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Abstract: The object of the paper is to investigate almost a-cosymplectic (k, u, v)-
spaces. Some results on almost cosymplectic (k, u, )-spaces with certain conditions

are obtained.
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1. Introduction

A thorough local description of almost cosymplectic (—1, u, v)—spaces via model
spaces is provided in [1] dependent on the function p. The models are Lie groups with
a left-invariant structure that is almost cosymplectic when p is constant. Although
[2] provides model spaces for the almost cosymplectic situation, there aren’t enough
illustrative instances of almost a—cosymplectic manifolds that satisfy [3] with non-
constant smooth functions to be discovered in the literature.

The most obvious examples of almost cosymplectic manifolds are the construc-
tions of almost Kaehler manifolds, the real R line, and the circle S1. S. I. Goldberg
and K. Yano developed integrability conditions for almost cosymplectic structures on
almost contact manifolds. Besides, they discovered that an almost cosymplectic mani-
fold is only cosymplectic when it is locally flat [4].

H. Oztiirk studied the notion of almost a-cosymplectic (k, u, v)-spaces in terms
of a specific curvature condition. The authors in [5] researched the exintence of almost
a-cosymplectic (k, p1, v)-space in 3-dimensional case. The properties of an almost a-
cosymplectic manifolds have been studied by several authors [9-11].

In 2022, M. Atceken studied the invariant submanifolds of an almost a-
cosymplectic (k, ui,v)-space that matched certain geometric requirements so that
Q(o,R) =0, Q(S,0) =0, Q(S,Vo) =0, Q(S,R-0) =0, Q(g,C - R) = 0 and
Q(S,C - o) = 0. He showed that under certain circumstances, these conditions are
identical to totally geodesic [6].

Our paper aim is on invariant submanifolds of an almost a-cosymplectic
(k, p, v)-manifolds, which is inspired by the works mentioned above. In addi-
tion, we demonstrate several prerequisites for an a-cosymplectic (&, p, v)-manifolds
invariant submanifold to be totally geodesic. Then, certain classifications and char-
acterizations have been developed.
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2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M?"*+! which
carries a field ¢ of endomorphisms of the tangent spaces, a vector field &, called
characteristic or Reeb vector field, and a 1-form 7 satisfying

¢’ =—-I+n®¢& nE) =1 (1)

Here I : TM?"+1 — TM?"+1 denotes an identity mapping. Because of (1), it
follows that

ne¢ =0, ¢§ =0, rank(¢)=2n. 2

An almost contact manifold M2"*1(¢, &, n) called normal if the tensor field
N = [¢,¢] +2dn® & = 0, where [¢, ¢] denote the Nijenhuis tensor field of ¢. Any
almost contact manifold M?"*1(¢, £, 7) is known to have a Riemannian metric like
that

g(pau, pas) = g(aa, az) — n(ar)n(az), 3)

for all vector fields ay,ay € I'(T'M) [7]. A metric of this type, g, is known as
an equipped metric, and the structure (¢,7,¢,g) and manifold M2 (¢, n, &, g),
associated with it, are known as an almost contact metric manifold and are written
as M?"t1(¢,n,€,9). Tt is known as the fundamental form of M?"*+1(¢,n, &, g)
when ®(aq,a2) = g(pai,a). An almost contact metric manifold is said to be
a cosymplectic manifold if n and & are closed, that is, dn = d® = 0 [1]. The
definition of an almost a-cosymplectic manifold for every real number « is given
as follows [8]:

dn=0, d® =2an A . 4)

The term a—cosymplectic refers to a normal almost a—cosymplectic manifold
[5]. We refer to references [9—11]. It’s commonly known that the following equality
holds for the tensor h on the contact metric manifold M2 (¢, 7, ¢, g), described
by 2h = L¢¢,

Vo & = —doy — dhay, hd+ ¢h =0, trh = tr¢h =0, h¢ =0, 5)

here,V is the Levi-Civita connection on M2 1 [12].
The following presented the notation of the (k, i, v)—contact metric manifold,

which expands above generalized (k, ut)-spaces:
R(a1, a2)§ = n(az) [kl + ph + vohloq + n(ea) [k + ph +vohl oz, (6)

R is the Riemannian curvature tensor of M2"*! and certain smooth functions k,
and v on M?"*! where o, oo are vector fields [13].

