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1. Introduction
A thorough local description of almost cosymplectic (−1, µ, ν)−spaces via model

spaces is provided in [1] dependent on the function µ. The models are Lie groups with
a left-invariant structure that is almost cosymplectic when µ is constant. Although
[2] provides model spaces for the almost cosymplectic situation, there aren’t enough
illustrative instances of almost α−cosymplectic manifolds that satisfy [3] with non-
constant smooth functions to be discovered in the literature.

The most obvious examples of almost cosymplectic manifolds are the construc-
tions of almost Kaehler manifolds, the real R line, and the circle S1. S. I. Goldberg
and K. Yano developed integrability conditions for almost cosymplectic structures on
almost contact manifolds. Besides, they discovered that an almost cosymplectic mani-
fold is only cosymplectic when it is locally flat [4].

H. Öztürk studied the notion of almost α-cosymplectic (k, µ, ν)-spaces in terms
of a specific curvature condition. The authors in [5] researched the exintence of almost
α-cosymplectic (k, µ, ν)-space in 3-dimensional case. The properties of an almost α-
cosymplectic manifolds have been studied by several authors [9–11].

In 2022, M. Atçeken studied the invariant submanifolds of an almost α-
cosymplectic (k, µ, ν)-space that matched certain geometric requirements so that
Q(σ,R) = 0, Q(S, σ) = 0, Q(S, ∇̃σ) = 0, Q(S, R̃ · σ) = 0, Q(g, C · R) = 0 and
Q(S,C · σ) = 0. He showed that under certain circumstances, these conditions are
identical to totally geodesic [6].

Our paper aim is on invariant submanifolds of an almost α-cosymplectic
(k, µ, ν)-manifolds, which is inspired by the works mentioned above. In addi-
tion, we demonstrate several prerequisites for an α-cosymplectic (k, µ, ν)-manifolds
invariant submanifold to be totally geodesic. Then, certain classifications and char-
acterizations have been developed.
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2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M2n+1 which
carries a field ϕ of endomorphisms of the tangent spaces, a vector field ξ, called
characteristic or Reeb vector field, and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1. (1)

Here I : TM2n+1 → TM2n+1 denotes an identity mapping. Because of (1), it
follows that

η ◦ ϕ = 0, ϕξ = 0, rank(ϕ)=2n. (2)

An almost contact manifold M2n+1(ϕ, ξ, η) called normal if the tensor field
N = [ϕ, ϕ] + 2dη⊗ ξ = 0, where [ϕ, ϕ] denote the Nijenhuis tensor field of ϕ. Any
almost contact manifold M2n+1(ϕ, ξ, η) is known to have a Riemannian metric like
that

g(ϕα1, ϕα2) = g(α1, α2)− η(α1)η(α2), (3)

for all vector fields α1, α2 ∈ Γ(TM) [7]. A metric of this type, g, is known as
an equipped metric, and the structure (ϕ, η, ξ, g) and manifold M2n+1(ϕ, η, ξ, g),
associated with it, are known as an almost contact metric manifold and are written
as M2n+1(ϕ, η, ξ, g). It is known as the fundamental form of M2n+1(ϕ, η, ξ, g)

when Φ(α1, α2) = g(ϕα1, α2). An almost contact metric manifold is said to be
a cosymplectic manifold if η and Φ are closed, that is, dη = dΦ = 0 [1]. The
definition of an almost α-cosymplectic manifold for every real number α is given
as follows [8]:

dη = 0, dΦ = 2αη ∧ Φ. (4)

The term α−cosymplectic refers to a normal almost α−cosymplectic manifold
[5]. We refer to references [9–11]. It’s commonly known that the following equality
holds for the tensor h on the contact metric manifold M2n+1(ϕ, η, ξ, g), described
by 2h = Lξϕ,

∇̃α1ξ = −ϕα1 − ϕhα1, hϕ+ ϕh = 0, trh = trϕh = 0, hξ = 0, (5)

here,∇̃ is the Levi-Civita connection on M2n+1 [12].
The following presented the notation of the (k, µ, ν)−contact metric manifold,

which expands above generalized (k, µ)-spaces:

R(α1, α2)ξ = η(α2) [kI + µh+ νϕh]α1 + η(α1) [kI + µh+ νϕh]α2, (6)

R is the Riemannian curvature tensor of M2n+1 and certain smooth functions k, µ
and ν on M2n+1, where α1, α2 are vector fields [13].
Lemma 1. Let M2n+1(ϕ, η, ξ, g) be an almost α−cosymplectic (k, µ, ν)−manifold.
Then,

h2 = (k + α2)ϕ2, (7)
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ξ(k) = 2(k + α2)(ν − 2α), (8)

