
Journal of  AppliedMath 2023; 1(3): 199.
Original Research Article

1

The synergistic effect of the multiple parameters of vibro-impact

nonlinear energy sink
Petro Lizunov, Olga Pogorelova, Tetiana Postnikova*

Scientific Research Institute of Structural Mechanics, Kyiv National University of Construction and Architecture, 03680 Kyiv,

Ukraine

* Corresponding author: Tetiana Postnikova, posttan@ukr.net

ABSTRACT: This article studies the dynamics and efficiency of a vibro-

impact damper (single-sided vibro-impact nonlinear energy sink—SSVI

NES) depending on the exciting force parameters. The damper is coupled

with a linear oscillator—the primary structure. It is shown that the

damper is quite effective in a wide range of the exciting force amplitude

and in the range of its frequency, which are higher than the resonant

frequency; damper efficiency in these regions is fairly stable. The

dynamics of the vibro-impact system “primary structure—SSVI NES” is

rich and complex, which, however, does not impair the damper

efficiency. In complex oscillatory regimes, the damper makes bilateral

impacts: it hits both an obstacle and directly against the primary structure,

which actually turns a single-sided NES into a double‐sided one. The

optimization procedure and the choice of optimal damper parameters

play a very important role in damper design. Optimizing multiple

damper parameters instead of three shows a synergistic effect and

provides better results.

KEYWORDS: vibro-impact; damper; primary structure; obstacle;

efficiency; complex dynamics

1. Introduction

For many years, scientists and engineers look for ways to mitigate unwanted vibrations in many

areas of technology. Various vibration control devices have been developed. They can be classified into

passive, active and hybrid control systems. Passive control devices have become widespread due to their

reduced complexity and independence from a constant power source. One of the most popular types of

passive control devices are tuned mass dampers (TMDs)[1,2]. In their simplest form, TMDs consist of a

supplemental mass that is coupled linearly to a structure. They have been implemented in a good number

of buildings including very tall structures.

Over the past two decades, new devices for passive vibration control have been actively discussed in

the world scientific literature. This device is nonlinear energy sink—NES[3]. Its main difference from

TMD is that the NES is attached to a primary structure via essentially nonlinear coupling. Its mass is

much less than the primary structure mass, it is recommended to have a mass of 1% of the main body

mass. Due to its nonlinearity, it can absorb part of the main body energy, that is, mitigate its vibrations.

It is believed that these devices can be used, in particular, to mitigate vibrations in high‐rise structures

caused by impulse loads, wind and even seismic. In a modern review[4], the authors write, “It will be very

attractive research topic for thorough analysis, analytical numerical and experimental, that is expected to
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reveal more information and findings to the underlying nonlinear dynamical behavior and facilitate the 

implementation of NESs in real-life structures and applications in the future.” Numerous analytical, 

numerical and experimental studies of NESs are described in the world scientific literature. 

Comprehensive reviews of modern researches on NESs[4–8], monographs[9], dissertations[10–12] and 

articles[13–16] are presented. Experimental studies are carried out both on small laboratory setups[17,18] and 

on large‐sized equipment, close to the real design, such as an 11‐ton 9‐floor frame structure[19]. In 

this base structure, six NESs were installed, two of them were vibro‐impact ones. 

Many various types of NESs with different nonlinearity kinds are considered. One of them is a 

vibro‐impact NES—single-sided SSVI NES and double-sided DSVI NES. Their main difference is a 

restoring force with a discontinuity, which is the result of an impact[10]. The vibro‐impact NES—VI 

NES, is believed one of the most effective. 

The dynamic behavior of the “primary structure—NES” system and the damper efficiency, like any 

strongly nonlinear system, depend both on the system parameters and on the excitation parameters. 

