)2

√2
−𝜃<𝑛<

√𝑟2−(𝑘+𝜉)2

√2
−𝜃

−𝑟−𝜉≤𝑘≤𝑟−𝜉 |

2

𝑑𝜃𝑑𝜂𝑑𝜉
1

0

1

0

1

0
  

(2) 

Note that under the integral one may suffice with summation over the 

intervals 𝑟 − 𝑟1/3 − 1 ≤ 𝑘 ≤ 𝑟 − 1 ∨ −𝑟 + 1 ≤ 𝑘 ≤ −𝑟 + 𝑟1/3 + 1 , and an error 

could estimated as 
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<< 𝑟 + ∑ ∑ 1 <<

−
√𝑟2−(𝑘+𝜉)2

√2
−𝜃<𝑛<

√𝑟2−(𝑘+𝜉)2

√2
−𝜃

|𝑟−𝑘|≤𝑟1/3+2 𝑟1/3√𝑟𝑟1/3 = 𝑟, 

for sufficiently large r , which is acceptable. When |𝑘| ≤ 𝑟 − 𝑟1/3 + 1 , by the 

theorem of Lagrange on finite increments, for some 0 < 𝜇 < 𝜉  the inequalities 

below hold: 

|
√𝑟2−(𝑘+𝜉)2−√𝑟2−𝑘2

√2
| ≤

(𝑘+𝜇)𝜉

√2√𝑟2−(𝑘+𝜇)2
≤

𝑟

√𝑟(𝑟−𝑘−𝜇)
. 

Therefore, from the inequality (2) and said above one deduces 

∫ ∫ ∫
1

0

1

0

|𝑁(𝑟; 𝜃, 𝜂, 𝜉) −
4𝜋𝑟3

3
|

1

0

2

𝑑𝜃𝑑𝜂𝑑𝜉 << 

<< 𝑟2 + ∫ ∫ ∫ |𝜙(𝜃, 𝜂, 𝜉)|21

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉, 

where, 

 

𝜙(𝜃, 𝜂, 𝜉) = ∑ ∑ (
1

2
− {−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2})

−
√𝑟2−𝑘2

√2
<𝑛<

√𝑟2−𝑘2

√2

−𝑟+𝑟1/3−1≤𝑘≤𝑟−𝑟1/3+1  (3) 

Now we modify the function represented by double sum on the right hand side 

of the last equality as follows 

𝜙0(𝜃, 𝜂, 𝜉) =
1

(2𝛿)3 ∫ ∫ ∫ 𝜙(𝑢, 𝑣, 𝑤)
𝜉−𝛿

𝜉−𝛿

𝜂+𝛿

𝜂−𝛿

𝜃+𝛿

𝜃−𝛿
𝑑𝑢𝑑𝑣𝑑𝑤. (4) 

Obviously, that the limits of summations in (3) ensures, at large values of 𝑟, the 

function (4) be defined for all (𝜃, 𝜂, 𝜉) ∈ [0,1]3 . The function 𝜌(−𝜂 +

√𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2)  is partially-continuous function, and for sufficiently 

small 𝛿 > 0  (its exact value we shall define below) at the points of 

continuity (𝜃, 𝜂, 𝜉), for which a cube with the center at this point having an edge 2𝛿 

doesn’t contain points of discontinuity, we have 

|𝜙0(𝜃, 𝜂, 𝜉) − 𝜙(𝜃, 𝜂, 𝜉)| = 

= |
1

(2𝛿)3
∫ ∫ ∫ (𝜙(𝜃 + 𝑢, 𝜂 + 𝑣, 𝜉 + 𝑤) − 𝜙(𝜃, 𝜂, 𝜉))

𝛿

−𝛿

𝛿

−𝛿

𝛿

−𝛿

𝑑𝑢𝑑𝑣𝑑𝑤| ≤ 

1

(2𝛿)3 ∫ ∫ ∫ |𝜙(𝜃 + 𝑢, 𝜂 + 𝑣, 𝜉 + 𝑤) − 𝜙(𝜃, 𝜂, 𝜉)|
𝛿

−𝛿

𝛿

−𝛿

𝛿

−𝛿
𝑑𝑢𝑑𝑣𝑑𝑤. 

