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Abstract: Tuberculosis, a chronic infectious disease caused by Mycobacterium
tuberculosis, remains a significant global health challenge, particularly in developing
countries. This project investigates the dynamic transmission of tuberculosis, focusing
on the interplay between latent and active populations. We develop and analyze an
(Susceptible, Latent, Infectious, Recovered) compartmental mathematical model to
examine key parameters affecting TB transmission dynamics. Our study employs
stability and sensitivity analyses to provide critical insights into the basic reproduction
number and equilibrium points of the TB transmission model. Through numerical
simulations, we explore how various intervention strategies impact the spread of
tuberculosis. The model yields an approximate reproduction number of 0.3, suggesting
that under the current conditions represented in the model, TB would naturally decline
in the population. Key findings emphasize the importance of maintaining a low
transmission rate and improving the recovery rate to expedite the elimination of
tuberculosis. The model demonstrates the complex interplay between susceptible,
infected, latent, and recovered populations over time, highlighting the persistent nature
of TB due to factors such as latent activation and loss of immunity in recovered
individuals. This project provides a robust foundation for public health strategies
aimed at controlling and ultimately eliminating tuberculosis. Our results underscore
the need for targeted interventions focusing on reducing transmission, managing
latent infections, and enhancing treatment efficacy. These insights can inform policy
decisions and resource allocation in TB control programs, contributing to the global
effort to combat this persistent disease.
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1. Introduction
The study of infectious disease dynamics is an essential field of mathematics for

understanding how these diseases emerge in populations. Infectious diseases continue
to severely affect human and animal populations in Africa and around the world,
likely due to a lack of understanding of their dynamics. Despite increased efforts by
governments and organizations to Project and control the spread of infectious diseases,
they continue to spread and establish themselves in various region globally [1].

Moreover, tuberculosis has such a high death rate in humans, it remains a major
global health issue and is one of the leading causes of death in most sub-Saharan
African countries [2]. Tuberculosis (TB) is an ancient infectious disease caused by
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the bacteria called Mycobacterium tuberculosis [3].
It primarily affects the lungs but can also impact other organs. Throughout history,

TB has been a significant cause of mortality, potentially claiming more lives than any
other microbial pathogen [4]. In 2022, TB was responsible for 1.3 million deaths
globally, including 167,000 among individuals with HIV. An estimated 10.6 million
people contracted TB, spanning different demographics [1].

TB remains a global public health challenge, ranking as the second leading cause
of death worldwide after COVID-19. Despite its widespread presence across all
countries and age groups, TB is treatable and preventable. Approximately a quarter
of the world’s population carries latent TB infection, with only a small percentage
developing active TB disease.

If left untreated, TB can persist for a lifetime, leading to the formation of tubercles
in various body parts [1]. The disease is believed to be transmitted through coughing,
singing, kissing and sneezing from an infected individual with TB disease where by
the pulmonary tuberculosis is spread as a droplet, with the frequency and duration of
contact also make the risk of transmission of the disease increased [5].

Tuberculosis is commonly transmitted from an infected person to a susceptible
or possibly latently infected individual through droplets produced when someone with
active TB coughs, sneezes, or talks. These droplets contain the tuberculosis bacteria
and can infect others nearby [6].

Tuberculosis infection can also spread through using eating and drinking utensils
(such as dishes, cups, spoons, glasses) that belonged to an infected person if they were
not properly sterilized. While TB mainly affects the lungs in pulmonary TB, it can
also attack other parts of the human body. This includes the central nervous system,
the circulatory system, the reproductive system, the bones and joints, and also the skin
[7].

Tuberculosis remains one of the deadliest infectious diseases worldwide,
continuing to claim numerous lives, particularly in Africa and other developing
regions. The World Health Organization (WHO) reported in 2021 that tuberculosis
caused approximately 1.6 million deaths globally, with a significant portion occurring
in Africa [1]. Mathematical models generally explain the transmission dynamics of
diseases and can predict the future status of these diseases. Models help identify the
factors responsible for occurrence of diseases and the possible ways of combating
these diseases in a dynamical system [8–12].

2. Model formulation and description
In the model, we divide the total population at any given time (t) into four

sub-population known as compartment, with respect to their individual epidemic level
and parameters as described in Tables 1 and 2.
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Table 1. Variables and their description.