Therefore, the problem of choosing the optimal damper parameters comes to the fore[13,19–22]. In a review[4], 

the authors write, “Most works use contour plots to find the optimal performance when comparing only 

two NES parameters. These neglects taking into consideration the potential synergistic effects of the 

multiple NES parameters induced due to the high nonlinearity in the system.” In this work, we compared 

the dynamic behavior and efficiency of the SSVI NES with the optimization of three and seven damper 

parameters and showed a synergistic effect from such consideration. 

The literature discusses the important problem of the frequency response function of a main structure 

without and with a damper. In the study of Li[11], the author writes that adding a damper reduces the 

resonance peak by producing two other small peaks located on either side of the resonance frequency. In 

the study of Javidialesaadi and Wierschem[20], the authors also show two peaks of frequency response 

curve at optimized damper parameters. 

One of the most important damper parameters to be optimized, along with its mass, stiffness, 

clearance, is the Newtonian restitution coefficient, which takes part in the description of an instantaneous 

impact. Its influence on the VI NES dynamics and efficiency is studied in many articles[11,13,23,24]. In few 

works[25,26], another way of impact simulation is considered; a finite contact duration model of a VI NES 

is proposed in the study of Feudo et al.[26]. In the study of Theurich and Krac[27], the authors note that the 

use of a Hertzian-type contact model eliminates “the need to resort to an empirical coefficient of 

restitution”. 

After examining the impact simulation problem[28,29], we have chosen a “more realistic model of 

impact process”[30], namely impact simulation using Hertz’s contact law in accordance with his quasi-

static contact theory[31]. This law application makes it possible to take into account the mechanical 

characteristics of all colliding surfaces in more detail and accurately. In this article, we have shown that 

a softer impact provides better results. One of the latest articles devoted to comparing the effect of soft 

and hard impacts in a vibro‐impact system is the study of Costa et al.[32]. 

In this paper, we continue the study of the SSVI NES dynamic behavior, started in our previous 

papers[33–35]. When studying the synergistic effect of the multiple parameters of VI NES, we observed 

complex oscillatory modes with rich dynamics that arise in the system for certain parameters set. In 

particular, we have observed and shown transient chaos, an interesting regime that has been studied in a 

number of works[36,37]. 
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The goals of this paper are: 

● show the SSVI NES efficiency with changing the exciting force parameters; 

● show the rich complex dynamics of the vibro‐impact system “primary structure—VI NES” and its 

influence on the damper efficiency; 

● show the effect of the optimization procedure on the system dynamics and the damper efficiency, in 

particular, the synergistic effect of optimizing the set of parameters; 

● show the double‐sided damper impacts against both the primary structure and the obstacle; 

● show the ranges of exciting force parameters in which VI NES is effective. 

2. Mathematical model 

We consider a mechanical two-mass 2‐DOF vibro‐impact system, which consists of a primary 

structure coupled with a vibro‐impact damper, which corresponds to the conceptual scheme of the SSVI 

NES[10,35]. A primary structure is a linear oscillator with mass 𝑚1 attached to a fixed wall by a linear 

elastic spring with a stiffness 𝑘1 and a damper with a damping coefficient 𝑐1. A vibro‐impact damper of 

much smaller mass 𝑚2 is attached to a primary structure by a linear elastic spring with a stiffness 𝑘2 and 

a damper with a damping coefficient 𝑐2. The vibro‐impact system is excited by an external harmonic 

force F(t). The vibro‐impact damper, moving along the base without friction, hits an obstacle rigidly 

connected to the primary structure. These impacts cause a strong system nonlinearity, which should 

ensure the energy transfer from the primary structure and, consequently, reduce it. However, as it will be 

shown below, the damper also directly hits the primary structure, which enhances the system nonlinearity 

and helps the implementation of complex motion modes with bilateral impacts[35]. The distance 

specifications are as follows: 𝑥1 , 𝑥2  are the bodies coordinates; the zero mark of the 𝑥-axis is at the 

primary structure mass center in an equilibrium state when all springs are not deformed. 𝐷 is the initial 

distance between the bodies, i.e., the length of the undeformed right spring. 𝐶 is the distance to the right 

movable wall, which defines the clearance (Figure 1). 