Let’s denote 𝐾 = {(𝑢, 𝑣, 𝑤)||𝑢 − 𝜃| ≤ 𝛿, |𝑣 − 𝜂| ≤ 𝛿, |𝑤 − 𝜉| ≤ 𝛿}, for every 

(𝜃, 𝜂, 𝜉). By the theorem on finite increments 

|𝜙(𝜃 + 𝑢, 𝜂 + 𝑣, 𝜉 + 𝑤) − 𝜙(𝜃, 𝜂, 𝜉)| ≤ 𝛥𝛿, 

where, 

Δ ≤ 𝑚𝑎𝑥
(𝑢,𝑣,𝑤)∈𝐾

(|𝜕𝜙/𝜕𝑢| + |𝜕𝜙/𝜕𝑣| + |𝜕𝜙/𝜕𝑤|) << 𝑟2. 

So, for the set of points of continuity, doesn’t containing points from 

neighborhoods of a type K with the center at points of discontinuity, the relation 

below is satisfied: 
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𝜙0(𝜃, 𝜂, 𝜉) = 𝜙(𝜃, 𝜂, 𝜉) + 𝑂(𝑟2𝛿). (5) 

Estimate the measure of a union of all neighborhoods of a view K  for points of 

discontinuity (𝜃, 𝜂, 𝜉) in the unite cube [0,1]3 . The points of discontinuity of the 

function 𝜌(−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2)  are the points where the number 

−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2 is an integral number: 

−𝜂 + √𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2 = 𝑚 

Since (𝜃, 𝜂, 𝜉) ∈ [0,1]3, then for the given lattice point (𝑛, 𝑚, 𝑘) near the sphere 

points of discontinuity are placed at the intersection of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 

with the cube (𝑛, 𝑚, 𝑘) + [0,1]3. The measure of a union of all 𝐾 -neighborhoods of 

the points of discontinuity for every such cube is 𝑂(𝛿). So, desired measure of a 

union of all 𝐾 -neighborhoods for the points of discontinuity in the unite cube [0,1]3 

is of 𝑂(𝑟2𝛿). For points of this set we have 

|𝜙0(𝜃, 𝜂, 𝜉) − 𝜙(𝜃, 𝜂, 𝜉)| << 𝑟2. 

All of reasoning above yields: 

−   


 ddd
r

rN

21

0

31

0

1

0
3

4
),,;( 𝑟2 + ∫ ∫ ∫ |𝜙(𝜃, 𝜂, 𝜉)|21

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉 <<<< 𝑟2 +

∫ ∫ ∫ (|𝜙0(𝜃, 𝜂, 𝜉)|2 + |𝜙0(𝜃, 𝜂, 𝜉) − 𝜙(𝜃, 𝜂, 𝜉)|2)
1

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉 <<<< 𝑟2 + 𝑟4𝛿2 + 𝑟6𝛿 +

∫ ∫ ∫ |𝜙0(𝜃, 𝜂, 𝜉)|21

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉. 

(6) 

Applying Parseval’s identity we get: 

∫ ∫ ∫ |𝜙0(𝜃, 𝜂, 𝜉)|2
1

0

1

0

1

0

𝑑𝜃𝑑𝜂𝑑𝜉 = ∑ ∑ ∑ |𝑐𝑝𝑞𝑠|
2

∞

𝑠=−∞

∞

𝑝=−∞

∞

𝑞=−∞

 (7) 

 

here 

𝑐𝑝𝑞𝑠 = ∫ ∫ ∫ 𝜙0(𝜃, 𝜂, 𝜉)𝑒−2𝜋𝑖(𝑝𝜃+𝑞𝜂+𝑠𝜉)1

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉. 

We have to estimate the multiple series on the right hand side of the equality (7).  

Let’s consider first an expansion of the function 𝜙(𝜃, 𝜂, 𝜉) into trigonometric 

series. We have 

ϕ(𝜃, 𝜂, 𝜉)~ ∑ ∑ ∑ 𝑏𝑝𝑞𝑠
∞
𝑠=−∞ 𝑒2𝜋𝑖(𝑝𝜃+𝑞𝜂+𝑠𝜉)∞

𝑝=−∞
∞
𝑞=−∞ ; 

here 

𝑏𝑝𝑞𝑠 = ∫ ∫ ∫ 𝜙(𝜃, 𝜂, 𝜉)𝑒−2𝜋𝑖(𝑝𝜃+𝑞𝜂+𝑠𝜉)1

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉. 

