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Abstract: The present research explores the existence of positive solutions for the iterative 

system of higher-order differential equations with integral boundary conditions that include a 

non-homogeneous term. To address the boundary value problem, the solution is expressed as 

a solution of an equivalent integral equation involving kernels. Subsequently, bounds for these 

kernels are determined to facilitate further analysis. The primary tool employed in this study is 

the Guo-Krasnosel’skii fixed-point theorem, which is utilized to establish the existence of 

positive solutions within a cone of a Banach space. This approach enables a rigorous 

exploration of the existence of at least one positive solution and provides insights into the 

behavior of the differential equation under the given boundary conditions. 
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1. Introduction 

Differential equations are useful for formulating mathematical models to analyze 

real-world phenomena. These models are frequently expressed as either initial or 

boundary value problems. The problems with integral boundary conditions are 

commonly encountered in various fields of science and engineering, such as 

thermoelectricity, thermoelasticity, plasma physics, underground water flow, 

hydrodynamic problems, chemical engineering, and many more; see Cannon [1], 

Ionkin [2], Chegis [3]. We refer to the study on differential equations of third order, 

fourth order, and higher order with integral boundary conditions [4–10].  

Complex structures with multiple degrees of freedom are frequently described by 

systems of differential equations under specific conditions. The main challenge is to 

analyze mathematical models for such structures and to determine the positive 

solutions using various mathematical techniques. Due to the theoretical and practical 

significance of this topic, researchers have shown considerable interest in studying 

positive solutions for iterative systems of nonlinear boundary value problems by 

determining the parameter intervals. A few papers along these lines include Henderson 

et al. [11], Henderson et al. [12], Prasad et al. [13], and Oz and Karaca [14] for second-

order systems; Bouteraa et al. [15] for fourth-order systems; and Henderson and 

Ntouyas [16], Prasad et al. [17], and Namburi et al. [18] for nth-order systems. In 

particular, iterative differential equations provide a novel approach to studying 

functional differential equations [19,20]. However, only a few studies in the literature 

address the existence of positive solutions for iterative systems of nonlinear boundary 

value problems that do not involve parameters [21,22]. In this work, we extend these 
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results to iterative systems of higher-order boundary value problems involving sets of 

equations. 

Based on the above literature, we investigate the presence of positive solutions to 

the following iterative system of nonlinear boundary value problems, 

w𝑖
(ƥ)(ꭢ) + 𝒶𝑖(ꭢ)𝑓𝑖(w𝑖+1(ꭢ)) = 0, 1 ≤ 𝑖 ≤ 𝑚, ꭢ ∈ [0,1],

w𝑚+1(ꭢ) = w1(ꭢ), ꭢ ∈ [0,1],
} (1) 

fulfilling conditions with non-homogeneous term 

w𝑖(0) = 0,w𝑖
′ (0) = 0,… ,  w𝑖

(ƥ−2)(0) = 0,

w𝑖
(ɤ)(1) − 𝜂𝑖 ∫ 𝑔𝑖(ξ) w𝑖

(ɤ)
1

0

(ξ)𝑑ξ = β
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

} (2) 

where ɤ is a fixed value ranging from 1 to ƥ− 2, ƥ ≥ 3, 𝜂𝑖  is a positive real constant, 

β
i
𝜖 (0, ∞)  is a parameter for 1 ≤ 𝑖 ≤ 𝑚,  by fixed point theorem of Guo-

Krasnosel’skii. By giving different values to the constants ƥ, 𝜂𝑖 and β
i
, we get various 

order problems, for instance [23,24]. Here, the integral kernel plays a key role in 

establishing our results. The applications of integral equations are vast, spanning areas 

such as signal processing, fluid flow, electromagnetics, quantum mechanics, and 

population dynamics. However, solving integral equations presents challenges due to 

kernel singularity, high computational costs for high-dimensional systems, and 

convergence difficulties in nonlinear cases. Advancements in numerical methods 

continue to expand the applicability of integral equations, providing new insights and 

solutions to complex real-world problems [25–29]. 

For 1 ≤ 𝑖 ≤ 𝑚, the below stated assumptions are valid in this paper: 

(E1) 𝑔𝑖 ∈ 𝐶([0,1], ℝ
+), 𝑓𝑖 ∈ 𝐶(ℝ

+, ℝ+), 𝒶𝑖(ꭢ) ∈ 𝐶([0,1], ℝ
+) and 𝒶𝑖(ꭢ) fails 

to vanish identically on any closed subset of [0,1], 

(E2) Ɣ𝑖 = (ƥ− 1)! (1 − 𝜂𝑖𝜃𝑖) > 0,where 𝜃𝑖 = ∫ 𝑔𝑖(ξ)ξ
 ƥ−ɤ−11

0
dξ.  

Define the nonnegative extended real numbers 𝑓𝑖0  and 𝑓𝑖∞  as 𝑓𝑖0 = lim
w→0+

𝑓𝑖(w)

w
 

and 𝑓𝑖∞ = lim
w→∞

𝑓𝑖(w)

w
, for 1 ≤ 𝑖 ≤ 𝑚. 

