
Journal of  AppliedMath 2023; 1(2): 200. 
Original Research Article 

1 

On the existence of a positive solution to a boundary value problem 
for one nonlinear functional-differential equation of the second 
order 
Gusen Abduragimov 

Department of  Applied Mathematics, Dagestan State University, 367000 Makhachkala, Russia; gusen_e@mail.ru 

ABSTRACT: This article considers a boundary value problem for one 

non-linear second-order functional differential equation on the segment 

[0, 1] with an integral boundary condition at one of the ends of the 

segment. Using the well-known Go-Krasnoselsky theorem, sufficient 

conditions for the existence of at least one positive solution to the 

problem under consideration are established. A non-trivial example is 

given, illustrating the fulfillment of the conditions for the unique 

solvability of the problem posed. 
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1. Introduction 
A fairly large number of works are devoted to the solvability of nonlinear differential equations 

and systems, in which, in particular, the existence of positive solutions, their behavior, asymptotic 
behavior, etc., are considered, as are the methods of functional analysis based on the use of the 
technique of nonlinear analysis, the theory of which is associated with the names of F. Riess, M. G. 
Kreina, L. V. Kantorovich, G. Freudenthal, G. Birkhoff, and others. Subsequently, they were 
developed by M. A. Krasnoselsky and his students, L. A. Ladyzhensky, I. A. Bakhtin, V. Y. Stetsenko, 
Y. V. Pokorny, and others. 

Boundary value problems with boundary conditions in integral form constitute a very interesting 
and important class of boundary value problems and arise in various fields of applied mathematics and 
physics, in particular heat conduction, groundwater flows, thermoelasticity, and plasma physics. Such 
problems were considered; for example, see the study of Cabada and Iglesias[1], Benchohra et al.[2], 
Ahmad and Nieto[3], Belarbi et al.[4], Abdelkader and Benchohra[5]. However, there are relatively few 
works devoted to directly positive solutions of integral boundary value problems for nonlinear 
functional-differential equations. 

In this article, an attempt is made to fill this gap, sufficient conditions for the existence of at least 
one positive solution for a second-order nonlinear functional-differential equation with an integral 
boundary condition at one end of the research segment are obtained. In a similar formulation, the 
problems were previously considered by Abduragimov[6,7]. The results obtained continue the author’s 
research on this topic. 

2. Main results 
Denote by 𝐶  the space 𝐶 [0, 1] , 𝐿  ( 1 < 𝑝 < ∞ ) the space 𝐿(0, 1)  and 𝑊ଶ  the space of real 

functions on [0, 1] with an absolutely continuous derivative. 
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Consider the boundary value problem 
𝑥"(𝑡) + 𝑓(𝑡, (𝑇𝑥)(𝑡)) = 0, 0 < 𝑡 < 1 (1)

𝑥(0) = 0 (2)

𝑥ᇱ(1) = ∫ 𝑔(𝑠)𝑥(𝑠)𝑑𝑠
ଵ


  (3)

where 𝑇: 𝐶 → 𝐿 is a linear positive continuous operator, 𝑔(𝑡) is a non-negative summable function on 

[0, 1]  such that ∫ 𝑠𝑔(𝑠)𝑠
ଵ


< 1 , the function 𝑓(𝑡, 𝑢)  is non-negative on [0, 1] × [0, ∞) , satisfies the 

Carathéodory condition, and 𝑓(∙, 0) ≡ 0. 

Definition 1. By a positive solution to problem (1)–(3) we mean a function 𝑥 ∈ 𝑊ଶ, positive in the interval (0, 1), 
satisfying Equation (1) and boundary conditions (2), (3) almost everywhere on the specified interval. 

Consider the equivalent of problems (1)–(3) integral equation 

𝑥(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠 +
௧

ଵିఓ
∫ 𝑔(𝜏) ቂ∫ 𝐺(𝜏, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠

ଵ


ቃ 𝑑𝜏

ଵ



ଵ


, 0 ≤ 𝑡 ≤ 1 (4) 

where, 

𝐺(𝑡, 𝑠) = ቄ
𝑠, 0 ≤ 𝑠 ≤ 𝑡,
𝑡, 𝑡 ≤ 𝑠 ≤ 1,

 

𝜇 = ∫ 𝑠𝑔(𝑠)𝑑𝑠
ଵ


. 

It is easy to see that the function 𝐺(𝑡, 𝑠) has the properties 
1) 𝐺(𝑡, 𝑠) > 0, 𝑡, 𝑠 ∈ (0, 1); 

2) 𝑡𝑠 ≤ 𝐺(𝑡, 𝑠) ≤ 𝑠, 𝑡, 𝑠 ∈ [0, 1]. 