Variables Description

S(t)
The susceptible population are those at the risk of contacting the
infection from the bacteria (mycobacteria).

L(t)

Latent individuals; the compartment of the free-infectious stage. In this
stage, individuals are infected but show no symptoms of the bacteria.
The bacteria are not active, and they cannot transmit the disease to others.

I(t)

The actively infected population; this compartment includes all
individuals showing symptoms of tuberculosis and who can transmit the
disease to others.

R(t)
Recovered; these are individuals who have already recovered from
tuberculosis and have temporary immunity.

Hence, the total population is now given as:

N(t) = S(t) + L(t) + I(t) +R(t) (1)

The parameters used in the model in Figure 1 are described in Table 2:

Table 2. Parameters and their descriptions.

Parameter Description

π Recruitment/incidence rate
β Contact infections rate
µ Natural death rate
λ Rate of transmission (susceptible to latent)
τ Progression rate (latent to infected)
δ Death due to active tuberculosis
σ Recovery rate (latent to recovered)
γ Recovery rate (actively infected to recovered)
ϕ Re-infection rate (recovered to susceptible)
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Figure 1. SLIR model flow diagram, with latent and infected (active) compartment.

The following ordinary differential equations were obtained from the model.
dS
dt = π − βSI − µS − λSL+ ϕR
dI
dt = βSI − γI − µI − δI + τL
dL
dt = λSL− µL− τL− σL
dR
dt = γI − µR− ϕR+ σL

(2)

3. Model analyses

3.1. Positivity and boundedness of solution
This section focuses on demonstrating that the solutions or trajectories of the

system remain non-negative, which is essential since the model represents human
populations. It is crucial to ensure non-negativity because negative values are not
meaningful in the context of epidemiological modeling [13].

To establish positivity, we must show that if S(0) ≥ 0, I(0) ≥ 0, L(0) ≥ 0, and
R(0) ≥ 0 initially, then S(t) ≥ 0, I(t) ≥ 0, L(t) ≥ 0, and R(t) ≥ 0 for all t ≥ 0.

dS

dt
= π − βSI − µS − λSL+ ϕR

Rewriting the equation in a standard form:

dS

dt
= π − (βI + µ+ λL)S + ϕR

When S(t) → 0 and R(t) → 0:

dS

dt
≥ 0
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We can conclude that, S(t) ≥ 0 ∀ t. Using the same approach, we can conclude
that, the other variables are also positive.

To demonstrate that the dynamical system is uniformly bounded within the
appropriate subset θ ⊂ R+4, consider the total human population at any given time
t, which is expressed as:

N(t) = S(t) + L(t) + I(t) +R(t)

The rate of change of the total population is given by:

dN

dt
=

dS

dt
+

dL

dt
+

dI

dt
+

dR

dt

Substituting the differential equations for each compartment, we get:

dN

dt
= π − (βSI + µS + λSL) + ϕR+ βSI

− (γI + µI + δI) + τL+ λSL

− (µL+ τL+ σL) + γI − µR− ϕR+ σL

Simplifying the terms, we obtain:

dN

dt
= π − µ(S + I + L+R)− δI

dN

dt
= π − µN − δI

dN

dt
≤ π − µN

By applying Gronwall’s lemma, we get:

N(t) ≤ π

µ
−
(
π − µN0

µ

)
e−µt ∀ t ≥ 0

where N0 represents the initial population value. This implies:

0 ≤ N(t) ≤ π

µ
∀ t ≥ 0, if N(0) ≤ π

µ

Hence, the appropriate subset θt is:

θt = {(S,L, I, R) ∈ R+4 : S + L+ I +R ≤ π

µ
}

So the equations in the model create a dynamical system which is bounded, and
the system stay within a specific area or region [15,16]. We can describe this area as
follows:

∆ = θS + θL + θI + θR

From this, we can conclude that the model’s behavior in this area makes sense
mathematically. Let’s consider what happens when we start with all positive numbers
in our system–that is, when all our starting values are greater than zero. In this case, as
time goes on, our system will always give us positive answers. It won’t suddenly jump
to negative numbers or zero in the future.
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3.2. Disease-free equilibrium point
Starting with the susceptible sub-population, we have:

dS

dt
= π − βSI − µS − λSL+ ϕR = 0

Since I = 0, L = 0, and R = 0, this equation simplifies to:

S∗ =
π

µ

Therefore, the disease-free equilibrium (DFE) is:

(S∗, I∗, L∗, R∗) =

(
π

µ
, 0, 0, 0

)
(3)

3.3. Disease endemic equilibrium point
The endemic equilibrium point is obtained by solving the following system of

equation; 
π − βSI − µS − λSL+ ϕR = 0 (a)

λSL− µL− τL− σL = 0 (b)

βSI − γI − µI − δI + τL = 0 (c)

γI − µR− ϕR+ σL = 0 (d)

From Equation (c):

λS∗L∗ − µL∗ − τL∗ − σL∗ = 0

we have:

L∗(λS∗ − µ− τ − σ) = 0

This implies:

L∗ = 0 or S∗ =
µ+ τ + σ

λ

From the Equation (b):

βS∗I∗ − γI∗ − µI∗ − δI∗ + τL∗ = 0

Substituting S∗ = µ+τ+σ
λ :

I∗
(
β
µ+ τ + σ

λ
− γ − µ− δ

)
+ τL∗ = 0

Let a = β µ+τ+σ
λ − γ − µ− δ. Thus:

aI∗ + τL∗ = 0

L∗ = −aI∗

τ
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From the Equation (d):

γI∗ + σL∗ − (µ+ ϕ)R∗ = 0

Thus:

R∗ =
γI∗ + σL∗

µ+ ϕ

From the Equation (a):

π − βS∗I∗ − µS∗ − λS∗L∗ + ϕR∗ = 0

Substituting S∗ = µ+τ+σ
λ and L∗ = −aI∗

τ :

π − β

(
µ+ τ + σ

λ

)
I∗ − µ

(
µ+ τ + σ

λ

)
− (µ+ τ + σ)L∗ + ϕ

(
γI∗ + σL∗

µ+ ϕ

)
= 0

Let b = β
(µ+τ+σ

λ

)
, c = µ

(µ+τ+σ
λ

)
, d = a(µ+τ+σ)

τ :

π − bI∗ − c+ adI∗ +
ϕ(γI∗ − σaI∗/τ)

µ+ ϕ
= 0

Combining the results to solve for I∗:

I∗
(
a+ ϕ

(
γ

µ+ ϕ

)
− σa

τ

)
= π − c

Simplifying the terms involving I:

I∗
[
a+

ϕγ

µ+ ϕ
− σa

τ

]
= π − c

Thus:

I∗ =
π − c

a+ ϕγ
µ+ϕ − σa

τ

The Endemic Equilibrium Points are:

S∗ =
µ+ τ + σ

λ

L∗ = −
a

(
π−c

a+ ϕγ

µ+ϕ
−σa

τ

)
τ

I∗ =
π − c

a+ ϕγ
µ+ϕ − σa

τ

R∗ =

γ

(
π−c

a+ ϕγ

µ+ϕ
−σa

τ

)
+ σ

−
a

(
π−c

a+
ϕγ

µ+ϕ
−σa

τ

)
τ


µ+ ϕ
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This disease endemic Equilibrium point exist if and only if,
a

(
π−c

a+
ϕγ

µ+ϕ
−σa

τ

)
τ > 0,

π−c
a+ ϕγ

µ+ϕ
−σa

τ

> 0 where a = β µ+τ+σ
λ − γ − µ− δ [17,18].

4. Basic reproduction number
Using the Jacobian Matrix approach in [19, 20] of the associated infectious

compartments of the system of differential equations obtained from the model:

dI

dt
= βSI − (γ + µ+ δ)I + τL

dL

dt
= λSL− (µ+ τ + σ)L

Applying the next generation matrix approach [21–23], then the basic
reproduction number R0 is given by :

K = FV −1

and

R0 = ρ(FV −1)

ρ(A) = sup |λ| : λ ∈ ρ(A)

where this ρ(A) represent every eigenvalues of matrix A.

f =
(
βSI + τL

λSL

)
and v =

(
(γ + µ+ δ)I

(µ+ τ + σ)L

)
The Jacobian matrix J of the system given by:

J =

(
∂f
∂I

∂f
∂L

∂g
∂I

∂g
∂L

)

The next-generation matrix K is derived from the Jacobian. We decompose the
Jacobian J into two matrices parts: F (new infection’s terms) and V (transition out
terms).