1.1. Definition 

By a positive solution of the problem (1) and (2), we mean that 

(w1(ꭢ),w2(ꭢ), … ,w𝑚(ꭢ)) ∈ (𝐶
ƥ[0,1])

𝑚
 satisfying the Equations (1) and (2) with 

w𝑖(ꭢ) ≥ 0,  𝑖 = 1,2, … ,𝑚  for ꭢ ∈ [0,1]  and (w1(ꭢ),w2(ꭢ), … ,w𝑚(ꭢ)) ≠

(0,0, … ,0). 

The remaining part of the paper is structured as follows: In section 2, the solution 

for Equations (1) and (2) is represented as a solution of the related integral equation, 

which includes kernels. Section 3 is devoted to studying the presence of positive 

solutions to Equations (1) and (2) based on the Guo-Krasnosel’skii theorem. The 

established results are verified by constructing the examples in section 4. The last 

section presents the conclusion and future scope of the study.  
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2. Inequalities for kernels 

In this section, we represent the solution of the Equations (1) and (2) as a solution 

of the related integral equation with kernels. We then derive some inequalities related 

to these kernels. 

2.1. Lemma [18] 

Suppose that (E2) is true. Let Ǫ(ꭢ) ∈ 𝐶([0,1], ℝ+). Then the solution of the 

differential equation 

w𝑖
(ƥ)(ꭢ) +Ǫ(ꭢ) = 0, 1 ≤ 𝑖 ≤ 𝑚, ꭢ ∈ [0,1], (3) 

fulfilling the Equation (2) is expressed uniquely as 

w𝑖(ꭢ) =
β
𝑖
(ƥ− ɤ− 1)!ꭢƥ-1

Ɣi
+∫ [Ɍ(ꭢ, 𝓋) +

𝜂𝑖ꭢ
 ƥ-1

Ɣi
∫ Ȿ(ξ, 𝓋)𝑔𝑖(ξ)
1

0

𝑑ξ ]
1

0

Ǫ(𝓋)𝑑𝓋, (4) 

Ɍ(ꭢ, 𝓋) =
1

(ƥ− 1)!
 { 
[ꭢƥ−1(1 − 𝓋)ƥ−ɤ−1 − (ꭢ−𝓋)ƥ−1],        

ꭢƥ−1(1 − 𝓋)ƥ−ɤ−1,                                    

 0 ≤ 𝓋 ≤ ꭢ ≤ 1,
0 ≤ ꭢ ≤ 𝓋 ≤ 1,

 (5) 

and 

Ȿ(ξ, 𝓋) = {
 ξƥ−ɤ−1(1 − 𝓋)ƥ−ɤ−1 − (ξ− 𝓋)ƥ−ɤ−1,

ξ
ƥ−ɤ−1(1 − 𝓋)ƥ−ɤ−1,                             

   
            0 ≤ 𝓋 ≤ ξ ≤ 1,
             0 ≤ ξ ≤ 𝓋 ≤ 1.

 (6) 

2.2. Lemma [18]  

The functions Ɍ(ꭢ, 𝓋) and Ȿ(ꭢ, 𝓋) satisfy the below: 

(1) Ɍ(ꭢ, 𝓋) and Ȿ(ꭢ, 𝓋) are nonnegative, for every ꭢ, 𝓋 ∈ [0,1], 

(2) Ɍ(ꭢ, 𝓋) ≤ Ɍ(1,𝓋), for every ꭢ, 𝓋 ∈ [0,1], 

(3) 
1

4ƥ−1 Ɍ(1,𝓋) ≤ Ɍ(ꭢ, 𝓋), for every ꭢ ∈ I and 𝓋 ∈ [0,1], where I = [
1

4
,
3

4
]. 

We can see that the solution for the Equations (1) and (2) is an 𝑚 -tuple 

(w1(ꭢ), w2(ꭢ), …, wm(ꭢ)) if and only if 𝑤𝑖(ꭢ) fulfills the subsequent equations 

𝑤𝑖(ꭢ) =
β
𝑖
(ƥ− ɤ − 1)!ꭢƥ−1

Ɣ𝑖
+∫ [Ɍ(ꭢ, 𝓋) +

𝜂𝑖ꭢ
ƥ−1

Ɣ𝑖
 ∫ Ȿ(ξ, 𝓋)𝑔𝑖(ξ)

1

0

𝑑ξ ]𝒶𝑖(𝓋)𝑓𝑖(𝑤𝑖+1(𝓋))𝑑𝓋,
1

0

 

1 ≤ 𝑖 ≤ 𝑚, ꭢ ∈ [0,1], 

and 

𝑤𝑚+1(ꭢ) = w1(ꭢ), ꭢ ∈ [0,1]. 

Therefore,  

𝑤1(ꭢ) =
β
1
(ƥ− ɤ− 1)!ꭢƥ−1 

Ɣ1
+∫ [Ɍ(ꭢ, 𝓋1) + 

𝜂1ꭢ ƥ−1

Ɣ1
 ∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶1(𝓋1)𝑓1 (
β
2
(ƥ− ɤ − 1)! 𝓋 1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋 1
ƥ−1

Ɣ2
 ∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0
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𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚)
1

0

+
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]  𝒶𝑚(𝓋𝑚)𝑓𝑚(w1(𝓋𝑚))𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1. 