 
Figure 1. Calculation scheme of SSVI NES. 

Primary structure parameters that are set in advance and cannot be changed, 𝑚1 = 1000 kg, 𝑘1 = 3.95 × 104 N·m−1, 𝑐1 = 452 

N·s·m−1, 𝐸1  = 2.1 × 1011 N·m−2. 

The motion equations for this system are as follows: 

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 − 𝑐2(𝑥̇2 − 𝑥̇1) − 𝑘2(𝑥2 − 𝑥1 − 𝐷) =

𝐹(𝑡) − 𝐻(𝑧)𝐹𝑐𝑜𝑛(𝑧) + 𝐻(𝑧1)𝐹𝑐𝑜𝑛(𝑧1)

𝑚2𝑥̈2 + 𝑐2(𝑥̇2 − 𝑥̇1) + 𝑘2(𝑥2 − 𝑥1 − 𝐷) =

+𝐻(𝑧)𝐹𝑐𝑜𝑛(𝑧) − 𝐻(𝑧1)𝐹𝑐𝑜𝑛(𝑧1)

 (1) 

Exciting harmonic force 𝐹(𝑡) = 𝑃cos(𝜔𝑡 + 𝜑0). Its period 𝑇 = 2π
𝜔⁄ . The initial conditions are at 

𝑡 = 0, we have 

𝑥1(0) = 0, 𝑥2(0) = 𝐷, 𝑥̇1(0) = 0, 𝑥̇2(0) = 0, 𝜑0 = 0 (2) 
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The terms 𝐻(𝑧)𝐹𝑐𝑜𝑛(𝑧) are associated with the impact rule. After examination of different methods 

of impact simulation[28–30], we use Hertz’s quasi‐static contact theory[31]. According to this theory, the 

impact has a finite duration and is modeled by a nonlinear force 𝐹𝑐𝑜𝑛(𝑧) acting only during the impact: 

𝐹𝑐𝑜𝑛(𝑧) = 𝐾[𝑧(𝑡)]
3

2⁄  (3) 

where, 𝑧 is the colliding bodies rapprochement upon impact. 

The Heaviside step function 𝐻(𝑧) = {
1, 𝑧 ≥ 0
0, 𝑧 < 0

 ensures its activation upon impact. Then we have: 

for the damper impacts directly on the primary structure for the damper impacts on an obstacle 

(4) 

𝐾 =
4

3

𝑞

(𝛿1 + 𝛿2)√𝐴 + 𝐵
 𝐾1 =

4

3

𝑞1

(𝛿3 + 𝛿4)√𝐴1 + 𝐵1

 

𝛿1 =
1 − 𝜈1

2

𝐸1π
, 𝛿2 =

1 − 𝜈2
2

𝐸2π
 𝛿3 =

1 − 𝜈3
2

𝐸3π
, 𝛿4 =

1 − 𝜈4
2

𝐸4π
 

These impacts occur when 

𝑥1 ≥ 𝑥2, that is, 𝑥1 − 𝑥2 ≥ 0, 𝑧 = 𝑥1 − 𝑥2 
𝑥2 ≥ 𝑥1 + 𝐶, that is, 𝑥2 − 𝑥1 − C ≥ 0, 𝑧1 =

𝑥2 − 𝑥1 − 𝐶 

where 𝐸1 , 𝐸2 , 𝐸3 , 𝐸4  are Young’s moduli of elasticity for fourth colliding surfaces; 𝜈1 , 𝜈2, 𝜈3 , 𝜈4  are 

Poisson’s ratios; 𝐴, 𝐴1, 𝐵, 𝐵1, 𝑞, 𝑞1  are constants characterizing the contact zones geometry. The 

damper surfaces, both left and right, are assumed to be spherical with large radii 𝑅 and 𝑅1; the contact 

surfaces of the primary structure and the obstacle are flat. Then 𝐴 = 𝐵 = 1/2𝑅, 𝐴1 = 𝐵1 = 1/2𝑅1, we set 

𝐴 = 𝐴1 = 𝐵 = 𝐵1 = 0.5 m−1; 𝑞 = 𝑞1 = 0.319 as in the collision of a plane and a sphere. 

