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Abstract: Bifurcation analysis was performed on various engineering process problems that 

exhibit undesirable oscillation causing Hopf bifurcations. Hopf bifurcations result in 

oscillatory behavior which is problematic for optimization and control tasks. Additionally, the 

presence of oscillations causes a reduction in product quality and in some cases causes 

equipment damage. The hyperbolic tangent function activation factor is normally used in 

neural networks and optimal control problems to eliminate spikes in optimum profiles. Spikes 

are similar to oscillatory profiles and this is the motivation to investigate whether the 

hyperbolic tangent function activation factor can eliminate the oscillation causing Hopf 

bifurcations. The results of this paper show that the hyperbolic tangent function activation 

factor eliminates the Hopf bifurcations. Bifurcation analysis is performed using The MATLAB 

software MATCONT. Five examples involving problems that exhibit Hopf bifurcations are 

presented. 
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1. Introduction 

Activation factors have been recently used in problems involving neural networks 
and to stifle control profile spikes in optimal control problems. This work aims to 
study the effect of such activation factors on oscillation causing Hopf bifurcation 
problems. It is demonstrated that the hyperbolic tangent function is very successful in 
eliminating unwanted Hopf bifurcations. Most of the work involving Hopf 
bifurcations demonstrate the existence of the Hopf bifurcations in various engineering 
problems. The novelty of this work is that a generic strategy is provided to eliminate 
the problematic oscillation causing Hopf bifurcations. This research is very significant 
as it provides an easy to implement strategy to eliminate the unwanted oscillatory 
behavior in several engineering problems. 

Spikes occur in optimal control problems and the hyperbolic tangent function 
activation factor is used to eliminate the spikes in optimum profiles of the control 
variable. Spikes are similar to oscillations and this is the motivation to determine the 
effect of the hyperbolic tangent function activation factor can eliminate the oscillation 
causing Hopf bifurcations 

In this paper, the background section (involving activation factors and bifurcation 
analysis are first presented). This is followed by a description of the examples where 
the hyperbolic tangent activation function was used to eliminate the Hopf bifurcation 
points. The results are then presented followed by the conclusions. 

2. Background 

2.1 Activation factor 
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The tanh activation factor is used in neural networks (Szandała [1]; Kamalov et 
al. [2]; Dubey et al. [3]) and in optimal control problems to eliminate spikes in the 
optimal control profile (Sridhar [4–7]). Sridhar [8] found a correlation between 
singular points (limit and branch points) and multi-objective Optimal Control. 
However, so far, the integration of activation functions with bifurcation analysis has 
never been done. Hopf bifurcations cause periodic oscillatory behavior. In chemical 
processes, oscillatory behavior is detrimental to product quality and also causes 
equipment damage. This work uses the tanh activation function to eliminate 

oscillatory-causing Hopf bifurcations. The bifurcation parameter (control variable) 𝜉 

is replaced by by 
క ௧ ℎ(క)

ఌ
 where 𝜀 is an arbitrary constant. The tanh function is a a 

standard function which supresses spikes by forcing the function to (0,1). 

2.2. Motivation and comparison with a linear piecewise function 

The main motivation for this work is to provide an easy-to-use strategy without 
affecting the nonlinearity of the process to eliminate oscillatons that cause equipment 
damage and reduce product quality. A piecewise linear function is not as effective 

because it affects the nonlinearity and reduces the problem’s complexity. Additionally, 

the use of the piecewise linear function does not eliminate the Hopf bifurcations 
sometimes. Furthermore, the tanh activation function is easier to implement. 

2.3. Bifurcation analysis 

The three types of bifurcations are limit points, branch points and Hopf 
bifurcation points. 

The Matlab software MATCONT (Dhooge Govearts, and Kuznetsov, [9]; 
Dhooge Govearts, Kuznetsov, Mestrom and Riet [10]) is used to detect Limit points 
(LP), branch points (BP) and Hopf bifurcation points (HB). Consider an ODE system 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝛽) (1)

where the tangent function at any point x be [𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ, . . . . 𝑣ାଵ]. Let Matrix A 
be defined as 
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 (2)

where the bifurcation parameter is 𝛽. A can be expressed as 

𝐴 = [𝐵| 
𝜕𝑓

𝜕𝛽
] (3)

The tangent function must satisfy 
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𝐴𝑣 = 0 (4)

For a limit point (LP) the n + 1 th component of the tangent vector 𝑣ାଵ must 

be 0 and for a branch point (BP) ቂ
𝐴
𝑣்ቃ must have a determinant of 0. For a Hopf 

bifurcation, the function 𝑑𝑒𝑡 ( 2𝑓௫(𝑥, 𝛽)@𝐼)  should be zero. @ indicates the 

bialternate product while 𝐼 is the n-square identity matrix. Kuznetsov [11,12] and 
Govaerts [13] provide a detailed explanation for these conditions. Sridhar [14] used 
Matcont to perform bifurcation analysis on chemical engineering problems. 