Dissect inner double sum under the multiple integral in the expression (3), 

splitting the interval of summation over 𝑘 into the union of sub-intervals (in which 

|𝑟 − 𝑘| varies) of a view 

𝐼𝑗 = (2𝑗−1𝑟1/3, 2𝑗𝑟1/3], 𝑗 = 1, . . . , 𝐽, 



Journal of AppliedMath 2024, 2(6), 2152. 
 

8 

where 𝐽 is a largest natural number for which 2𝐽𝑟1/3 ≤ 𝑟/√2. For 𝑗 = 0 we put 𝐽0 =

[𝑟/√2, 𝑟]. So, the number of such sub-intervals is 𝑂(𝑙𝑜𝑔 𝑟). Then we get 

𝑏𝑝𝑞𝑠 = 𝑏𝑝𝑞𝑠
0 + 𝑏𝑝𝑞𝑠

1 + ⋯ + 𝑏𝑝𝑞𝑠
𝐽

, (8) 

And 

𝑏𝑝𝑞𝑠
𝑗

= ∫ ∫ ∫ (∑ ∑ 𝜌(−𝜂 +
−

√𝑟2−𝑘2

√2
<𝑛<

√𝑟2−𝑘2

√2

|𝑟−𝑘|∈𝐼𝑗

1

0

1

0

1

0

√𝑟2 − (𝑘 + 𝜉)2 − (𝑛 + 𝜃)2)) 𝑒−2𝜋𝑖(𝑝(𝑛+𝜃)+𝑞𝜂+𝑠(𝑘+𝜉)) 𝑑𝜃𝑑𝜂𝑑𝜉 = ∫ 𝑑𝜂 ∬ (
1

2
− {−𝜂 +

𝛱𝑗

1

0

√𝑟2 − 𝑧2 − 𝑥2}) 𝑒−2𝜋𝑖(𝑝𝑧+𝑞𝜂+𝑠𝑥)𝑑𝑥𝑑𝑦  

(9) 

and 
j  is a union of all unite quadrates, every of which has left lower vertex at the 

point(𝑘, 𝑛) with |𝑟 − 𝑘| ∈ 𝐼𝑗 , −
√𝑟2−𝑘2

√2
< 𝑛 <

√𝑟2−𝑘2

√2
. By the lemma 2,  

𝑏𝑝𝑞𝑠
𝑗

= ∑ 𝑔𝑚
∞
𝑚=−∞,𝑚≠0 ∫ 𝑑𝜂

1

0
∬ 𝑒2𝜋𝑖𝑚(−𝜂+√𝑟2−𝑧2−𝑥2)𝑒−2𝜋𝑖(𝑝𝜉+𝑞𝜂+𝑠𝜃)

𝛱𝑗
𝑑𝜃𝑑𝜂𝑑𝜉 =  

= 𝑔𝑞 ∬ 𝑒2𝜋𝑖(𝑞√𝑟2−𝑧2−𝑦2−𝑝𝑧−𝑠𝑥)
𝛱𝑗

𝑑𝑥𝑑𝑦. 

(10) 

Recall now definition (4). It is evident that the coefficients 𝑐𝑝𝑞𝑠  of the 

expansion of the function.  

𝜙0(𝜃, 𝜂, 𝜉) into Fourier series can be expressed as below: 

𝑐𝑝𝑞𝑠 =
𝑠𝑖𝑛 𝑝 𝛿

𝑝𝛿

𝑠𝑖𝑛 𝑞 𝛿

𝑞𝛿

𝑠𝑖𝑛 𝑠 𝛿

𝑠𝛿
𝑏𝑝𝑞𝑠 (11) 

Let’s denote  

F(𝑧, 𝑥) = 𝑞√𝑟2 − 𝑧2 − 𝑥2 − 𝑝𝑧 − 𝑠𝑥. 

We have  

∂F/𝜕𝑧 = −
𝑞𝑧

√𝑟2−𝑧2−𝑥2
− 𝑝, 𝜕𝐹/𝜕𝑥 = −

𝑞𝑥

√𝑟2−𝑧2−𝑥2
− 𝑠. 