Let us rewrite Equation (4) in the form 

𝑥(𝑡) = ∫ 𝐺෨(𝑡, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠
ଵ


, 0 ≤ 𝑡 ≤ 1  (5) 

where 𝐺෨(𝑡, 𝑠) is the Green’s function of the operator −
ௗమ

ௗ௧మ with boundary conditions (2), (3) 

𝐺෨(𝑡, 𝑠) = 𝐺(𝑡, 𝑠) +
௧

ଵିఓ
∫ 𝐺(𝜏, 𝑠)𝑔(𝜏)𝑑𝜏

ଵ


. 

Suppose that 𝑓(𝑡, 𝑢) in the domain [0, 1] × [0, ∞) satisfies condition 

𝑓(𝑡, 𝑢) ≤ 𝑏𝑢

 , 𝑝, 𝑞 ∈ (1, ∞) (6) 

where 𝑏 > 0. 

Condition (6) ensures the action of the Nemytsky operator 𝑁: 𝐿 → 𝐿, defined by the relation 

(𝑁𝑦)(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) for each 𝑦 ∈ 𝐿. 

In operator form, Equation (5) can be represented as follows 

𝑥 = 𝐺෨𝑁𝑇𝑥 
where 𝐺෨: 𝐿 → 𝐶, ൫𝐺෨𝑢൯(𝑡) = ∫ 𝐺෨(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠

ଵ


 is the Green operator. 

Let’s put 

𝐴 = 𝐺෨𝑁𝑇, 
where the 𝐴 is defined by the equality 

(𝐴𝑥)(𝑡) = ∫ 𝐺෨(𝑡, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠
ଵ


, 0 ≤ 𝑡 ≤ 1. 

Denote by 𝐾෩ the cone of nonnegative functions 𝑥(𝑡) of the space 𝐶 satisfying the condition 

min
௧∈[,ଵ]

𝑥(𝑡) ≥
ଵ

ଵିఓାఈ
𝑡‖𝑥‖, 

where 𝛼 = ∫ 𝑔(𝑠)𝑑𝑠
ଵ


. 
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It is easy to verify that the operator 𝐴 acts in the space of non-negative continuous functions, is 

invariant under the cone 𝐾෩, and is completely continuous due to the Arzela-Ascoli theorem. 

In what follows, to prove the existence of at least one positive solution to problems (1)–(3), we will 
need the well-known Go-Krasnoselsky theorem[8]. 

Theorem 1. Let 𝑋 be a Banach space, and let 𝑃 ⊂ 𝑋 be a cone in 𝑋. Assume 𝛺ଵ, 𝛺ଶ are open subsets of 𝑋 with 

0 ∈ 𝛺തଵ ⊂ 𝛺ଶ, and let 𝒜: 𝑃 → 𝑃 be a completely continuous operator such that either 

(i) ‖𝒜𝑢‖ ≤ ‖𝑢‖,  𝑢 ∈ 𝑃 ∩ 𝜕𝛺ଵ,  ‖𝒜𝑢‖ ≥ ‖𝑢‖,  𝑢 ∈ 𝑃 ∩ 𝜕𝛺ଶ, or 
(ii) ‖𝒜𝑢‖ ≥ ‖𝑢‖,  𝑢 ∈ 𝑃 ∩ 𝜕𝛺ଵ,  ‖𝒜𝑢‖ ≤ ‖𝑢‖,  𝑢 ∈ 𝑃 ∩ 𝜕𝛺ଶ. 

Let 𝒜 has a fixed point in 𝑃 ∩ (𝛺തଶ\𝛺ଵ). 

Let us introduce the notation 

Ω = ൛𝑢 ∈ 𝐾෩: ‖𝑢‖ < 𝑟ൟ,   Ωோ = ൛𝑢 ∈ 𝐾෩: ‖𝑢‖ < 𝑅ൟ, 

∂Ω = ൛𝑢 ∈ 𝐾෩: ‖𝑢‖ = 𝑟ൟ,   ∂Ωோ = ൛𝑢 ∈ 𝐾෩: ‖𝑢‖ = 𝑅ൟ, 

Ω = Ωഥோ\Ω, 
where 0 < 𝑟 < 𝑅. 

In addition, we need the following notation 

𝑓 = lim
௨→శ

max
௧∈[,ଵ]

𝑓(𝑡, 𝑢)

𝑢
, 

𝑓ஶ = lim
௨→ାஶ

max
௧∈[,ଵ]

𝑓(𝑡, 𝑢)

𝑢
. 

Theorem 2. Let us assume that inequality (6) and the conditions 

1) 𝑝 > 𝑞 > 1; 
2) 𝑓ஶ = ∞; 
3) 𝑚𝑖𝑛

௧∈[,ଵ]
(𝑇𝜃)(𝑡) > 0,   𝜃(𝑡) = 𝑡. 