To establish main outcomes, we shall use the Guo-Krasnosel’skii fixed point 

theorem, which is described below. 

2.3. Theorem [30,31]  

Let 𝜌 be a cone in a Banach Space Ɓ. Let the two open subsets be Ʌ1 and Ʌ2 of 

Banach space Ɓ such that 0 ∈ Ʌ1 and Ʌ1 ⊂ Ʌ2. If the function Ƭ: 𝜌 ∩ (Ʌ2\Ʌ1) → 𝜌 

satisfy the below subsequent inequalities: 

(𝑖) ‖Ƭ𝓊‖ ≤ ‖𝓊‖, for 𝓊 ∈ 𝜌 ∩ 𝜕Ʌ1 and ‖Ƭ𝓊‖ ≥ ‖𝓊‖, for 𝓊 ∈ 𝜌 ∩ 𝜕Ʌ2, or  

(𝑖𝑖) ‖Ƭ𝓊‖ ≥ ‖𝓊‖, for 𝓊 ∈ 𝜌 ∩  𝜕Ʌ1 and ‖Ƭ𝓊‖ ≤ ‖𝓊‖, for 𝓊 ∈ 𝜌 ∩ 𝜕Ʌ2,  

then there is a fixed point in 𝜌 ∩ (Ʌ2\Ʌ1). 

3. Positive solutions 

This section contains the presence of positive solutions to the Equations (1) and 

(2). For construction, let the set Ɓ = {w ∶ w ∈ 𝐶([0,1], ℝ)} be a Banach space with  

‖w‖ = maxꭢ[0,1]|w(ꭢ)|. 

Let 𝜌 be a cone in a Banach space Ɓ and is defined as 

ρ = {𝑤 ∈ Ɓ ∶ w(ꭢ) ≥ 0, for every ꭢ ∈ [0,1] with min
ꭢ∈𝐼

𝑤(ꭢ) ≥
1

4ƥ−1
‖𝑤‖}. 

For 𝑤1 ∈ 𝜌, define a function 𝔇: 𝜌 →Ɓ as 

𝔇𝑤1(ꭢ) =
β
1
(ƥ − ɤ− 1)!ꭢƥ−1

Ɣ1
+∫ [Ɍ(ꭢ, 𝓋1) +

𝜂1ꭢƥ−1

Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ
1

0

]
1

0

𝒶1(𝓋1)𝑓1 (
β2(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+

∫ [Ɍ(𝓋1, 𝓋2) +
η2𝓋1

ƥ−1

Ɣ2
∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ
1

0

]
1

0

𝒶2(𝓋2)… 𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ− 1)! 𝓋𝑚−1

ƥ−1

Ɣm
+

∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ-1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1. }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (7) 

3.1. Lemma 

The function 𝔇:𝜌 → 𝔅 stated in Equation (7) is a self-map on 𝜌. 
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Proof. For w1 ∈ 𝜌, 𝔇w1(ꭢ) ≥ 0 on ꭢ ∈ [0,1]  by the nonnegativity of 

Ɍ(ꭢ, 𝓋) and Ȿ(ꭢ, 𝓋). Using Lemma 2.2, we see that for w1 ∈ 𝜌, 

𝔇𝑤1(ꭢ) =
β1(ƥ−ɤ−1)!ꭢ

ƥ−1 

Ɣ1
+ ∫ [Ɍ(ꭢ, 𝓋1) +

𝜂1ꭢƥ−1

Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ
1

0
]

1

0
  

𝒶1(𝓋1)𝑓1 (
β2(ƥ−ɤ−1)! 𝓋1

ƥ−1

Ɣ2
+ ∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ
1

0
]

1

0
  

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)!𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1 , 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(w1(𝓋𝑚))𝑑𝓋𝑚
.

.
)… 𝑑𝓋2

.

.
) 𝑑𝓋1 

≤
β
1
(ƥ− ɤ − 1)!

Ɣ1
+∫ [Ɍ(1, 𝓋1) +

𝜂1
Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶1(𝓋1)𝑓1 (
β
2
(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0

  

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)!𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(w1(𝓋𝑚))𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1. 

Then 

‖𝔇w1(ꭢ)‖ ≤
β1(ƥ− ɤ − 1)! 

Ɣ1
+∫ [Ɍ(1,𝓋1) +

𝜂1
Ɣ1
 ∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]  
1

0

 

𝒶1(𝓋1)𝑓1 (
β2(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+

∫ [Ɍ(𝓋1, 𝓋2) +
𝜂2𝓋1

ƥ−1

Ɣ2
∫ Ȿ(ξ,𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0
 

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚
+

∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚
.

.
)…𝑑𝓋2)𝑑𝓋1. }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (8) 

Next, if w1 ∈ 𝜌, we have from Lemma 2.2 and Equation (8) that  

min
ꭢ∈ I

 𝔇𝑤1(ꭢ) = min
ꭢ ∈ I

{
β1(ƥ−ɤ−1)!ꭢ

ƥ−1

Ɣ1
+ ∫ [Ɍ(ꭢ, 𝓋1) +  

η1ꭢƥ−1

Ɣ1
 ∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ
1

0
]

1

0
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𝒶1(𝓋1)𝑓1 (
β2(ƥ−ɤ−1)! 𝓋1

ƥ−1

Ɣ2
+ ∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
 ∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ
1

0
]

1

0
  

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(w1(𝓋𝑚))𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1} 

≥
1

4ƥ−1
{
β
1
(ƥ− ɤ − 1)!