Since for |𝑟 − 𝑘| ∈ 𝐼𝑗  with 2
𝑗−1𝑟1/3 = 𝐾𝑗  we have 𝐾𝑗 ≤ |𝑟 − 𝑧| ≤ 2𝐾𝑗  and 

|𝑥| ≤
√𝑟2−𝑧2

√2
, then one has  

𝑞𝑧

√𝑟2−𝑧2−𝑥2
≤

𝑞𝑟

√(𝑟2−𝑧2)/2
≤

√2𝑞𝑟

√𝑟𝐾𝑗
≤ 2𝑞𝑟1/2𝐾𝑗

−1/2
, 

𝑞𝑥

√𝑟2−𝑧2−𝑥2
≤

𝑞√(𝑟2−𝑧2)/2

√(𝑟2−𝑧2)/2
≤ 𝑞. 

When |𝑟 − 𝑘| ∈ 𝐼𝑗 , and |𝑝| ≥ 3𝑞𝑟1/2𝐾𝑗
−1/2

 or |𝑠| ≥ 3𝑞𝑟1/2𝐾𝑗
−1/2

, we can 

estimate the integral (10) by taking of repeated integration, and applying the lemma 

3, as follows: 
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),min(
11),(2 −−



 srprdzdxe

j

xziF  
(12) 

Estimate now the integral over 𝛱𝑗 when both conditions |𝑝| ≤ 3𝑞𝑟1/2𝐾𝑗
−1/2

 

and|𝑠| ≤ 3𝑞𝑟1/2𝐾𝑗
−1/2

 are satisfied. For this purpose we first transform the domain 

𝛱𝑗  by such way that its boundary stands smooth. Namely, for each 𝑧, |𝑟 − 𝑧| ∈ 𝐼𝑗we 

let x to vary in the interval 

−
√𝑟2−𝑧2

√2
< 𝑥 <

√𝑟2−𝑧2

√2
. 

After of such transformation there arise an error of order 𝑊𝑗 = 𝑂(𝐾𝑗). So,  

∬ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)
𝛱𝑗

𝑑𝑧𝑑𝑥 = ∬ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)
𝛲𝑗

𝑑𝑧𝑑𝑥 + 𝑊𝑗, 

where 𝛲𝑗 = {(𝑧, 𝑥)|𝐾𝑗 < |𝑟 − 𝑧| ≤ 2𝐾𝑗 , −
√𝑟2−𝑧2

√2
< 𝑥 <

√𝑟2−𝑧2

√2
} and 

=jW =− 


dzdxedzdxe

jj

xziFxziF ),(2),(2   

dzdxedzdxe

jjjj

xziFxziF




−=
\

),(2

\

),(2 
 

(13) 

Consider first the case of large gradients, i.e., the case when 

√(𝜕𝐹/𝜕𝑧)2 + (𝜕𝐹/𝜕𝑥)2 ≥ 𝐻 , for some positive 𝐻 . Applying corollary to the 

lemma 1 of the work [13] one can write 

∬ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)
𝛲𝑗

𝑑𝑧𝑑𝑥 = ∫ 𝑒2𝜋𝑖𝑢𝑑𝑢 ∫
𝑑𝑠

√𝐺𝐹(𝑧,𝑥)=𝑢

𝑀

𝑚
; (14) 

here m  and M mean a minimal and maximal values of the function 𝐹(𝑧, 𝑥) 

correspondingly, and 𝐺 = (𝜕𝐹/𝜕𝑥)2 + (𝜕𝐹/𝜕𝑦)2 . Consider equation 𝐹(𝑧, 𝑥) = 𝑢 

which is explicitly written as below 

q√𝑟2 − 𝑧2 − 𝑥2 − 𝑝𝑧 − 𝑠𝑥 = 𝑢, 

or 

𝑞2𝑟2 = 𝑢2 + (𝑝2 + 𝑞2)𝑧2 + (𝑠2 + 𝑞2)𝑥2 + 2𝑝𝑢𝑧 + 2𝑠𝑢𝑥 + 2𝑝𝑠𝑧𝑥 

Applying the lemma 3 ([14] (p. 93)), we find such a dissection of the domain 𝛲𝑗 

into finite number of sub-domains 𝛲𝑗1, 𝛲𝑗2,…, 𝛲𝑗𝑡  (t doesn’t depend of r) for every of 

which the surface integral 

∫
𝑑𝑠

√𝐺𝛲𝑗𝑖,𝐹(𝑧,𝑥)=𝑢
  (15) 

is a monotone function in u . Then applying second mean value theorem for the 

integral (14), one gets 

∬ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)
𝛲𝑗

𝑑𝑧𝑑𝑥 << 𝑚𝑎𝑥
𝑢,𝑖,𝑗

∫
𝑑𝑠

√𝐺𝛲𝑗𝑖,𝐹(𝑧,𝑥)=𝑢
. 