Then the boundary value problems (1)–(3) has at least one positive solution. 

Proof. Let us check the fulfillment of condition (i) of Theorem 1. To do this, we show the existence of a 

number 𝑟 > 0 such that for 𝑥 ∈ 𝐾෩ ∩ 𝜕Ω 
‖𝐴𝑥‖ ≤ ‖𝑥‖ (7) 

Indeed, due to (6) and property 2 of the function 𝐺(𝑡, 𝑠), for 𝑥 ∈ 𝐾෩ ∩ 𝜕Ω we have 

(𝐴𝑥)(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠 +
௧

ଵିఓ
∫ 𝑔(𝜏) ቂ∫ 𝐺(𝜏, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠

ଵ


ቃ 𝑑𝜏

ଵ



ଵ


  

≤ 𝑏 ∫ 𝑠(𝑇𝑥)


(𝑠)𝑑𝑠 +
ఈ

ଵିఓ
∫ 𝑠(𝑇𝑥)



(𝑠)𝑑𝑠 ≤ ቀ𝑏 +
ఈ

ଵିఓ
ቁ

ଵ



ଵ

 ∫ 𝑠(𝑇𝑥)


(𝑠)𝑑𝑠
ଵ


  

≤ ቀ𝑏 +
ఈ

ଵିఓ
ቁ ቀ

ଵ

ᇲାଵ
ቁ

భ

ᇲ ‖𝑇𝑥‖




 ≤ ቀ𝑏 +
ఈ

ଵିఓ
ቁ ቀ

ଵ

ᇲାଵ
ቁ

భ

ᇲ
𝜏



‖𝑥‖




   

= ቀ𝑏 +
ఈ

ଵିఓ
ቁ ቀ

ଵ

ᇲାଵ
ቁ

భ

ᇲ
𝜏



‖𝑥‖





ିଵ

‖𝑥‖ =
(ଵିఓାఈ)

(ଵିఓ)(ᇲାଵ)
భ

ᇲ

𝑟



ିଵ

‖𝑥‖, 

where 𝜏 is the norm of the operator 𝑇, 
ଵ

ᇱ
+

ଵ


= 1. 

Now choosing for 𝑟 any positive number such that 
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𝑟 ≤ ቌ
(1 − 𝜇)(𝑞ᇱ + 1)

ଵ
ᇱ

𝑏(1 − 𝜇 + 𝛼)𝜏



ቍ


ି

, 

obviously ensure the fulfillment of (7). 

Let us now find a number 𝑅 > 0 such that for 𝑥 ∈ 𝐾෩ ∩ 𝜕Ωோ 
‖𝐴𝑥‖ ≥ ‖𝑥‖ (8) 

By virtue of condition (2) of the theorem, there exists a number 𝐿 > 0 such that 
max

௧∈[,ଵ]
𝑓(𝑡, 𝑢) ≥ 𝛿𝑢 , 𝑢 ≥ 𝐿 (9) 

where 𝛿 satisfies the condition 𝛿 ≥
(ଵିఓ)(ଵିఓାఈ)

∫ ௦(்ఏ)(௦)ௗ௦
భ

బ

> 0. 

Choosing 𝑅 = 𝑚𝑎𝑥 ቊ
(ଵିఓାఈ)

୫୧୬
∈[బ,భ]

(்ఏ)(௧)
, 2𝑟ቋ, for 𝑥 ∈ 𝐾෩ ∩ 𝜕Ωோ we get 

min
௧∈[,ଵ]

(𝑇𝑥)(𝑡) ≥
ଵ

ଵିఓାఈ
‖𝑥‖(𝑇𝜃)(𝑡) ≥

ଵ

ଵିఓାఈ
𝑅 min

௧∈[,ଵ]
(𝑇𝜃)(𝑡) ≥ 𝐿. 

By virtue of (9) and the corresponding properties 𝐺(𝑡, 𝑠), we have 

(𝐴𝑥)(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠 +
௧

ଵିఓ
∫ 𝑔(𝜏) ቂ∫ 𝐺(𝜏, 𝑠)𝑓൫𝑠, (𝑇𝑥)(𝑠)൯𝑑𝑠

ଵ


ቃ 𝑑𝜏

ଵ



ଵ


  

≥ 𝑡𝛿 ∫ 𝑠(𝑇𝑥)(𝑠)𝑑𝑠 +
௧

ଵିఓ

ଵ


𝜇𝛿 ∫ 𝑠(𝑇𝑥)(𝑠)𝑑𝑠 = ቀ𝛿 +

ఓ

ଵିఓ
𝛿ቁ

ଵ


𝑡 ∫ 𝑠(𝑇𝑥)(𝑠)𝑑𝑠

ଵ


  

≥
ఋ

ଵିఓ
∙

௧

(ଵିఓାఈ)
‖𝑥‖ ∫ 𝑠(𝑇𝜃)(𝑠)𝑑𝑠 =

ఋ

(ଵିఓ)(ଵିఓାఈ)
𝑡 ∫ 𝑠(𝑇𝜃)(𝑠)𝑑𝑠𝑡 ∙ ‖𝑥‖

ଵ



ଵ


 . 