Lemma 1. Let M*" "1 (¢,n, &, g) be an almost a—cosymplectic (k, p, v)—manifold.
Then,

h? = (k+a®)¢?, (7)
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E(k) = 2(k + a®)(v — 2a), ®)

R(§,a1)an = kl[g(a1,a2)§ —n(az)oa] + plg(har, a2)§ — n(az)hai]

+vlg(dhar, az)é — n(az)phai], )
(Vayd)aa = glagay + hay, az)é — n(ag)(adar + hay), (10)
Va,& = —ad’ar — dhay, (11)

for any vector fields o, as on M2+ [7].

Suppose that M is an immersed submanifold of M 2n+1 " which is an almost
a—cosymplectic (k, i, v)-space. We use I'(T'M) and T'(T+- M) to characterize the
tangent and normal subspaces of M in M. The Gauss and Weingarten formulae

are given, respectively, by
Va2 = Va a0 + o(ar, az), (12)

and

Va5 = —Agsa1 + Vi as (13)

for all ay,as € T'(TM) and a5 € T(T+M), o and A remove the second funda-
mental form and shape operators of M, respectively, V and V' are the induced
connections on M and T'(T+M). T'(T M) stands for the set of differentiable vector
fields on M. They are related by

9(Aazon, a2) = g(o(n, az), a5). (14)
The first covariant derivative of the second fundamental form o is defined by
(60110')(042,053) = V(Jl‘la(ag7 ag) — o(Va,ao,a3) —o(ag, Vo, as), (15)

for all ay, 0,3 € T'(TM). If Vo = 0, the second fundamental form is parallel,
which is considered to be submanifold.

The following Gauss equation results from denoting the Riemannian curvature
tensor of the submanifold M by R.

R(ala OtQ)Oé3 = R(Oél, Clg)ag + Acr(al,ag)OQ - Acr(ag,ag)al + (60110-)(0‘27 a3)

_(60120-)(()‘1’0‘3)7 (16)

for all oy, a0, a3 € T'(TM).
R-ois given by

(R(ar, a2) - 0)(aa,a5) = R™(an,00)0(as, a5) — o(R(ar, ag)ou, o)
—o(ay, R(a1, a)as), (17)
where
R*(a1,02) = [V, Vo] = Viey o)
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indicate the normal bundle’s Riemannian curvature tensor.
In fact, for the Riemannian manifold (M 2nt+l g), the Wg curvature tensor is

determined by

1
We(a1, a2)as = R(ar, az)as — %[5(042, az)ag — g(ag, a2)Qaz],  (18)

for all aq, g, a3 € T(T'M) [14].
Similarly, the tensor W - o is defined by

(We(ag,a9) - 0)(ag,a5) = RL(OQ,OQ)O'(O@,O%) —o(We(a, ag)ay, as)

—o(aq, We(a1, az)as), (19)

for all ay, g, aq, a5 € T'(T'M).
Furthermore, the Wy-curvature tensor for Riemannian manifold (M?"1, g) is
given by
1
Wolar, az)as = R(a1, az)as + o -[S(an, az)as — g(az, a5)Qai]  (20)

for all oy, a0, a3 € I'(T'M) [14].
For a (0, k)—type tensor field 7', ¥ > 1 and a (0, 2)-type tensor field A on a
Riemannian manifold (M, g), Q(A,T) is defined by

Q(A, T) (o1, 12, ..., a1 00, 2) = —T((a1 N4 a2)aii, 02, ..., k)

— T(ou1, (o0 Aa ag)aus, ..., 0qg)

— T(a11, 002, ..., (a1 Ag a)ang),  (21)
for all aq1, 12, ..., a1k, a1, 0 € T'(T'M), where
(041 AV ag)ag = A(Oég, ag)al — A(Oq, 043)052. 22)