Make exchange of variables under the integral (15) by formulae 
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ξ = 𝜕𝐹/𝜕𝑧, 𝜔 = 𝜕𝐹/𝜕𝜔. 

Then lemma 2 of the work [14] (p. 92) gives 

∫
𝑑𝑠

√𝐺𝛲𝑗𝑖,𝐹(𝑧,𝑥)=𝑢
= ∫

|𝑑𝑒𝑡 𝐵|𝑑𝜎

√𝐺′𝛱
; 

Here 𝛱 is a pre-image of the domain 𝛲𝑖𝑗  at taken transformation, 𝑑𝜎 means a 

surface element at the surface (line) which is a pre-image of the considered surface 

(line). Jacobi matrix of the tran-sformation is  

𝐵−1 = 𝐴 = 𝑞(𝑟2 − 𝑧2 − 𝑥2)−3/2 (−𝑟2 + 𝑧2 𝑧𝑥
𝑧𝑥 −𝑟2 + 𝑥2), 

and 

𝐺′ = (𝐵𝑇 ⋅ 𝐵𝛻, 𝛻); 𝛻 = (𝜕𝐹/𝜕𝑧, 𝜕𝐹/𝜕𝑥) 

is a quadratic form. Denoting by 𝜆 a minimal eigenvalue of the matrix 𝐵𝑇 ⋅ 𝐵. we 

have 

𝐺′ = (𝐵𝑇 ⋅ 𝐵𝛻, 𝛻) ≥ 𝜆(𝛻, 𝛻). 

Let 𝐿 = 𝑚𝑎𝑥
(𝑧,𝑥)∈𝑃𝑖𝑗

‖𝛻‖. Dissect the interval (𝐻, 𝐿) into no more than 𝑂(𝑙𝑜𝑔( 𝐿/

𝐻)) subintervals of a view 2ℎ𝐻 ≤ ‖𝛻‖ ≤ 2ℎ+1𝐻. Since 𝜆−1 ≤ ‖𝐴‖, then one may 

observe that 

∫
𝑑𝑠

√𝐺𝛲𝑗𝑖,𝐹(𝑧,𝑥)=𝑢,

2ℎ𝐻≤‖𝛻‖≤2ℎ+1𝐻

≤ ∫
|𝑑𝑒𝑡 𝐵|𝑑𝜎

2ℎ𝐻√𝜆𝛲𝑗𝑖,2ℎ𝐻≤√𝜉2+𝜔2≤2ℎ+1𝐻
<<  

<< 2𝜋 (𝑚𝑎𝑥
𝛲𝑖𝑗

‖𝐴‖(𝑑𝑒𝑡 𝐴)−1) ∫
𝑑𝜎

2ℎ𝐻𝐹(𝑧,𝑥)=0,2ℎ𝐻≤√𝜉2+𝜔2≤2ℎ+1𝐻
, 

where ‖𝐴‖means Euclidean norm of the matrix 𝐴. Since 

𝑑𝑒𝑡 (−𝑟2 + 𝑧2 𝑧𝑥
𝑧𝑥 −𝑟2 + 𝑥2) = 𝑟2(𝑟2 − 𝑧2 − 𝑥2), 

then we have following estimation: 

‖𝐴‖(𝑑𝑒𝑡 𝐴)−1 <<
(𝑟2−𝑧2−𝑥2)2

𝑞2𝑟2 𝑞(𝑟2 − 𝑧2 − 𝑥2)−3/2𝑟2 << √𝑟𝐾𝑗𝑞−1. 

Do not destroying the generality, we assume that the mapping 𝜉 = 𝜕𝐹/𝜕𝑧, 𝜔 =

𝜕𝐹/𝜕𝑥 is bijective in 𝛱𝑗 . Let 𝑧 = 𝑧(𝜉, 𝜔), 𝑦 = 𝑦(𝜉, 𝜔) is an inverse mapping. The 

equation 𝐹(𝑧, 𝑥) = 𝑢equivalently defines a line  

F(𝑧(𝜉, 𝜔), 𝑥(𝜉, 𝜔)) = 𝑓(𝜉, 𝜔) = 𝑢 

along which is taken the surface integral: 


++= HHxzF

h
hh

H

d

122 22,0),(
2





 

We can dissect the line defined by the equation above into no more that finite 

number of parts in each of which one of partial derivatives of the function, say (
𝜕𝑓