R(ξ, α1)α2 = k[g(α1, α2)ξ − η(α2)α1] + µ[g(hα1, α2)ξ − η(α2)hα1]

+ν[g(ϕhα1, α2)ξ − η(α2)ϕhα1], (9)

(∇̃α1ϕ)α2 = g(αϕα1 + hα1, α2)ξ − η(α2)(αϕα1 + hα1), (10)

∇̃α1ξ = −αϕ2α1 − ϕhα1, (11)

for any vector fields α1, α2 on M2n+1 [7].
Suppose that M is an immersed submanifold of M̃2n+1, which is an almost

α—cosymplectic (k, µ, ν)-space. We use Γ(TM) and Γ(T⊥M) to characterize the
tangent and normal subspaces of M in M̃ . The Gauss and Weingarten formulae
are given, respectively, by

∇̃α1α2 = ∇α1α2 + σ(α1, α2), (12)

and
∇̃α1α5 = −Aα5α1 +∇⊥

α1
α5 (13)

for all α1, α2 ∈ Γ(TM) and α5 ∈ Γ(T⊥M), σ and A remove the second funda-
mental form and shape operators of M , respectively, ∇ and ∇⊥ are the induced
connections on M and Γ(T⊥M). Γ(TM) stands for the set of differentiable vector
fields on M . They are related by

g(Aα5α1, α2) = g(σ(α1, α2), α5). (14)

The first covariant derivative of the second fundamental form σ is defined by

(∇̃α1σ)(α2, α3) = ∇⊥
α1
σ(α2, α3)− σ(∇α1α2, α3)− σ(α2,∇α1α3), (15)

for all α1, α2, α3 ∈ Γ(TM). If ∇̃σ = 0, the second fundamental form is parallel,
which is considered to be submanifold.

The following Gauss equation results from denoting the Riemannian curvature
tensor of the submanifold M by R.

R̃(α1, α2)α3 = R(α1, α2)α3 +Aσ(α1,α3)α2 −Aσ(α2,α3)α1 + (∇̃α1σ)(α2, α3)

−(∇̃α2σ)(α1, α3), (16)

for all α1, α2, α3 ∈ Γ(TM).

R̃ · σ is given by

(R̃(α1, α2) · σ)(α4, α5) = R⊥(α1, α2)σ(α4, α5)− σ(R(α1, α2)α4, α5)

−σ(α4, R(α1, α2)α5), (17)

where
R⊥(α1, α2) = [∇⊥

α1
,∇⊥

α2
]−∇⊥

[α1,α2]
,
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indicate the normal bundle’s Riemannian curvature tensor.
In fact, for the Riemannian manifold (M2n+1, g), the W6 curvature tensor is

determined by

W6(α1, α2)α3 = R(α1, α2)α3 −
1

2n
[S(α2, α3)α2 − g(α1, α2)Qα3], (18)

for all α1, α2, α3 ∈ Γ(TM) [14].
Similarly, the tensor W6 · σ is defined by

(W6(α1, α2) · σ)(α4, α5) = R⊥(α1, α2)σ(α4, α5)− σ(W6(α1, α2)α4, α5)

−σ(α4,W6(α1, α2)α5), (19)

for all α1, α2, α4, α5 ∈ Γ(TM).

Furthermore, the W9-curvature tensor for Riemannian manifold (M2n+1, g) is
given by

W9(α1, α2)α3 = R(α1, α2)α3 +
1

2n
[S(α1, α2)α3 − g(α2, α3)Qα1] (20)

for all α1, α2, α3 ∈ Γ(TM) [14].
For a (0, k)−type tensor field T , k ≥ 1 and a (0, 2)-type tensor field A on a

Riemannian manifold (M, g), Q(A, T ) is defined by

Q(A, T )(α11, α12, ..., α1k;α1, α2) = −T ((α1 ∧A α2)α11, α12, ..., α1k)

− T (α11, (α1 ∧A α2)α13, ..., α1k)

.

.

.