Taking into account the mechanical characteristics of the colliding surfaces makes it possible to 

analyze their influence on the system responses in more detail than more prevalent consideration of the 

Newtonian restitution coefficient[35]. 

The total energy of the primary structure is calculated by the well‐known formula: 

𝐸1total(𝑡) = 𝐸1kinetic(𝑡) + 𝐸1poten(𝑡) =
𝑚1𝑥̇1(𝑡)2 + 𝑘1𝑥1(𝑡)2

2
 (5) 

3. Effect of an optimization procedure 

An optimization procedure is recommended and often used in the investigations of NESs. The main 

goal of this optimization is to maximize the effective damping measure, which indicates the intensity of 

the efficient energy dissipation during the response to the external excitation; this damping is due to a 

strong nonlinearity of NES. So, the primary goal of the design‐optimization process was to achieve a 

design that would be effective in attenuating the primary structure energy. 

We will show how the choice of optimal values of many damper parameters instead of their small 

number affects the dynamics of a vibro-impact system consisting of a primary structure and NES coupled 

with it. 

We carried out the optimization procedure in three stages using the fmincon and fminsearch solvers 

of the MATLAB platform. At the first stage, we employed it to select the optimal values of damper mass 

𝑚2 , stiffness 𝑘2  and impact‐surface clearance 𝐶  of the NES physical system, given the preselected 

parameters of the primary structure. The oscillatory amplitude of the primary structure was chosen as the 

objective function for the optimization, since the minimum amplitude provides the minimum velocity 

and, consequently, the minimum energy. As result of optimization, two variants of the damper 

parameters were chosen.  At the second stage, the optimal values of the Young’s moduli of elasticity of 
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the colliding surfaces 𝐸2  and 𝐸4  were selected, which are introduced when simulating the impact 

according Equations (3) and (4) instead of the more familiar restitution coefficient. At last, at the third 

stage, we optimized the damping coefficient 𝑐2 and damper initial distance from the primary structure 𝐷. 

So, the optimal values for 7 damper parameters were found. 

There was a synergistic effect from the determination of 7 parameters compared with the 

determination of 3 parameters at the first stage of optimization. Let us show it. 

After first stage of the optimization procedure, two significantly different results were chosen for 

further analysis: 

𝑚2 = 22.7 kg, 𝑘2 = 2481 N·m−1, 𝐶 = 0.0683 m, 

𝑚2 = 37.9 kg, 𝑘2 = 414.6 N·m−1, 𝐶 = 0.0747 m. 

Other parameters were not optimized in the first stage: 

𝑐2 = 40.7 N·s·m−1, 𝐷 = 0.050 m, 𝐸2 = 2.10 × 1011 N·m−2, 𝐸4 = 2.10 × 1011 N·m−2, 𝜈2 = 𝜈4 = 0.3. 

The vibro‐impact damper, NES, coupled to the primary structure, provides the attenuation of its 

vibrations. The nonlinear damper transfers the energy from the primary structure and reduces it. 

The decrease in the maximum total energy of the primary structure depending on the exciting force 

amplitude is shown in the Figure 2a. Figure 2b shows the total energy depending on time at P = 800 N. 

The vibration mitigation occurs in a wide range of the exciting force amplitude at any amplitude. A 

heavier damper does the job better, its efficiency is higher. The damper efficiency is quite stable, despite 

the complex oscillatory regimes that occur with the changing in the exciting force amplitude. There are 

the periodic modes of different periodicity with a different impacts number per cycle both on the primary 

structure and on the obstacle; chaotic regimes and transient chaos also occur. 