𝜕𝜉
) 
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takes values such that (
𝜕𝑓

𝜕𝜉
) ≥ (

𝜕𝑓

𝜕𝜔
), we can estimate the surface integral applying 

the result proven in [14] (p. 91): 

dσ = (
𝜕𝑓

𝜕𝜉
)

−1
√(

𝜕𝑓

𝜕𝜉
)

2

+ (
𝜕𝑓

𝜕𝜔
)

2

𝑑𝜉  

as below  

∫
𝑑𝜎

2ℎ𝐻𝐹(𝑧,𝑥)=𝑢,2ℎ𝐻≤√𝜉2+𝜔2≤2ℎ+1𝐻
<<

1

2ℎ𝐻
∫ 𝑑𝜉

2𝑘+1𝐻

0
<< 1. 

So, we get the bound applying the mentioned above estimation  

∬ 𝑒2𝜋𝑖𝐹(𝑥,𝑦)
𝛱𝑗

𝑑𝑥𝑑𝑦 << √𝑟𝐾𝑗𝑞−1 𝑙𝑜𝑔( 𝐿/𝐻). (16) 

Consider now the case of small gradient, i.e., the part of the integral taken over 

the sub-domain 𝛱 of 𝛱𝑗 where√(𝜕𝐹/𝜕𝑧)2 + (𝜕𝐹/𝜕𝑥)2 ≤ 𝐻 , for some positive 𝐻 . 

Making exchange of variables 𝜉 = 𝜕𝐹/𝜕𝑧, 𝜔 = 𝜕𝐹/𝜕𝑥  we estimate the integral 

trivially 

∬ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)
𝛱

𝑑𝑧𝑑𝑥 = ∬ (𝑑𝑒𝑡 𝐴)−1𝑑𝜉𝑑𝜔
𝛱,𝜉2+𝜔2≤𝐻2 ≤ 𝜋𝐻2𝐺0

−1, 

where 𝐺0 means a minimal value of the determinant 𝑑𝑒𝑡 𝐴. As it was shown above  

𝑑𝑒𝑡 𝐴 = 𝑞2(𝑟2 − 𝑧2 − 𝑥2)−2𝑟2 >> 𝑞2𝐾𝑗
−2. 

So, in the case of small gradients we get 

∬ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)
𝛱

𝑑𝑧𝑑𝑥 << 𝐻2𝐾𝑗
2𝑞−2. 

Taking 𝐻 = 𝑟1/4𝐾𝑗
−3/4

𝑞1/2 we get a final estimation 

∬ 𝑒2𝜋𝑖𝐹(𝑥,𝑦)
𝛱𝑗

𝑑𝑥𝑑𝑦 << √𝑟𝐾𝑗𝑞−1 𝑙𝑜𝑔 𝑟. 

Hence for 𝑏𝑝𝑞𝑠
𝑗

 we have got estimation  

𝑏𝑝𝑞𝑠
𝑗 << √𝑟𝐾𝑗𝑞−2 𝑙𝑜𝑔 𝑟. 

Therefore, summing over all |𝑝|, |𝑠| ≤ 3𝑞𝑟1/2𝐾𝑗
−1/2

 we receive 


−

−−− 
13,

2222412
2

loglog

jrKqsp

jj

j

pqs rqrrqrKrKqb  
(17) 

From the bound (12) it follows that for pairs doesn’t satisfying the conditions 

above we may apply the estimation 

∬ 𝑒2𝜋𝑖𝐹(𝑥,𝑦)
𝛱𝑗

𝑑𝑥𝑑𝑦 << 𝑟|𝑝|−1/2|𝑠|−1/2. (18) 

Returning back to the relation (7), we can write in accordance with the 

inequality (2): 