F =

(
βS τ

0 λS

)

V =

(
γ + µ+ δ τ

0 µ+ τ + σ

)
At the point of disease free equilibrium S = S∗. so the jacobian at disease free

equilibrium would be; the next-generation matrix K is derived from the Jacobian at
DFE. We decompose the Jacobian J into two matrices: F (new infection’s terms) and
V (transition out terms).

F (S∗, 0, 0, 0) =

(
βS∗ τ

0 λS∗

)
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V (S∗, 0, 0, 0) =

(
γ + µ+ δ 0

0 µ+ τ + σ

)

Now we find the Inverse of V as:

V −1 =
1

(γ + µ+ δ)(µ+ τ + σ)

(
µ+ τ + σ 0

0 γ + µ+ δ

)
next, we CalculateK

K = FV −1

K =

(
βS∗ 0

0 λS∗

)
· 1

(γ + µ+ δ)(µ+ τ + σ)

(
µ+ τ + σ 0

0 γ + µ+ δ

)
The eigenvalues ofK give us the reproduction number. The eigenvalues are:

βS∗(µ+ τ + σ)

(γ + µ+ δ)(µ+ τ + σ)

and
λS∗(γ + µ+ δ)

(γ + µ+ δ)(µ+ τ + σ)

Simplifying, we find:

R0 =
∑(

βS∗

γ + µ+ δ
,

λS∗

µ+ τ + σ

)
Thus, our basic reproduction number R0 for the model, is the sum of the two

eigenvalues:

R0 =

(
βS∗

γ + µ+ δ
+

λS∗

µ+ τ + σ

)
(4)

or equivalently;

R0 =
π

µ

(
β

γ + µ+ δ
+

λ

µ+ τ + σ

)

5. Local stability of the DFE
To determine the stability of the system at equilibrium point, we use jacobian of

the system of equation given by:

J =


∂f
∂S

∂f
∂I

∂f
∂L

∂f
∂R

∂g
∂S

∂g
∂I

∂g
∂L

∂g
∂R

∂h
∂S

∂h
∂I

∂h
∂L

∂h
∂R

∂k
∂S

∂k
∂I

∂k
∂L

∂k
∂R

 (5)
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Taking the jacobian of the system, we have:

J =


−βI − µ− λL −βS −λS ϕ

βI βS − γ − µ− δ τ 0

λL 0 −µ− τ − σ 0

0 γ σ −µ− ϕ

 (6)

Expressing the jacobian, at disease free equilibrium point [24,25],

JDFE = J(
π

µ
, 0, 0, 0) =


−µ −β π

µ −λπ
µ ϕ

0 β π
µ − γ − µ− δ 0 0

0 0 λπ
µ − µ− τ − σ 0

0 γ σ −µ− ϕ



J(
π

µ
, 0, 0, 0) =


−µ −β π

µ −λπ
µ ϕ

0 β π
µ − (γ + µ+ δ) τ 0

0 0 λπ
µ − (µ+ τ + σ) 0

0 γ σ −(µ+ ϕ)

 (7)

Finding the eigenvalues of the jacobian at disease free equilibrium,

J(
π

µ
, 0, 0, 0) =


−µ− λ1 −β π

µ −λπ
µ ϕ

0 β π
µ − (γ + µ+ δ)− λ2 τ 0

0 0 λπ
µ − (µ+ τ + σ)− λ3 0

0 γ σ −(µ+ ϕ)− λ4


The eigenvalues are;

λ1 = −µ

λ2 = β
π

µ
− (γ + µ+ δ)

λ3 = λ
π

µ
− (µ+ τ + σ)

λ4 = −(µ+ ϕ)

The DFE is locally asymptotically stable if β π
µ < (γ+µ+ δ), λπ

µ < (µ+ τ + σ)

and R0 < 1 [26–28].