  
(a) (b) 

Figure 2. The decrease of the total energy of the primary structure coupled with SSVI NES with 3 optimized parameters when 

𝜔 = 6.4 rad·s−1, (a) maximum total energy 𝐸1max depending on the exciting force amplitude 𝑃; (b) total energy 𝐸1(𝑡) depending 

on time for 𝑃 = 800 N. 

 
Figure 3. The decrease of the maximum total energy of the primary structure coupled with SSVI NES with 3 optimized 

parameters depending on the exciting force frequency when P = 800 N. 

Figure 3 shows the decrease in the primary structure energy in dependence on the exciting force 

frequency. First, note that vibration mitigation does not occur over the entire frequency range. The 



Journal of  AppliedMath 2023; 1(3): 199. 

6 

resonant peak shifts to the left towards lower frequencies, but remains high, even slightly above the peak 

of the primary structure without damper, depicted by red curve. A heavier damper shows the higher 

efficiency. It is quite high in the most dangerous zone near the resonance, where the primary structure 

energy is large. In the frequency range where vibrations are mitigated, the damper efficiency is quite 

stable, despite the rich dynamics with complex oscillatory regimes. 

Let’s see what changes in the system dynamics provide the choice of 7 optimal damper parameters. 

Two significantly different optimization results were chosen for further analysis: 

𝑚2 = 22.7 kg, 𝑘2 = 2481 N·m−1, 𝐶 = 0.0683 m, 𝑐2 = 41.4 N·s·m−1, 𝐷 = 0.046 m, 𝐸2 = 2.26 × 107 

N·m−2, 𝐸4 = 2.18 × 107 N·m−2, 𝑚2 = 37.9 kg, k2 = 414.6 N·m−1, 𝐶 = 0.0747 m, 𝑐2=27.9 N·s·m−1, 𝐷 = 0.057 

m, 𝐸2 = 2.21 × 107 N·m−2, 𝐸4 = 2.05 × 107 N·m−2, 𝜈2 = 𝜈4 = 0.4. 

A decrease by 4 orders of Young’s moduli of elasticity E2, E4 shows that soft impacts of the damper 

both on the primary structure and on an obstacle are more preferable. The Young’s moduli of colliding 

surfaces E1, E2 and E3, E4 are equal in the Equation (4), therefore, it does not matter which of them 

changes. Changing both moduli at the same time does not change the system response. Changing 

Poisson’s ratios 𝜈2 , 𝜈4  also does not change the system response. However, we chose 𝜈2 = 𝜈4 = 0.4, 

because these values correspond to materials with such low Young’s moduli. 

Figure 4a shows the decrease in the maximum total energy of the primary structure depending on 

the exciting force amplitude; Figure 4b depicts the total energy as a function of time at P = 800 N. Figure 

5 shows the energy decrease in dependence on the exciting force frequency. 

  
(a) (b) 

Figure 4. The decrease of the total energy of the primary structure coupled with SSVI NES with 7 optimized parameters when 

 = 6.4 rad·s−1, (a) maximum energy 𝐸1max depending on the exciting force amplitude P; (b) total energy E1(t) depending on 

time for P = 800 N. 

 
Figure 5. The decrease of the maximum total energy of the primary structure coupled with SSVI NES with 7 optimized 

parameters depending on the exciting force frequency when P = 800 N. 

Comparing Figures 2 and 3 with Figures 4 and 5 shows that the overall dynamic picture is the same. 

As in the previous case, the resonant peak shifts to the left towards lower frequencies and remains high. 

However, a second resonant peak appears at high frequencies (Figure 5). It is small, appears only for a 
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heavier damper. There is no energy attenuation in its region, but this is not so important, since the 

primary structure energy for these frequencies is small. This frequency response is similar to that of a 

detuned TMD[10]. Figure 5, like Figure 3 shows a decrease in the primary structure energy at sufficiently 

high frequencies above the resonance one. At low frequencies below resonant one energy attenuation 

does not occur. The resonant peak shifts to the left towards low frequencies, as in Figure 3. But unlike 

Figure 3, for a heavier damper it decreases somewhat. Perhaps other optimization procedures will allow 

us to find a different damper design that provides greater reduction in the resonant peak. This is a task 

for the future. 