Ɣ1
+∫ [Ɍ(1, 𝓋1) + 

𝜂1
Ɣ1
 ∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶1(𝓋1)𝑓1 (
β
2
(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
 ∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0

 

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚
.

.
)…𝑑𝓋2)𝑑𝓋1} 

≥
1

4ƥ−1
‖𝔇𝑤1(ꭢ)‖. 

Hence, 𝔇 ∶ 𝜌 → 𝜌. This completes the proof. 

In addition, we can see that the function 𝔇 is completely continuous by applying 

the Arzela-Ascoli theorem [32]. 

3.2. Theorem 

Suppose that (E1) and (E2) are met. If 𝑓𝑖0 = 0 and 𝑓𝑖∞ = ∞  are true, then the 

Equations (1) and (2) has at least one positive solution and β𝑖 ∈ (0,∞) small enough 

for 1 ≤ 𝑖 ≤ 𝑚. 

Proof. For 1 ≤ 𝑖 ≤ 𝑚, by using the definition of 𝑓𝑖0 = 0, there exist 𝜚𝑖 > 0 and 

𝐻1 > 0 such that  

𝑓𝑖(𝑤) ≤ 𝜚𝑖𝑤, for 0 < 𝑤 ≤ 𝐻1 ,  

where 𝜚𝑖  satisfies 

𝜚𝑖∫ 2 [Ɍ(1,𝓋i) +
𝜂𝑖
Ɣi
∫ Ȿ(ξ, 𝓋𝑖)𝑔𝑖(ξ)
1

0

𝑑ξ]
1

0

𝑎𝑖(𝓋𝑖)𝑑𝓋𝑖 ≤ 1. (9) 

For 1 ≤ 𝑖 ≤ 𝑚, let β
𝑖
 be chosen 

0 < β
𝑖
≤

Ɣ𝑖 𝐻1
(ƥ−ɤ−1)! 2

. 

Let w1 ∈ 𝜌 with ‖w1‖ = 𝐻1. Then using Lemma 2.2 and for 0 ≤ 𝓋𝑚−1 ≤ 1, we 

have 
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β
𝑚
(ƥ− ɤ− 1)!𝓋𝑚−1

 ƥ−1

Ɣ𝑚
 

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

 ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ ]𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚

1

0

 

≤
β
𝑚
(ƥ− ɤ− 1)!

Ɣ𝑚
 

+∫ [Ɍ(1,𝓋𝑚) +
𝜂𝑚
Ɣ𝑚

∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ ]𝒶𝑚(𝓋𝑚)𝜚𝑚𝑤1(𝓋𝑚)𝑑𝓋𝑚

1

0

 

≤
𝐻1
2
+ 𝜚𝑚∫ [Ɍ(1,𝓋𝑚) +

𝜂𝑚
Ɣ𝑚

∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ]𝒶𝑚(𝓋𝑚)𝑑𝓋𝑚

1

0

‖𝑤1‖ 

≤
𝐻1

2
+
𝐻1

2
= 𝐻1. 

It comes in the same way as Lemma 2.2 and for 0 ≤ 𝜗𝑚−2 ≤ 1,   

β
𝑚−1

(ƥ− ɤ− 1)!𝓋𝑚−2
ƥ−1

 

Ɣ𝑚−1
+∫ [Ɍ(𝓋𝑚−2, 𝓋𝑚−1) +

𝜂𝑚−1𝓋𝑚−2
ƥ−1

Ɣ𝑚−1
∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚−1(𝓋𝑚−1)𝑓𝑚−1 (
β𝑚(ƥ−ɤ−1)!𝓋𝑚−1

ƥ−1

Ɣ𝑚
+ ∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +

𝜂𝑚𝓋𝑚−1
ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ
1

0
]

1

0
  

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚
.

.
) 𝑑𝓋m−1 

≤
β
𝑚−1

(ƥ − ɤ − 1)!

Ɣ𝑚−1
+∫ [Ɍ(1, 𝓋𝑚−1) +

𝜂𝑚−1
Ɣ𝑚−1

 ∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)𝑑ξ

1

0

]𝒶𝑚−1(𝓋𝑚−1)𝑑𝓋𝑚−1ϱ𝑚−1𝐻1

1

0

 

≤
𝐻1

2
+
𝐻1

2
= 𝐻1 .  

Applying the similar argument, one can obtain, for 0 ≤ ꭢ ≤ 1, 

β
1
(ƥ− ɤ − 1)!ꭢƥ−1

Ɣ1
+∫ [Ɍ(ꭢ, 𝓋1) +

𝜂1ꭢƥ−1

Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶1(𝓋1)𝑓1 (
β
2
(ƥ− ɤ − 1)!𝓋1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1
 

Ɣ2
∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0

 

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)!𝓋𝑚−1

ƥ−1

Ɣ𝑚
+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +

𝜂𝑚𝓋𝑚−1
ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚
.