− T (α11, α12, ..., (α1 ∧A α2)α1k), (21)

for all α11, α12, ..., α1k, α1, α2 ∈ Γ(TM), where

(α1 ∧A α2)α3 = A(α2, α3)α1 −A(α1, α3)α2. (22)

3. On the geometry of an almost α-cosymplectic (k, µ, ν)-spaces

Now, assume that M is an immersed submanifold of M̃2n+1 and that M is
an almost α−cosymplectic (k, µ, ν)-space. For any point at α1 ∈ M, ϕ(Tα1M) ⊆
Tα1M, then M is said to be an invariant submanifold of M̃2n+1(ϕ, ξ, η, g) with
regard to ϕ. A submanifold that is invariant with respect to ϕ will thereafter be
seen to be invariant with respect to h.
Proposition 1. If ξ is tangent to M , then M is an invariant submanifold of an
almost α−cosymplectic (k, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). Hence, we have following
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equalities;

R(α1, α2)ξ = k[η(α2)α1 − η(α1)α2] + µ[η(α2)hα1 − η(α1)hα2]

+ν[η(α2)ϕhα1 − η(α1)ϕhα2] (23)

(∇α1ϕ)α2 = g(αϕα1 + hα1, α2)ξ − η(α2)(αϕα1 + hα1) (24)

∇α1ξ = −αϕ2α1 − ϕhα1 (25)

ϕσ(α1, α2) = σ(ϕα1, α2) = σ(α1, ϕα2), σ(α1, ξ) = 0, (26)

where ∇, σ and R stand for M ’s shape operator, Riemannian curvature tensor, and
the induced Levi-Civita connection on M , respectively.

Proof. As the proof is a consequence of straightforward math, we omit it. □
We shall assume for the remainder of this work that M is an invariant subman-

ifold of an α−cosymplectic (k, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). From Equation (5),
we have in this instance

ϕhα1 = −hϕα1, (27)

for all α1 ∈ Γ(TM), which means that M is also invariant in relation to the tensor
field h.

Theorem 1. Let M be an invariant submanifold of an almost α−cosymplectic
(k, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). Then Q(g,W6 · σ) = 0 if and only if M is either
totally geodesic or

[
k2 + (µ2 + ν2)(k + α2)

]
= 0.

Proof. We suppose that Q(g,W6 · σ) = 0. This means that

(W6(α1, α2) · σ)((α3 ∧g α6)α4, α5) + (W6(α1, α2) · σ)(α4, (α3 ∧g α6)α5) = 0,

for all α1, α2, α4, α5, α3, α6 ∈ Γ(TM), which implies that

(W6(α1, α2) · σ) + (g(α4, α6)α3 − g(α3, α4)α6, α5) + (W6(α1, α2) · σ)

+(α4, g(α5, α6)α3 − g(α3, α5)α6) = 0. (28)

In (28), putting α2 = α4 = α3 = α5 = ξ and using (18), (19), (23), we observe

(W6(α1, ξ) · σ)(η(α6)ξ − α6, ξ) = (W6(α1, ξ) · σ)(η(α6)ξ, ξ)

−(W6(α1, ξ) · σ)(α6, ξ)

= R⊥(α1, ξ)σ(η(α6)ξ, ξ)− σ(η(α6)W6(α1, ξ)ξ, ξ)

−σ(η(α6)ξ,W6(α1, ξ)ξ)−R⊥(α1, ξ)σ(α6, ξ)

+σ(W6(α1, ξ)α6, ξ) + σ(α6,W6(α1, ξ)ξ) = 0. (29)

In view of (6) and (16), non-zero components of (29) vectors give us

σ(W6(α1, ξ)ξ, α6) = σ(α6, kα1 + µhα1 + νϕhα1) = 0. (30)

Also taking ϕα1 instead of α1 in (30) and by virtue of Lemma 1 and Proposition
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1, we have

−kσ(ϕhα1, α6)− µ(k + α2)σ(ϕα1, α6) + ν(k + α2)σ(α1, α6) = 0. (31)

(30) and (31) implies that

[
k2 + (µ2 + ν2)(k + α2)

]
= 0 or σ = 0,

which completes the proof. □
Theorem 2. Let M be an invariant submanifold of an almost α−cosymplectic
(k, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). Then Q(S,W6 · σ) = 0 if and only if M is either
totally geodesic or 2nk

[
k2 + (µ2 + ν2)(k + α2)

]
= 0.