6. Global stability of endemic equilibrium
To understand how the disease behaves when it’s always present in the population,

we’ll use a special mathematical tool. This tool is called a Lyapunov function [29–33].
Let’s create one:

L(S∗, I∗, L∗, R∗) =

{
(S − S∗ − S∗ ln(S∗

S )) + (I − I∗ − I∗ ln( I∗

I )) + (L− L∗ − L∗ ln(L∗

L ))

+(R−R∗ −R∗ ln(R∗

R ))

The rate of change of the function(derivative) L, calculated by following;

10
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dL(S∗, I∗, L∗, R∗)

dt
=

{
(S−S∗

S )
dS

dt
+ ( I−I∗

I )
dI

dt
+ (L−L∗

L )
dL

dt
+ (R−R∗

R )
dR

dt

dL(S∗, I∗, L∗, R∗)

dt
=


(S−S∗

S )(π − βSI − µS − λSL+ ϕR)

+( I−I∗

I )(βSI − γI − µI − δI + τL)

+(L−L∗

L )(λSL− µL− τL− σL)

+(R−R∗

R )(γI − µR− ϕR+ σL)

Expanding and simplifying the expressions gives;
π − βSI − µS − λSL+ ϕR− πS∗

S + βS∗I + λS∗L− ϕRS∗

S + µS∗

+βSI − γI − µI − δI + τL− βSI∗ + (γ + µ+ δ)I∗ − τLI∗

I

+λSL− µL− τL− σL− λSL∗ + (τ + σ + µ)L∗

+γI − µR− ϕR+ σL− (γI+σL)R∗

R + (ϕ+ µ)R∗

Let

dL

dt
= P-Q

In this function, we have two main parts. Where P part are the positive terms, and
Q part are the negative terms, such that:

P = π + ϕR+ (βI + λL+ µ)S∗ + βSI + τL

+ (γ + µ+ δ)I∗ + λSL+ (τ + σ + µ)L∗

+ γI + σL+ (ϕ+ µ)R∗

Q = (βI + µ+ λL)S +
ϕRS∗

S
+ (γ + µ+ δ)I

+ βSI∗ +
τLI∗

I
+ (µ+ τ + σ)L

+ λSL∗ + µR+
(γI + σL)R∗

R

If P < Q, then dL

dt
≤ 0

To ensure our Lyapunov function is valid, the necessary and sufficient condition
for

dL

dt
= 0 is when S = S∗, I = I∗, L = L∗, R = R∗

The maximal invariant set within the space defined by the variables S∗, I∗, L∗,
and R∗, where the derivative of the lyapunuv function L with respect to time t is
equal to zero, is a singleton set containing only the endemic equilibrium pointE∗ .This
condition signifies that, the endemic equilibrium is globally and asymptotically stable
[34–38].
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7. Sensitivity analysis
To determine how much each part of our model affects the spread of the disease

in relation to the basic reproduction number R0, a sensitivity analysis is performed
[39–42]. The sensitivity analysis is given by:

SR0
x =

∂R0

x
× x

R0

where x represent any parameter in the reproduction number.

R0 =

(
βS∗

γ + µ+ δ

)
+

(
λS∗

µ+ τ + σ

)
Sensitivity index for β:

SR0

β =
∂R0

β
× β

R0
=

[
S∗

γ + µ+ δ

]
×
[
β

R0

]
Sensitivity index for γ:

SR0
γ =

∂R0

γ
× γ

R0
= − βS∗

(γ + µ+ δ)2
= −

[
βS∗

(γ + µ+ δ)2

]
×
[
γ

R0

]
Sensitivity index for µ:

SR0
µ =

∂R0

µ
× µ

R0
= − βS∗

(γ + µ+ δ)2
− λS∗

(µ+ τ + σ)2
× µ

R0

Sensitivity index for δ:

SR0

δ =
∂R0

δ
× δ

R0
− βS∗

(γ + µ+ δ)2
=

(
∂R0

∂δ

)
×
(

δ

R0

)
=

[
− βS∗

(γ + µ+ δ)2

]
×
[
δ

R0

]
Sensitivity index for λ:

SR0
x =

∂R0

λ
× λ

R0
=

(
∂R0

∂λ

)
×
(

λ

R0

)
=

[
S∗

µ+ τ + σ

]
×
[
λ

R0

]
Sensitivity index for τ :

SR0
τ =

∂R0

τ
× τ

R0
=

(
∂R0

∂τ

)
×
(

τ

R0

)
=

[
− λS∗

(µ+ τ + σ)2

]
×
[
τ

R0

]
Sensitivity index for σ:

SR0
σ =

∂R0

σ
× σ

R0
=

(
∂R0

∂σ

)
×
(

σ

R0

)
=

[
− λS∗

(µ+ τ + σ)2

]
×
[
σ

R0

]
All the Sensitivity indices of the model’s parameters can be viewed in the table

below.
The sensitivity analysis presented in Table 3 reveals the impact of various model

parameters on the basic reproduction number R0 of the disease. Each parameter is
associated with either a positive (+) or negative (−) sensitivity index, indicating its
effect on R0.
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Table 3. Parameter values and their sensitivity indices

Parameter Value Reference

β 0.069 [1]
µ −0.0047 [44]
λ 0.100 [7]
τ −0.12 [7]
δ −0.16 [43]
σ −0.008 Assume [44]
γ −0.08 [43]
π 0.00133 [43]

Specifically: The parameters β and λ have positive sensitivity indices. This
means that an increase in these parameters leads to an increase in R0, potentially
worsening the spread of the disease. The parameters µ, µ, δ, σ, and γ all have negative
sensitivity indices. This indicates that increasing these parameters results in a decrease
in R0, which could help in controlling the disease’s spread.

These results provide valuable insights into which factors most significantly
influence the disease’s transmission dynamics. Parameters with positive indices might
be targets for intervention strategies aimed at reducing disease spread, while those with
negative indices could be leveraged to enhance control efforts.

This analysis not only helps in understanding the relative importance of different
factors in disease transmission but also guides the development of effective strategies
for disease control and prevention.

8. Numerical simulation
A numerical simulation was conducted to explore the impact of various

parameters on the tuberculosis model. This approach approximated solutions for
coupled differential equations, allowing for analysis of how changes in parameter
values affected the system dynamics [45–49]. The simulation focused on a system
of differential equations from the model in Figure 4.1, representing four human
population compartments: susceptible, Infected, Latent and Recovered.

The primary goal was to observe the evolution of these population compartments
over time. The simulation aimed to provide insights into the progression of tuberculosis
and the impact of interventions or parameter changes on population dynamics.The
simulation used specific parameter values, detailed in the accompanying Table 4.
These values were crucial in determining the dynamics of the tuberculosis epidemic
over a one-month period.

To illustrate the dynamics, a graph was generated using the simulated data. This
graph depicted the changes in each population compartment over time during the
specified tuberculosis epidemic period. The simulation aimed to provide insights into
the progression of the disease and the impact of interventions or changes in parameter
values on population dynamics.

To visually illustrate these dynamics, graphs were generated using the simulated
data. This graph depicted how each population compartment changed over time
during the specified tuberculosis epidemic period. These visualizations are crucial
for understanding the role of each compartment and for informing decision-making
processes related to disease control and management strategies.
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Table 4. Parameter values used for the simulation

Parameter Value Reference

β 0.069 [1]
µ 0.0047 [44]
λ 0.100 [7]
τ 0.12 [7]
δ 0.16 [43]
σ 0.008 Assume [44]
γ 0.08 [43]
ϕ 0.018 [43]
π 0.00133 [43]

Table 4 are the parameter values are used in the numerical simulation. The results
of the numerical simulation are presented in Figures 2–5.

Figure 2. The susceptible population.

Based on the graph in Figure 2, we can see that the susceptible population initially
starts at a higher level, as we assumed a population of 100 (S0 = 100), but gradually
decreases as individuals become infected or transition to the latent stage. The rate of
decrease in the susceptible population is influenced by the relatively low transmission
rate (β = 0.069), which indicates that the disease is not spreading rapidly through
contact in the population. Additionally, the rate of progression to the latent stage
(λ = 0.100) indicates that not all susceptible individuals become infected with the
disease. Therefore, as the epidemic progresses, the susceptible population continues to
decline due to disease transmission and the transition to the latent stage. However, the
susceptible population might eventually start to increase again due to the influx of new
recruits (incidence rate π) and the recovery of individuals who lose immunity (ϕ).
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Figure 3. Infected population

Figure 3 shows that, an infected population starts from a small portion of the
population (I0 = 1), and initially increases as the disease spreads through the
susceptible population. This increase in the infected population depends is influenced
by the transmission rate β, and the rate of progression from the latent stage to the
infected stage τ . After reaching a peak at some certain stage, the infected population
starts to decline due to individuals recovering from the disease at a very high recovery
rate γ, died naturally µ or died due to the disease δ. This result in the declining of the
infected individuals leading to the disease free stage in the population.