Having normalized both sides of the last inequality, taking into account the restrictions on 𝛿, we 
arrive at the required relation (8). 

Therefore, a completely continuous operator 𝐴 has at least one fixed point in 𝐾෩ ∩ Ω such that 𝑟 ≤

‖𝑥‖ ≤ 𝑅, which in turn is equivalent to the existence of at least one positive solution of the boundary 
problem (1)–(3) with the above property. 

Remark 1. In the case 0 <



< 1 and 𝑓 = ∞ we have the fulfillment of condition (ii) of Theorem 1, which 

guarantees the existence, at least one positive solution to problems (1)–(3). 

Example 1. Consider the following problem 

𝑥"(𝑡) + 𝑒ି௧ ቀ∫ 𝑥(𝑠)𝑑𝑠
ଵ


ቁ

ଶ
= 0,   0 < 𝑡 < 1 (10)

𝑥(0) = 0 (11)

𝑥ᇱ(1) = ∫ 𝑠𝑥(𝑠)𝑑𝑠
ଵ


. (12)

where 𝑓(𝑡, 𝑢) = 𝑒ି௧𝑢ଶ, 𝑔(𝑡) = 𝑡. In the future, for convenience and simplicity by calculation, we set 
𝑝 = 4, 𝑞 = 2. The first two conditions of Theorem 2 are obvious. It is easy to verify the validity of the 
third condition for the linear integral operator 𝑇: 𝐶 → 𝐿ସ defined by equality 

(𝑇𝑥)(𝑡) = ∫ 𝑥(𝑠)𝑑𝑠
ଵ


  

(𝑇𝜃)(𝑡) = ∫ 𝑠𝑑𝑠 =
ଵ

ଶ
> 0

ଵ


.  

To find the numbers 𝑟 and 𝑅, we use the corresponding inequalities given in the course of the 
proof of Theorem 2. In particular, we choose 𝑟 from the condition 
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0 < 𝑟 ≤ ቌ
(1 − 𝜇)(𝑞ᇱ + 1)

ଵ
ᇱ

𝑏(1 − 𝜇 + 𝛼)𝜏



ቍ


ି

 (13)

Let us find the components of inequality (13) 

𝜇 = ∫ 𝑠𝑔(𝑠)𝑑𝑠 = ∫ 𝑠ଶ𝑑𝑠 =
ଵ

ଷ

ଵ



ଵ


, 

𝛼 = ∫ 𝑔(𝑠)𝑑𝑠 = ∫ 𝑠𝑑𝑠 =
ଵ

ଶ

ଵ



ଵ


. 

Taking 𝑏 = 1, taking into account the fact that 𝜏 = 1 and 𝑞ᇱ = 2, we finally obtain 

0 < 𝑟 ≤
ସ√ଷ


. 

The value of 𝑅 is calculated, respectively, by the formula 

𝑅 = max ቊ
(ଵିఓାఈ)

୫୧୬
∈[బ,భ]

(்ఏ)(௧)
, 2𝑟ቋ. 

To determine 𝐿, we use the inequality (9) 
𝑢ଶ ≥ 𝛿𝑢, 𝑢 ≥ 𝐿, (14)

where 𝛿 ≥
(ଵିఓ)(ଵିఓାఈ)

∫ ௦(்ఏ)(௦)ௗ௦
భ

బ

. 

After performing simple calculations, we have 

∫ 𝑠(𝑇𝜃)(𝑠)𝑑𝑠 =
ଵ

ଶ
∫ 𝑠𝑑𝑠 =

ଵ

ସ

ଵ



ଵ


.  

It is easy to see that in inequality (14), as 𝐿, one can take any number 𝛿 ≥
ଶ଼

ଽ
≈ 3.1, for example, 

𝐿 = 4. Finally, we get 

𝑅 = 𝑚𝑎𝑥 ቄ
ଶ଼

ଽ
, 2𝑟ቅ =

ଶ଼

ଽ
. 

Thus, according to Theorem 2, problems (10)–(12) have at least one positive solution such that 𝑟 ≤

‖𝑥‖ ≤ 𝑅, where 𝑟 and 𝑅 are fixed updated above. 
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