∫ ∫ ∫ |𝜙0(𝜃, 𝜂, 𝜉)|21

0

1

0

1

0
𝑑𝜃𝑑𝜂𝑑𝜉 = 𝑊 + ∑ ∑ ∑ |𝑐𝑝𝑞𝑠|

2∞
𝑠=−∞

∞
𝑝=−∞

∞
𝑞=−∞ , 

where 𝑊 is a contribution of error term 𝑊𝑗 into the sum (7). 
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To estimate the contribution of 𝑊𝑗 we must estimate the integrals on the right 

hand side of the last chain of relations (13). Both integrals have the same estimation, 

for which we suffice with the estimation of the first of them. Fixing z consider 

integral 

𝑊𝑗(𝑧) = ∫ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)𝑑𝑥
𝑏

𝑎
, 

where [𝑎, 𝑏] denotes a segment being a closure of the set {𝑥|(𝑧, 𝑥) ∈ 𝛱𝑗\𝛲𝑗} . It is 

clear that its length doesn’t exceed 1. Applying theorem of  Lagrange on finite 

increments we find that the segment [𝑎 − 1, 𝑏 + 1]  contains 𝑂(1 + 𝑞(𝑟𝐾𝑗)−1/2) 

integral numbers s  for which at some x
𝑞𝑥

√𝑟2−𝑧2−𝑥2
= 𝑠. For such s , we estimate 

the trigonometric integral above trivially, or by using of the lemma 4: 

∫ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)𝑑𝑥
𝑏

𝑎
<< 𝑚𝑖𝑛( 1, 𝑞−1/2(𝑟𝐾𝑗)1/4), 

since 

𝜕2𝐹

𝜕𝑥2 √(𝑟2 − 𝑧2 − 𝑥2)3 >> 𝑞/√𝑟𝐾𝑗. 

For other values of  s we can estimate the integral by using of the lemma 3 as a 

value  

𝑊𝑗(𝑧) = ∫ 𝑒2𝜋𝑖𝐹(𝑧,𝑥)𝑑𝑥
𝑏

𝑎
<< |𝑠 − 𝑠0|−1, 

and here 𝑠0 denotes the value of the function 𝐹(𝑧, 𝑥) at the points 𝑎 or 𝑏 at which 

|𝑠 − 𝑠0| takes minimal value. It is obvious that |𝑠 − 𝑠0| ≥ 1. Summing now over all 

|𝑠| ≤ 3𝑞√𝑟𝐾𝑗
−1 we get: 

∑ |𝑊𝑗(𝑧)|
2

<< 1 + 𝑞(𝑟𝐾𝑗)−1//2𝑞−1(𝑟𝐾𝑗)1//2 << 1
|𝑠|≤3𝑞√𝑟𝐾𝑗

−1
  

So, summarizing over all 𝑘,|𝑟 − 𝑘| ∈ 𝐼𝑗the getting inequality and counting the 

factor𝑔𝑞before the integral in (15), we get contribution of error term 𝑊𝑗 into the 

multiple sum on the right hand side of the relation (12): 

212/31

3,

122
2

1

)( rqKrqrKqqKkW j

rKqsp

jjj

j

−−



−− 
−

. 

Taking 𝛿 = 𝑟−4  we get for the multiple series following estimation in 

accordance with (8-18): 

∑ ∑ ∑ |𝑐𝑝𝑞𝑠|
2∞

𝑠=−∞
∞
𝑝=−∞

∞
𝑞=−∞ << 𝑟2 𝑙𝑜𝑔 𝑟 + ∑ 𝑟2𝑞−2 𝑙𝑜𝑔2 𝑟 (𝑙𝑜𝑔2 𝑟 + ∑

𝑠𝑖𝑛2(𝑝𝛿)

𝑝3𝛿2
∑

𝑠𝑖𝑛2(𝑠𝛿)

𝑠3𝛿2
∞
𝑠=1

∞
𝑝=1 )∞

𝑞=1 . 

Let’s estimate inner sums at the right hand side of the last inequality. We have: 

∑
𝑠𝑖𝑛2(𝑠𝛿)

𝑠3𝛿2
∞
𝑠=1 << ∑

1

𝑠𝑠≤𝑟4 + 𝑟8 ∑
1

𝑠3𝑠>𝑟4 << 𝑙𝑜𝑔 𝑟. 

So, finally we get the following inequality: 
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∫ ∫ ∫
1

0

1

0
|𝑁(𝑟; 𝜃, 𝜂, 𝜉) −

4𝜋𝑟3

3
|

1

0

2

𝑑𝜃𝑑𝜂𝑑𝜉 << 𝑟2 𝑙𝑜𝑔4 𝑟, 

which completes the proof of the theorem. 

4. Discussion 

Main idea of the article is a use of Fourier analysis to reduce double 

trigonometric sums to double trigonometric integral using (9–10). The important 

result of the article is an estimation (16) of double trigonometric integral. This 

extends the possibilities of the method for more general domains. There is a 

possibility of application of the results to initial problem for not shifted domains.  
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