Figure 4. Latent Population

The latent population initially starts at zero (L0 = 0) but gradually increases as
susceptible individuals transition to the latent stage at rate λ. The rate of increase in
the latent population is determined by the rate of progression to the latent stage λ and
the size of the susceptible population as shown in Figure 4. After reaching a peak, the
latent population starts to decline and move in a constant level, as individuals progress
to the infected stage, died, recovered directly from the latent stage at the rate σ. This
constant movement in the latent population is due to the balance in between the rates of
progression to the infected stage τ and the recovery rate from the latent stage σ natural
dead µ and the size of susceptible population.
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Figure 5. Recovered Population

The recovered population starts initially at zero (R = 0) and subsequently
increased as infected individuals recovered from the disease at a very higher rate γ as
shown in Figure 5. This increase in the recovered individuals is influenced by the size
of the infected population which loses its peak due the recovery rate γ. After reaching
a peak, the recovered population will eventually starts to decline due to individuals
losing immunity and becoming susceptible again with the rate ϕ, and also the natural
death rate µ.

9. Conclusion
To explore potential avenues for tuberculosis eradication, it is imperative to delve

into its transmission dynamics and prevalence. Many infectious diseases, including
tuberculosis, have been effectively studied using differential equations. This thesis
has focused on analyzing and modeling the transmission dynamics of tuberculosis,
considering both latent and active populations. We have developed a mathematical
model aimed at elucidating these dynamics, investigating key parameters such as the
reproductive number, equilibrium points, and their stability. Additionally, sensitivity
analysis has been performed to assess the contribution of each parameter on the
reproductive number. Numerical simulations using established parameters have
further illustrated the population dynamics of the disease, supported by graphical
representations generated using appropriate software.

We assumed that the population has a constant size N , where births and deaths
occur at equal rates, and that newborns are also susceptible to the disease. Additionally,
there is no age restriction, mobility, or other social factors. We also assumed that
once infected with tuberculosis bacteria, an individual might become latent or directly
infectious.

Based on the assumptions above, the dynamics of the tuberculosis model satisfy
the SILR epidemiological model discussed in Chapter Four. Hence, we propose it
to study the dynamic transmission of tuberculosis by classifying the population as
susceptible (S), infectious (I), latent (L), and recovered (R).

All parameters used in the model are described in Chapter Four. The model has
shown success in predicting the causes of transmission dynamic within a population.
From the model analysis, we also observed that the dynamics of the susceptible
population are influenced by the incidence rate (π), the transmission contact rate (β),
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which also facilitates the infection rate (βSI), the natural death rate (µS), the rate at
which some individuals lose susceptibility and become latent (λSL), and the gain due
to the lack of immunity from the recovered population (ϕR). This has been shown in
the graph of the susceptible population. The susceptible population is initially high, but
it decreases as individuals become infected, die, or move to the latent compartment.

The graph of infected population initially rises as susceptible individuals
become infected, but it eventually decreases as some infected individuals die due
to tuberculosis, some died naturally, while others recovered.

In the latent, the graph shows the change in the latent population over time. But the
latent population initially increases as susceptible individuals become latently infected,
but it eventually decreases as latent individuals recovered, died or become actively
infected. this resulted in the constant movement of the individuals in this compartment.

The recovered population initially increases as infected individuals recover, but it
eventually decreases as recovered individuals become susceptible again due to lack of
permanent immunity in the dynamic of tuberculosis or die naturally.

The model also provides an approximate reproduction number of 0.3, which
epidemiologically demonstrates the impact of applying the SILR model in curtailing
tuberculosis. The model indicates that even though the approximate calculated
reproduction number R0 is less than unity, which suggests that tuberculosis will
naturally decline in the population, there is a need to maintain the decrease in the
transmission/infection rate β and improve the recovery rate γ so that the disease will
eventually die out completely. Future work could focus on refining the model by
including additional compartments, nonlinear dynamics, or more complex interaction
terms. This can help better capture the complexity of the system or disease in
real-world settings. The model could be tested with actual data from specific regions
or populations to validate its predictions. This could help in assessing its predictive
accuracy and adapting it to local conditions.
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