However, the main synergistic effect is manifested in a significant difference in the implemented 

motion regimes and a slight improvement in damper efficiency. These differences are clearly visible in 

Tables 1 and 2. The top records correspond to the responses of the system with 3 optimized damper 

parameters, bottom records—with 7 optimized parameters. 

Table 1. Energy reduction depending on the value of the exciting force amplitude at  = 6.4 rad·s−1. 

P, N 200 500 700 800 900 

E1max wane in % 

at m2 = 22.7 kg 

34.9 28.1 27.0 27.7 26.8 

39.1 30.3 28.6 27.1 28.0 

Regime 2T, 0, 3; rare bursts T, 1, 3; rare bursts Alternation: T, 1, 2; 2T, 

4, 6; rare bursts 

T, 1, 2; chatter; 

rare bursts 

Intermittency 

3T, 0, 3 T, 1, 2 T, 1, 2 4T, 8, 8 T, 2, 3 

E1max wane in % 

at m2 = 37.9 kg 

46.2 42.6 40.1 41.0 39.8 

50.8 48.6 41.5 44.9 40.6 

Regime T, 1, 1; rare bursts T, 2, 2; rare bursts Chaotic Chaotic Chaotic 

(T, 1, 1) Transient chaos; 
(T, 2, 2) 

Chaotic Transient chaos; 
(T, 2, 3) 

Chaotic 

Table 2. Energy reduction depending on the value of the exciting force frequency at P = 800 N. 

ω, rad·s−1 6.2 6.3 6.4 6.5 6.7 7.0 7.5 10.0 

E1max wane in % 

at m2 = 22.7 kg 

−13.8 14.7 26.6 28.9 26.2 23.2 15.0 13.6 

−11.1 15.2 27.1 30.5 27.9 24.2 13.5 16.4 

Regime Chaotic Chaotic; 
intermittency 

Chaotic; 
intermittency 

Chaotic; 
intermittency 

T,1,2 T,0,2 T, 0, 2; 
rare bursts 

T, 0, 1 

Chaotic Chaotic 4T, 8, 8 T, 1, 2 T, 1, 2 T, 1, 2 T, 0, 1 T, 0, 1 

E1max wane in % 

at m2 = 37.9 kg 

−10.5 28.7 41.4 42.0 42.4 28.3 19.9 −1.1 

−5.1 28.7 44.9 42.0 43.0 25.3 26.9 31.2 

Regime Intermittency Chaotic Chaotic Chaotic T, 2, 2 Chaotic T, 1, 1; 

rare bursts 

T, 0, 0 

Transient 
chaos; T, 3, 3 

Chaotic Transient 
chaos; T, 2, 3 

Chaotic Transient 
chaos; T, 

2, 2 

Chaotic T, 1, 1 T, 1, 1 

Following the logic of the study Lamarque and Janin[38], we use the notation nT, k, m, which defines 

the regime of periodicity nT (where T is the exciting force period) with k impacts between the damper 

and the primary structure and m impacts of the damper on an obstacle. 
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Table 2 emphasizes that a decrease of the primary structure energy occurs at sufficiency high exciting 

force frequencies.  At lower frequencies, the energy increases, and we show this increase as a decrease 

with a minus sign. This frequency response demonstrates the limitations of VI NES. 

Table 2 also shows that a rich complex dynamic is realized in a vibro-impact system consisting of a 

primary structure coupled to a NES. Indeed, in the study of Saeed et al.[4], the authors note this 

phenomenon as one of the VI NES disadvantages, “One disadvantage of VI NESs is that coupling it with 

a primary structure leads to very complex nonlinear dynamics that is difficult to analyze analytically 

without making several simplifications.” It is important to emphasize that, despite such complex 

dynamics, the damper efficiency remains quite stable. This is due the fact that the amplitudes and 

velocities of the heavy primary structure change little when complex motion modes arise. In this case, 

the impact contact forces change greatly. 