.
) …𝑑𝓋2

.

.
) 𝑑𝓋1 ≤ 𝐻1 , 

so that for 0 ≤ ꭢ ≤ 1, 

𝔇𝑤1(ꭢ) ≤ 𝐻1 . 

Hence, ‖𝔇w1‖ ≤ 𝐻1 = ‖w1‖. Take 

Ʌ1={𝑤 ∈ Ɓ ∶ ‖w‖ < 𝐻1}. 

Then 
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‖𝔇w1‖ ≤ ‖w1‖, for w1 ∈ 𝜌 ∩ ∂Ʌ1. (10) 

Since 𝑓𝑖∞ = ∞, 1 ≤ 𝑖 ≤ 𝑚, there exist σi >  0 and 𝐻2 ≥ 0, such that  

𝑓𝑖(w) ≥ σi𝑤,   for  𝑤 ≥ 𝐻2 ,  

where σi satisfies 

σi

4
2ƥ−2

∫ [Ɍ(1,𝓋i) +
𝜂𝑖
Ɣ𝑖
∫ Ȿ(ξ, 𝓋𝑖)𝑔𝑖(ξ)𝑑ξ

ξ ∈ I

]
𝓋𝐢 ∈𝐈

𝒶i(𝓋i)𝑑𝓋i ≥ 1. (11) 

Let 

𝐻2 = max {2𝐻1 , 4
ƥ−1𝐻2}. 

Choose w1 ∈ 𝜌 and ‖w1‖ = 𝐻2. Then 

min
ꭢ∈𝐼

𝑤1(ꭢ) ≥
1

4ƥ−1
‖𝑤1‖ ≥ 𝐻2. 

By Lemma 2.2 and for  
1

4
≤ 𝓋𝑚−1 ≤

3

4
, we have 

β
𝑚
(ƥ − ɤ − 1)!𝓋𝑚−1

ƥ−1

Ɣ𝑚
 

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ]
1

0

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚 

≥ ∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ]
1

0

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚 

≥
1

4ƥ−1
 ∫ [Ɍ(1,𝓋𝑚) +

𝜂𝑚
Ɣ𝑚

∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
ξ ∈ I

𝑑ξ]
𝓋𝑚 ∈𝐼

𝒶𝑚(𝓋𝑚)𝜎𝑚𝑤1(𝓋𝑚)𝑑𝓋𝑚 

≥
1

42ƥ−2
 ∫ [Ɍ(1,𝓋𝑚) +

𝜂𝑚
Ɣ𝑚

∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
ξ ∈ I

𝑑ξ]
𝓋𝑚 ∈𝐼

𝒶𝑚(𝓋𝑚)𝑑𝓋𝑚𝜎𝑚||𝑤1|| 

≥ ‖𝑤1‖ = 𝐻2. 

It comes in the same way as Lemma 2.2 and for 
1

4
≤ 𝓋𝑚−1 ≤

3

4
, 

β𝑚−1(ƥ−ɤ−1)!𝓋𝑚−2
ƥ−1

 

Ɣ𝑚−1
+ ∫ [Ɍ(𝓋𝑚−2 , 𝓋𝑚−1) +

𝜂𝑚−1𝓋𝑚−2
ƥ−1

Ɣ𝑚−1
 ∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)𝑑ξ
1

0
]

1

0
 

𝒶𝑚−1(𝓋𝑚−1)𝑓𝑚−1 (
β𝑚(ƥ−ɤ−1)! 𝓋𝑚−1

 ƥ−1

Ɣ𝑚
+ ∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +

1

0

𝜂𝑚𝓋𝑚−1
ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ
1

0
] 𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚

.

.
) 𝑑𝓋𝑚−1 

≥
1

4ƥ−1
∫ [Ɍ(1,𝓋𝑚−1)
𝓋𝑚−1 ∈𝐼

+
𝜂𝑚−1
Ɣ𝑚−1

  ∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)
ξ∈ I

𝑑ξ]𝒶𝑚−1(𝓋𝑚−1)𝑑𝓋𝑚−1𝜎𝑚−1𝐻2 
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≥
1

42ƥ−2
∫ [Ɍ(1,𝓋𝑚−1)
𝓋𝑚−1 ∈𝐼

+
𝜂𝑚−1
Ɣ𝑚−1

 ∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)
ξ∈ I

𝑑ξ]𝒶𝑚−1(𝓋𝑚−1)𝑑𝓋𝑚−1𝜎𝑚−1 𝐻2 

≥ 𝐻2 . 

Proceeding in a similar argument, we have 

β1(ƥ−ɤ−1)!ꭢ
ƥ−1 

Ɣ1
+ ∫ [Ɍ(ꭢ, 𝓋1) +

η1ꭢƥ−1

Ɣ1
 ∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ
1

0
]

1

0
  

𝒶1(𝑣1)𝑓1 (
β2(ƥ−ɤ−1)! 𝓋1

ƥ−1

Ɣ2
+ ∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
 ∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ
1

0
]

1

0
  

𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫[Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]

1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
)𝑑𝓋1 ≥ 𝐻2 ,  

so that, for 0 ≤ ꭢ ≤ 1, 

𝔇𝑤1(ꭢ) ≥ 𝐻2 = ‖𝑤1‖. 