3. On the geometry of an almost a-cosymplectic (k, p, v)-spaces

Now, assume that M is an immersed submanifold of M?+1 and that M is
an almost aw—cosymplectic (k, pu, v)-space. For any point at oy € M, ¢(To, M) C
To, M, then M is said to be an invariant submanifold of M ntl(gp € n,g) with
regard to ¢. A submanifold that is invariant with respect to ¢ will thereafter be
seen to be invariant with respect to h.
Proposition 1. If & is tangent to M, then M is an invariant submanifold of an
almost a—cosymplectic (k, ., v)-space MQ"H(qﬁ, &,m,9). Hence, we have following
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equalities;
R(ar,a0)f = k[n(ag)ar —n(ar)as] + pln(az)har —n(ar)has)]
+vn(oe)phar — n(oy)phas] (23)
(Va,0)az = g(apay + ha, az)é — n(ag)(agar + hay) (24)
Vo, & = —ag?aq — ¢hay (25)
po(aq, ) = o(par, az) = oo, paz), o(ar,§) =0, (26)

where V,0 and R stand for M s shape operator, Riemannian curvature tensor, and

the induced Levi-Civita connection on M, respectively.

Proof. As the proof is a consequence of straightforward math, we omit it. [

We shall assume for the remainder of this work that M is an invariant subman-
ifold of an a—cosymplectic (k, u, )-space ]\72”+1(q5,§,7],g). From Equation (5),
we have in this instance

ohay = —hoay, 27

for all ay € I'(T'M), which means that M is also invariant in relation to the tensor
field h.

Theorem 1. Let M be an invariant submanifold of an almost a—cosymplectic
(k, , v)-space M2”+1(¢,€,n,g). Then Q(g,Ws-0) =0 if and only if M is either
totally geodesic or [k* + (u* +v?)(k + a?)] = 0.

Proof. We suppose that Q(g, Ws - o) = 0. This means that
(We(ar, az2) - o) ((as Ag ag)aa, as) + (We(ar, az) - o) (aa, (a3 Ag as)as) =0,
for all a, g, ay, as, as, a € T'(T'M ), which implies that

(We(au1, a2) - 0) + (g(au, ag)az — g(asz, as)as, as) + (We(a1, az) - o)
+(au, g(as, ag)as — g(as, as)ag) = 0. (28)

In (28), putting ags = ay = a3 = a5 = £ and using (18), (19), (23), we observe

(We(a1,€) - o)(n(as)€ — a6, &) = (We(ar, ) - o) (n(as)§, §)
—(We(a1,§) - 0)(as,€)
= R (o1, §)o(n(es)E, €) — a(n(as)We(a1, £)€,€)
—a(n(as)é, We(an,€)¢) — R (a1, €)o(ag, €)
+o(We(a1,&)as, &) + o(ag, We(a,£)E) = 0. (29)

In view of (6) and (16), non-zero components of (29) vectors give us
o(Wes(a1,£)E, ap) = o(ag, kag + phay + vohay) = 0. (30)

Also taking ¢« instead of o in (30) and by virtue of Lemma 1 and Proposition
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1, we have
—ko(phat, a) — p(k + a®)o(¢an, ag) + v(k + a®)o(ar,a6) = 0. (31)
(30) and (31) implies that
[* + (1® +v*)(k+a®)] =0 or o =0,

which completes the proof. [J

Theorem 2. Let M be an invariant submanifold of an almost a—cosymplectic
(k, p, v)-space MQ”H((;S,S,U,Q). Then Q(S,Ws-0c) =0 if and only if M is either
totally geodesic or 2nk [k* + (1* + v?)(k + o?)] = 0.