Then Table 2 shows the presence of direct impacts between the damper and the primary structure[33–35]. 

This means that the single‐sided VI NES practically works like a double-sided one, where the primary 

structure plays the role of a second obstacle. There are the modes with a different number of damper 

impacts per cycle, both on the primary structure and on the obstacle. 

One of the significant changes in the optimization of 7 damper parameters is the absence of bursts 

in the implemented regimes. Both periodic and chaotic modes become smoother, without even rare bursts. 

During the burst, the primary structure energy rises sharply; the damper efficiency is reduced. 

Let us look at a striking example of a complex regime in which two different periodic modes T, 1, 2 

and 2T, 4, 6 alternate and are accompanied by rare bursts (Figure 6). This complex regime is implemented 

in a system with 3 optimized damper parameters at  = 6.4 rad·s−1, P = 700 N, m2 = 22.7 kg, and it is it 

that turns into a simple calm periodic T, 1, 2 regime in a system with 7 optimized damper parameters. 

On Figure 6a one can clearly see sharp changes in the regime nature with the invariance of any 

parameters. The relative damper displacements (x2 − x1) show one impact on the primary structure directly 

at x2 − x1 = 0 and two impacts on an obstacle per cycle T at x2 − x1 = C = 0.0683 m for T, 1, 2 regime and 

4 impacts on the primary structure and 6 impacts on an obstacle per cycle 2T for 2T, 4, 6 regime (Figure 

6b,c). The graphs of impact contact forces confirm this statement: one “blue” force and two “green” 

forces per cycle for T, 1, 2 regime and 4 “blue” forces and 6 “green” forces per cycle 2T for 2T, 4, 6 

regime. The exciting force F(t) is also shown in these figures; it is less contact forces by several orders of 

magnitude. 

 
(a) 

Figure 6. (Continued). 
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(b) (c) 

Figure 6. The motion picture in complex regime in which the modes T, 1, 2 and 2T, 4, 6 alternate and are accompanied by 

rare bursts, (a) the contact forces during damper impacts on the primary structure; (b) and (c) the relative damper 

displacements and the contact forces during the damper impacts against the primary structure in blue and on an obstacle in 

green: (b) for T, 1, 2 regime; (c) for 2T, 4, 6 regime. 

4. Characteristics of the complex dynamic mode 

Let us give as an example the characteristics of the regime implemented in the system with a damper 

of mass 𝑚2 = 37.9 kg with 7 optimized parameters at 𝑃 = 800 N,  = 6.4 rad·s−1. In both tables it is called 

“transient chaos; T, 2, 3”. Figure 7 shows the general picture of this movement. The displacements of 

primary structure are shown in black, the damper displacements are shown in gray in Figure 7a; the 

impact contact forces when the damper hits the primary structure are shown in blue in Figure 7b; the 

impact contact forces when the damper hits an obstacle are shown in green in Figure 7c. It is clearly seen 

how the chaotic motion is transformed into periodic one without any changes in any parameters. Changes 

in amplitudes are small, but in contact forces they are significant. 

  

(a) the displacements of both bodies; (b) the contact forces during impacts between bodies; 

 
(c) the contact forces during impacts on an obstacle. 

Figure 7. The general picture of transient chaos at 𝑚2 = 37.9 kg with 7 optimized parameters at 𝑃 = 800 N,  = 6.4 rad·s−1. 

Figure 8 shows the characteristics of both motion phases—chaotic on the left panel and periodic on 

the right. Figures 8a show the displacements of the damper and primary structure; they change little. The 

graphs of the relative damper displacements in Figure 8b show the damper impacts on the obstacle at 

𝑥2 − 𝑥1= 𝐶 = 0.075 m and on the primary structure at 𝑥2 − 𝑥1 = 0; in the right figure we see 3 impacts on 

the obstacle and 2 hits on the primary structure per cycle in the periodic phase for T, 2, 3 regime. The 

same result is visible on the graphs of impact contact forces (Figure 8c): 3 “green” forces during impacts 

against the obstacle and 2 “blue” forces per cycle during impacts between bodies in the periodic phase. 