Proof. We believe that Q(S,W6 · σ) = 0, which follows that

Q(S,W6(α1, α2) · σ)(α4, α5;α3, α6) = 0,

for all α1, α2, α4, α5, α3, α6 ∈ Γ(TM). By virtue of (19) and (21), we obtain

S(α3, α4)(W6(α1, α2) · σ)(α6, α5)− S(α6, α4)(W6(α1, α2) · σ)(α3, α5)

+S(α3, α5)(W6(α1, α2) · σ)(α4, α6)

−S(α6, α5)(W6(α1, α2) · σ)(α4, α3) = 0. (32)

Expanding (32) and putting α2 = α4 = α3 = α5 = ξ, non-zero components
are

2nkσ(α6,W6(α1, ξ)ξ). (33)

As a result, by combining the previous equation and applying (20), we determine
that

2nkσ(α6, kα1) + 2nkσ(α6, µhα1) + 2nkνσ(α6, ϕhα1) = 0. (34)

On the other hand, substituting ϕα1 for α1 and taking into account (7) and
(26), we conclude that 2nk

[
k2 + (µ2 + ν2)(k + α2)

]
σ(hx1, α6) = 0, which yields

2nk
[
k2 + (µ2 +ν2)(k + α2)

]
= 0 or σ = 0. □

Theorem 3. Let M be an invariant submanifold of an almost α−cosymplectic
(k, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). Then Q(g,W9 · σ) = 0 if and only if M is either
totally geodesic or

[
k2 + (µ2 + ν2)(k + α2)

]
= 0.

Proof. We assume that Q(g,W9 · σ) = 0. This means that

(W9(α1, α2) · σ)((α3 ∧g α6)α4, α5) + (W9(α1, α2) · σ)(α4, (α3 ∧g α6)α5) = 0,

for all α1, α2, α4, α5, α3, α6 ∈ Γ(TM). Then, we have

(W9(α1, α2) · σ) + (g(α4, α6)α3 − g(α3, α4)α6, α5) + (W9(α1, α2) · σ)

+(α4, g(α5, α6)α3 − g(α3, α5)α6) = 0. (35)
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In (35), taking α2 = α4 = α3 = α5 = ξ and making use of (6), (20), we obtain

(W9(α1, ξ) · σ)(η(α6)ξ − α6, ξ) = (W9(α1, ξ) · σ)(η(α6)ξ, ξ)

−(W9(α1, ξ) · σ)(α6, ξ)

= R⊥(α1, ξ)σ(η(α6)ξ, ξ)− σ(η(α6)W9(α1, ξ)ξ, ξ)

−σ(η(α6)ξ,W9(α1, ξ)ξ)−R⊥(α1, ξ)σ(α6, ξ)

+σ(W9(α1, ξ)α6, ξ) + σ(α6,W9(α1, ξ)ξ) = 0. (36)

In view of (17) and (20), non-zero components of (36) vectors give us

σ(W9(α1, ξ)ξ, α6) = σ(α6, kα1 + µhα1 + νϕhα1) = 0. (37)

Substituting ϕα1 for α1 in (37) and considering the Equations (1) and (7), then
we get

kσ(α6, ϕα1)− µσ(α6, ϕhα1) + νσ(α6, hα1) = 0. (38)

From (37) and (38), we conclude that

[
k2 + (µ2 + ν2)(k + α2)

]
σ(α6, hα1) = 0

Therefore, we get the requested result. □
Theorem 4. Let M be an invariant submanifold of an almost α−cosymplectic
(k, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). Then Q(S,W9 · σ) = 0 if and only if M is either
totally geodesic or 2nk

[
k2 + (µ2 + ν2)(k + α2)

]
= 0.

Proof. Let us assume that Q(S,W9 · σ) = 0. It follows that

Q(S,W9(α1, α2) · σ)(α4, α5;α3, α6) = 0,

for all α1, α2, α4, α5, α3, α6 ∈ Γ(TM). Due to (17) and (20), we deduce that

S(α3, α4)(W9(α1, α2) · σ)(α6, α5)− S(α6, α4)(W9(α1, α2) · σ)(α3, α5)

+S(α3, α5)(W9(α1, α2) · σ)(α4, α6)

−S(α6, α5)(W9(α1, α2) · σ)(α4, α3) = 0. (39)

By setting α2 = α4 = α3 = α5 = ξ in the last equation and non-zero
components is

2nkσ(α6,W9(α1, ξ)ξ), (40)

and hence
2nkσ(α6, kα1 + µhα1 + νϕhα1) = 0. (41)

In the same way, by using (37) and (38), we get 2nk
[
k2 + (µ2 + ν2)(k + α2)

]
σ(hx1, α6) = 0, this means that, 2nk

[
k2 + (µ2 + ν2)(k + α2)

]
= 0 or σ = 0. This

proves our assertion. □
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