Hence, ‖𝔇𝑤1‖ ≥ ‖𝑤1‖.  

Take Ʌ2 ={𝑤 ∈ Ɓ ∶ ‖𝑤1‖ < H2}, then 

‖𝔇w1‖ ≥ ‖w1‖, for  w1 ∈ 𝜌 ∩ 𝜕Ʌ2.  (12)) 

Using Theorem 2.3 to the Equations (10) and (12), the function 𝔇 has a fixed 

point w1 ∈ 𝜌 ∩ (Ʌ2̅̅ ̅\Ʌ1) and that point is the positive solution (w1,w2, … ,w𝑚) of the 

Equations (1) and (2) by taking w𝑚+1 = w1. Therefore, the solution can be iteratively 

expressed as 

𝑤𝑖(ꭢ) =
β𝑖(ƥ−ɤ−1)!ꭢ

ƥ−1

Ɣ𝑖
+ ∫ [Ɍ(ꭢ, 𝓋) +

1

0

𝜂𝑖ꭢ ƥ−1

Ɣ𝑖
∫ Ȿ(ξ, 𝓋)𝑔𝑖(ξ)
1

0
𝑑ξ ]𝒶𝑖(𝓋)𝑓𝑖 (𝑤𝑖+1(𝓋))𝑑𝓋,  

𝑖 = 𝑚,𝑚 − 1, . . . , 1. 

3.3. Theorem 

Suppose that (E1) and (E2) are met. If 𝑓𝑖0 = ∞ and 𝑓𝑖∞ = 0 are true, then the 

Equations (1) and (2) has at least one positive solution and β𝑖 ∈ (0,∞) small enough 

for 1 ≤ 𝑖 ≤ 𝑚. 

Proof. For 1 ≤ 𝑖 ≤ 𝑚,  by the definition of 𝑓𝑖0 , there exist 𝜀𝑖 > 0 and 𝐻3 > 0 

such that  

𝑓𝑖(w) ≥ 𝜀𝑖w, for  0 < 𝑤 ≤ 𝐻3 , 

where 𝜀𝑖 ≥ 𝜎𝑖 and 𝜎𝑖 is given in Equation (11). 



Journal of AppliedMath 2024, 2(5), 1829. 
 

10 

Choose w1 ∈ 𝜌 and ‖w1‖ = 𝐻3 . Then, we have from Lemma 2.2 and for 
1

4
≤

𝓋𝑚−1 ≤
3

4
, we have 

β
𝑚
(ƥ − ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚)
1

0

+
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ]𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚 

≥ ∫ [Ɍ(𝓋𝑚−1 , 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
1

0

𝑑ξ]
1

0

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚 

≥
1

4ƥ−1
 ∫ [Ɍ(1,𝓋𝑚) +

𝜂𝑚
Ɣ𝑚

∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)
ξ ∈ I

𝑑ξ]
𝓋𝑚 ∈𝐼

𝒶𝑚(𝓋𝑚)𝜀𝑚𝑤1(𝓋𝑚)𝑑𝓋𝑚 

≥
1

42ƥ−2
∫ [Ɍ(1,𝓋𝑚) +

𝜂𝑚
Ɣ𝑚

∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ
ξ ∈ I

] 𝒶𝑚(𝓋𝑚)𝑑𝓋𝑚𝜀𝑚‖𝑤1‖
𝓋𝑚 ∈ 𝐼

 

≥ ‖𝑤1‖ = 𝐻3 .           

It comes in the same way as Lemma 2.2 and for 
1

4
≤ 𝓋𝑚−1 ≤

3

4
,      

β𝑚−1(ƥ−ɤ−1)!𝓋𝑚−2
ƥ−1

 

Ɣ𝑚−1
+ ∫ [Ɍ(𝓋𝑚−2 , 𝓋𝑚−1) +

η𝑚−1𝓋𝑚−2
ƥ−1

Ɣ𝑚−1
 ∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)𝑑ξ
1

0
]

1

0
 

𝒶𝑚−1(𝓋𝑚−1)𝑓𝑚−1 (
β𝑚(ƥ−ɤ−1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚
+ ∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +

1

0

𝜂𝑚𝓋𝑚−1
ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ
1

0
]𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚))𝑑𝓋𝑚

.

.
) 𝑑𝓋𝑚−1 

≥
1

4ƥ−1
 ∫ [Ɍ(1,𝓋𝑚−1)
𝓋𝑚−1 ∈𝐼

+
𝜂𝑚−1
Ɣ𝑚−1

∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)
ξ ∈ I

𝑑ξ]𝒶𝑚−1(𝓋𝑚−1)𝑑𝓋𝑚−1𝜀𝑚−1𝐻3 

≥
1

42ƥ−2
 ∫ [Ɍ(1,𝓋𝑚−1)
𝓋𝑚−1 ∈𝐼

+
𝜂𝑚−1
Ɣ𝑚−1

∫ Ȿ(ξ, 𝓋𝑚−1)𝑔𝑚−1(ξ)
ξ ∈ I

𝑑ξ]𝒶𝑚−1(𝓋𝑚−1)𝑑𝓋𝑚−1𝜀𝑚−1𝐻3 

≥ 𝐻3 . 