Proof. We believe that Q(S, W - o) = 0, which follows that

Q(S, Ws(a1,a2) - 0)(au, as; a3, 06) = 0,

for all aq, g, g, a5, a3, a6 € T'(T'M). By virtue of (19) and (21), we obtain

S(asg, aq)(We(ag, ag) - 0)(ag, as) — S(ag, ag) (We(ar, az) - o) (as, as)
+S (a3, a5)(Ws(ag, a2) - 0)(ay, ag)
—S(Oéﬁ, a5)(W6(a1,a2) . (7)(044, 043) = 0. (32)

Expanding (32) and putting as = a4 = a3 = a5 = &, non-zero components
are
2nko (a6, We(a, §)E). (33)

As a result, by combining the previous equation and applying (20), we determine
that
2nko (e, kay) + 2nko (o, phay) + 2nkvo(ag, phay) = 0. (34)

On the other hand, substituting ¢a; for «; and taking into account (7) and
(26), we conclude that 2nk [k? + (u? + v?)(k + o?)] o(ha1, ag) = 0, which yields
2nk [k* + (1* +12)(k+a?)] =0o0r o =0. 0
Theorem 3. Let M be an invariant submanifold of an almost a—cosymplectic
(k, p, v)-space MQ”H(qb,ﬁ,n,g). Then Q(g, Wy -0) =0 if and only if M is either
totally geodesic or [k* + (1* + v?)(k + o?)] = 0.

Proof. We assume that Q(g, Wy - o) = 0. This means that
(Wo(a1,a2) - 0)((as Ng as)au, as) + (Wo(ar, a2) - 0)(au, (a3 Ay as)as) =0,
for all oy, a9, au, a5, a3,a6 € I'(T'M). Then, we have

(Wy(a, a2) - o) + (g(au, ag)as — g(as, au)as, as) + (Wola, ag) - o)
+(aa, g(as, ag)as — g(as, as)ag) = 0. (33)
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In (35), taking as = a4 = a3 = as = £ and making use of (6), (20), we obtain

(Wo(an,§) - o) (n(as)§ — ag, &) = (Wolau,§) - o) (n(ae)s, §)
—(Wy(a1,§) - 0)(as,€)
= R*(a1,8)a(n(as)€, €) — a(n(ag)Wo(a1,€)E,€)
—a(n(ae)é, Wolar, £)€) — R (a1, £)o(ae, €)
+o(Wo(an,§)as, &) + o(ag, Wo(ar, §)E) = 0. (36)

In view of (17) and (20), non-zero components of (36) vectors give us
a(Wy(a1,8)E, ag) = o(as, kar + phay + vehar) = 0. (37)

Substituting ¢a; for o in (37) and considering the Equations (1) and (7), then
we get
ko (e, par) — po(as, phar) + vo(ag, hay) = 0. (38)

From (37) and (38), we conclude that
[k + (1 + ) (k + o®)] o(ag, har) = 0

Therefore, we get the requested result. [J
Theorem 4. Let M be an invariant submanifold of an almost a—cosymplectic
(k, p, v)-space ]\72"+1(¢,§,77,g). Then Q(S, Wy -0) =0 if and only if M is either
totally geodesic or 2nk [k* + (u* + v?)(k + o?)] = 0.

Proof. Let us assume that Q(S, Wy - o) = 0. It follows that

Q(S, Wo(au, ag) - 0)(au, as; a3, ) = 0,
for all ay, ag, oy, a5, a3, a6 € T(T'M). Due to (17) and (20), we deduce that

S(Oég, 044)<W9(051, 042) . U)(Oz6,045) — S(Oéﬁ,Oé4)(W9(041, 042) . U)(Ozg, 045)
—i—S(O&g, 045)(W9(041,042) . 0)(0[4, aﬁ)
—S(ag, a5)(Wy(ag,ag) - 0)(aq,as) = 0. (39)

By setting as = a4 = a3 = as = £ in the last equation and non-zero
components is
2nko (o, Wo (a1, §)§), (40)

and hence
2nko(ag, kay + phay + voha) = 0. 41

In the same way, by using (37) and (38), we get 2nk [k* + (1 + v?)(k + o?)]
o(hx1,a6) = 0, this means that, 2nk [k* + (u? + v?)(k + ?)] = 0 or o = 0. This

proves our assertion. [J
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