In this phase, the “blue” forces at impacts between bodies are greater the “green” forces at impacts on an 
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obstacle. In both phases, the impact forces are much greater than the exciting force, which is shown in 

brown in these graphs. 

Figure 8d–g depict phase trajectories with Poincaré maps highlighted in red for the primary structure 

(Figure 8d,f) and the damper (Figures 8e,g). Their forms are typical for such modes: a ball of trajectories 

and a smear of the Poincaré map for the chaotic regime and a closed curve with one point of the Poincaré 

map for the periodic one. Finally, Figure 8h,i represent the total energy of the primary structure 

depending on time. Figure 8i also show its potential and kinetic energy. One can clearly see a significant 

reduction of the total energy due to the damper presence. 

Chaotic phase Periodic phase 

  
(a) 

  
(b) 

  
(c) 

  

(d) (e) (f) (g) 

  
(h) 

Figure 8. (Continued). 
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(i) 

Figure 8. The movement picture of transient chaos in chaotic (left) and periodic (right) phases at 𝑚2 = 37.9 kg with 7 optimized 

parameters at 𝑃 = 800 N,  = 6.4 rad·s−1, (a) the displacements of both bodies; (b) the relative damper displacements; (c) the 

contact forces; (d)–(g) the phase trajectories with Poincaré maps in red for primary structure (d), (f) and damper (e), (g); (h), (i) 

the primary structure energy. 

5. Conclusions 

The performed and described studies gave grounds for the following conclusions. 

● The vibro-impact damper under consideration—SSVI NES—is quite effective in a wide range of the 

exciting force amplitude and in the range of its frequency, which are higher than the resonant 

frequency. 

● The resonant peak is shifted to the left towards low frequencies when a vibro‐impact damper is 

attached. Attenuation of the primary structure energy at the exciting force frequencies below the 

resonant one does not occur. 

● The dynamics of a vibro-impact system, consisting of a primary structure and a coupled damper, is 

rich and complex. The periodic regimes of different periodicity with different damper impact number 

both on the primary structure and on the obstacle occur. The chaotic motion and the transient chaos 

with bilateral impacts are also implemented. However, the emerging complex modes do not reduce 

the damper efficiency, since the oscillatory amplitudes and velocities of the primary structure change 

little under these regimes, but the contact forces change strongly. 

● Thus, the damper efficiency is quite stable in those ranges of the exciting force parameters where 

mitigation occurs. 

● The considered single-sided VI NES actually works as a double-sided VI NES, since the damper 

impacts are bilateral both on the primary structure on the left and on the obstacle on the right. The 

primary structure in this case plays the role of the second barrier. 

● Of the two options considered, the heavier damper turned out to be more effective. 

● The impact contact forces are much greater than the exciting force. 

● A synergistic effect is obtained by optimizing 7 damper parameters. Comparison of system responses 

in this case with responses of the system with 3 optimized damper parameters shows their 

improvement, namely a slight increase in damper efficiency and the implementation of smoother 

motion modes. The main improvement is the absence of bursts in the implemented motion regimes, 

since it is during bursts that the primary structure amplitudes increase sharply and the damper 

efficiency reduces. 

To summarize, it is necessary to emphasize the limitations of VI NES: they do not mitigate the 

primary structure energy at low exciting force frequencies, lower than resonant one. In addition, it is 

worth noting the difficulty of its tuning, that is, choosing a damper design that should ensure its effective 

operation, which will become a practical problem when using it. It is believed that VI NES will be useful 

for mitigation of the energy of the high-rise buildings and towers under transient loading. This study as 
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other similar ones “facilitates the implementation of NESs in real-life structures and applications in the 

future.” 
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