Using a similar argument, we have 

β
1
(ƥ− ɤ− 1)!ꭢƥ−1 

Ɣ1
+∫ [Ɍ(ꭢ, 𝓋1) +

η1ꭢƥ−1

Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶1(𝓋1)𝑓1 (
β
2
(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0
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𝒶2(𝓋2)…𝑓𝑚−1 (
β
𝑚
(ƥ− ɤ − 1)! 𝓋𝑚−1

ƥ−1

Ɣ𝑚

+∫ [Ɍ(𝓋𝑚−1, 𝓋𝑚) +
𝜂𝑚𝓋𝑚−1

ƥ−1

Ɣ𝑚
 ∫ Ȿ(ξ, 𝓋𝑚)𝑔𝑚(ξ)𝑑ξ

1

0

]
1

0

 

𝒶𝑚(𝓋𝑚)𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1 ≥ 𝐻3 , 

so that 

𝔇𝑤1 ≥ 𝐻3 = ‖𝑤1‖. 

Hence, ‖𝔇w1‖ ≥ ‖w1‖. If we put 

Ʌ3={𝑤 ∈ Ɓ ∶ ‖𝑤1‖ < 𝐻3}, 

then 

‖𝔇w1‖ ≥ ‖w1‖, for w1 ∈  𝜌 ∩ 𝜕Ʌ3. (13) 

Since 𝑓𝑖∞ = 0, for 1 ≤ 𝑖 ≤ 𝑚, there exist 𝜁𝑖 > 0 and 𝐻4 > 0 such that  

𝑓𝑖  (𝑤) ≤  𝜁𝑖𝑤,  for 𝑤 ≥ 𝐻4, 

where 𝜁𝑖  ≤ 𝜚𝑖  and 𝜚i is given in Equation (9).  

For 1 ≤ 𝑖 ≤ 𝑚, set 

𝑓𝑖
∗(𝑤) =

sup
0 ≤ 𝑠 ≤ 𝑤

  𝑓𝑖(s). 

It is evident from the fact that for 1 ≤ 𝑖 ≤ 𝑚, the real-valued function 𝑓𝑖
∗(w) is 

non-decreasing,  𝑓𝑖 ≤ 𝑓𝑖
∗ and 

lim
𝑤→∞

𝑓𝑖
∗(𝑤)

𝑤
= 0. 

As a result, for 1 ≤ 𝑖 ≤ 𝑚, there exists 𝐻4 > max {2𝐻3 , 𝐻4}  such that 

𝑓𝑖
∗(𝑤)≤ 𝑓𝑖

∗(𝐻4), 0 < 𝑤 ≤ 𝐻4 .  

Let β
𝑖
, 1 ≤ 𝑖 ≤ 𝑚, fulfills  

0 < β
𝑖
≤

Ɣ𝑖𝐻4
(ƥ−ɤ−1)!2

 . 

Choose w1 ∈ 𝜌 and ‖w1‖ = 𝐻4. Apply same argument repeatedly, we have 

𝔇w1(ꭢ) =
β
1
(ƥ− ɤ − 1)!ꭢƥ−1

Ɣ1
+∫ [Ɍ(ꭢ, 𝓋1) +

η1ꭢƥ−1

Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0

 

𝒶1(𝓋1)𝑓1 (
β
2
(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0

 

𝒶2(𝓋2)…𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1 

≤
β

1
(ƥ− ɤ− 1)!

Ɣ1
+ ∫ [Ɍ(1, 𝓋1) +

η1
Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)𝑑ξ

1

0

]
1

0
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𝒶1(𝓋1)𝑓1
∗ (

β
2
(ƥ− ɤ − 1)! 𝓋1

ƥ−1

Ɣ2
+∫ [Ɍ(𝓋1, 𝓋2) +

𝜂2𝓋1
ƥ−1

Ɣ2
 ∫ Ȿ(ξ, 𝓋2)𝑔2(ξ)𝑑ξ

1

0

]
1

0

 

𝒶2(𝓋2)…𝑓𝑚(𝑤1(𝓋𝑚)) 𝑑𝓋𝑚
.

.
)…𝑑𝓋2

.

.
) 𝑑𝓋1 

≤
𝐻4
2
+∫ [Ɍ(1, 𝓋1) +

𝜂1
Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)
1

0

𝑑ξ]𝒶1(𝓋1)𝑓1
∗(𝐻4)𝑑𝓋

1

0

 

≤
𝐻4
2
+∫ [Ɍ(1, 𝓋1) +

𝜂1
Ɣ1
∫ Ȿ(ξ, 𝓋1)𝑔1(ξ)
1

0

𝑑ξ]𝒶1(𝓋1)𝑑𝓋1𝜁1

1

0

𝐻4 

≤
𝐻4

2
+ 

𝐻4

2
= 𝐻4. 

Hence, ‖𝔇w1‖ ≤ ‖w1‖. Thus, we choose 

Ʌ4={𝑤 ∈ Ɓ ∶ ‖𝑤1‖ < 𝐻4}, 

then  

‖𝔇w1‖ ≤ ‖w1‖, for  w1 ∈ 𝜌 ∩ 𝜕Ʌ4. (14) 

Using Theorem 2.3 to the Equations (13) and (14), it can see that 𝔇 has a fixed 

point w1 ∈ 𝜌 ∩ (Ʌ4̅̅ ̅\Ʌ3),  that gives an m-tuple (w1,w2 , … ,w𝑚)  fulfilling the 

Equations (1) and (2) with w𝑚+1 = w1.  

4. Examples 

Let us present the examples to support our conclusions. 

4.1. Example  

Consider the third order problem with 𝑟 = 1, 

w1
′′′(ꭢ) + 𝒶1(ꭢ)𝑓1(w2) = 0,    ꭢ ∈ [0, 1],

w2
′′′(ꭢ) + 𝒶2(ꭢ)𝑓2(w3) = 0,    ꭢ ∈ [0, 1],

w3
′′′(ꭢ) + 𝒶3(ꭢ)𝑓3(w1) = 0,    ꭢ ∈ [0, 1],

} (15) 

w1(0) = 0,   w1
′ (0) = 0,   w1

′ (1) − 1∫ w1
′ (ξ)𝑑ξ = 𝛽1,

1

0

w2(0) = 0,   w2
′ (0) = 0,   w2

′ (1) −
1

2
∫ ξw2

′ (ξ)𝑑ξ = 𝛽2,
1

0

w3(0) = 0,   w3
′ (0) = 0,   w3

′ (1) −
1

3
∫ ξ

2
w3
′ (ξ)𝑑ξ = 𝛽3,

1

0 }
  
 

 
 
 

 (16) 

where 

𝒶1(ꭢ) =
1

4
, 𝒶2(ꭢ) =

1

2
, 𝒶3(ꭢ) =

3

4
, 𝑔1(ξ) = 1, 𝑔2(ξ) = ξ, 𝑔3(ξ) = ξ

2, 

𝑓1(𝑤2) = 𝑤2
2(1 + 𝑒−3 𝑤2), 𝑓2(𝑤3) = 𝑤3

2(1 − 3𝑒−2 𝑤3),  𝑓3(𝑤1) = 𝑤1
2(1 + 4𝑒−𝑤1). 

Then  𝑓𝑖0 = 0 and 𝑓𝑖∞ = ∞ for 𝑖 = 1, 2, 3. So, all the assumptions of Theorem 

3.2 are met, and    hence, the problem (15)-(16) has at least one positive solution by 

selecting 𝛽1, 𝛽2 and 𝛽3 that are sufficiently small. 
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4.2. Example 

Consider the third order problem with 𝑟 = 1, 

w1
′′′(ꭢ) + 𝒶1(ꭢ)𝑓1(w2) = 0, ꭢ ∈ [0, 1],

w2
′′′(ꭢ) + 𝒶2(ꭢ)𝑓2(w3) = 0, ꭢ ∈ [0, 1],

w3
′′′(ꭢ) + 𝒶3(ꭢ)𝑓3(w1) = 0, ꭢ ∈ [0, 1],

} (17) 

w1(0) = 0,   w1
′ (0) = 0,   w1

′ (1) − 1∫ w1
′ (ξ)𝑑ξ = 𝛽1,

1

0

w2(0) = 0,   w2
′ (0) = 0,   w2

′ (1) − 2∫ ξw2
′ (ξ)𝑑ξ = 𝛽2,

1

0

w3(0) = 0,   w3
′ (0) = 0,   w3

′ (1) − 3∫ ξ
2
w3
′ (ξ)𝑑ξ = 𝛽3,

1

0 }

(18) 

where 

𝒶1(ꭢ) = ꭢ, 𝒶2(ꭢ) = ꭢ2 , 𝒶3(ꭢ) = ꭢ3,  𝑔1(ξ) = 1, 𝑔2(ξ) = ξ, 𝑔3(ξ) = ξ
2,

𝑓1(𝑤2) = 𝑤2

2

3, 𝑓2(𝑤3) = 𝑤3

3

4,  𝑓3(𝑤1) = 𝑤1

1

2. 

Then 𝑓𝑖0 = ∞ and 𝑓𝑖∞ = 0 for 𝑖 = 1, 2, 3. So, all the assumptions of Theorem 

3.3 are met, and hence, the problem (17) and (18) has at least one positive solution by 

selecting 𝛽1, 𝛽2 and 𝛽3 that are small enough. 

5. Conclusion

This study employs the Guo-Krasnosel’skii fixed point theorem as a central tool 
to investigate the existence of positive solutions for an iterative system of higher order 

boundary value problems associated with non-homogeneous integral boundary 

conditions. This theorem, foundational in nonlinear analysis, provides conditions 

under which a compact operator has at least one fixed point within a cone in a Banach 

space. By applying this theorem, the study aims to rigorously establish criteria that 

guarantee the existence of positive solutions for the boundary value problems under 

consideration. It may be interesting that the researchers extend the results to multipoint 

boundary value problems and obtain multiple positive solutions by using various new 

fixed-point theorems. 
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