3. Main objective of this work 

Spikes formed in the control profiles are eliminated by the use of the tanh 
activation function. Hopf bifurcation points cause oscillatory behavior which is similar 
to spikes and this motivates the question of how the tanh activation factor would 
perform in eliminating the Hopf bifurcation points. Five problems that exhibit Hopf 
bifurcations are presented. In all these problems the effect of replacement of the 

bifurcation variable 𝜉  with 
క ௧ℎ(క)

ఌ
 where 𝜀  is an arbitrary constant is studied. 

Details of these problems are now presented followed by the results. 

4. Examples of problems that exhibit Hopf bifurcations 

1) Catalytic oscillator problem 
In the catalytic oscillator problem (Dhooge et al. [9]) three differential equations 

in the mathematical problem are 

𝑑𝑥

𝑑𝑡
= 2𝑞ଵ𝑧ଶ − 2𝑞ହ𝑥ଶ − 𝑞ଷ𝑥𝑦 (5)

𝑑𝑦

𝑑𝑡
= 𝑞ଶ𝑧 − 𝑞𝑦 − 𝑞ଷ𝑥𝑦 (6)

𝑑𝑧

𝑑𝑡
= 𝑞ସ𝑧 − 𝑘𝑞ସ(1 − 𝑥 − 𝑦 − 𝑧) (7)

2) Adaptive control was used in a feedback control system 
In the problem involving adaptive control used in a feedback control system 

(Dhooge et al. [9]) the differential equations involved are 

𝑑𝑥

𝑑𝑡
= 𝑦 (8)

𝑑𝑦

𝑑𝑡
= 𝑧 (9)

𝑑𝑧

𝑑𝑡
= 𝑥ଶ − 𝛼𝑧 − 𝛽𝑦 − 𝑥 (10)

3) Phytoplankton-zooplankton model 

In this model (Kumar and Pramanick [15]), For this problem, 𝑝 and 𝑧 are the 

respective population densities of phytoplankton and zooplankton species,𝑛  the 
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nanoparticle density. The birthrate of the phytoplankton is r the carrying capacity is k. 

𝑘ଵ, 𝑘ଶ represent the handling time and the magnitude of the interference from the 

zooplankton. 𝛾 represent the conversion efficiency and the zooplankton death rate is 

given by 𝜇. The contact rate of the nanoparticles with the phytoplankton and the 

strength of toxicit are given by 𝛽, 𝛽ଵ. The input rate of nanoparticles and the natural 
depletion of the nanoparticles are given by A and e. The equations representing this 
model are 

𝑑𝑝

𝑑𝑡
=

𝑟𝑝

1 + 𝛽𝛽ଵ𝑝𝑛
(1 −

𝑝

𝑘
) −

𝜔𝑝𝑧

1 + 𝑘ଵ𝑝 + 𝑘ଶ𝑧 + 𝑘ଵ𝑘ଶ𝑝𝑧
 (11)

𝑑𝑧

𝑑𝑡
= 𝛾

𝜔𝑝𝑧

1 + 𝑘ଵ𝑝 + 𝑘ଶ𝑧 + 𝑘ଵ𝑘ଶ𝑝𝑧
− 𝜇𝑧 (12)

𝑑𝑛

𝑑𝑡
= 𝐴 − 𝛽𝑝𝑛 − 𝑒𝑛 (13)

The parameter values are 𝑟 = 1; 𝛽ଵ = 0.2; 𝜔 = 4; 𝑘ଵ = 3.09; 𝑘ଶ = 0.35; 𝛾 =

1; 𝜇 = 0.5; 𝐴 = 2; 𝑒 = 0.5 
In this model the Hopf bifurcation point was obtained by (Kumar and Pramanick 

[15]) but no strategy was presented to eliminate the Hopf bifurcation point. In this 
paper an activation factor is used to eliminate the Hopf bifurcation point. 
4) Zymomonas Fermentation process 

In the Zymomonas Mobilis fermentation problem (Garhyan and Elnashaie [16], 
Sridhar [14]) involving substrate (S), the key compound (e), microorganism or 
biomass (X), and product (P) are given by the following equations. 

𝑑𝐶

𝑑𝑡
= 𝐷ሜ (𝐶 − 𝐶) + [𝑘ଵ − 𝑘ଶ𝐶 + 𝑘ଷ𝐶

ଶ](
𝐶ௌ𝐶

𝐾ௌ + 𝐶ௌ
) (14)

𝑑𝐶

𝑑𝑡
= 𝐷ሜ (𝐶 − 𝐶) + 𝑃(

𝐶ௌ𝐶

𝐾ௌ + 𝐶ௌ
) (15)

𝑑𝐶ௌ

𝑑𝑡
= −𝑚ௌ𝐶 + 𝐷ሜ (𝐶 − 𝐶) − 𝛲(

1

𝑌ௌ
)(

𝐶ௌ𝐶

𝐾ௌ + 𝐶ௌ
) (16)

𝑑𝐶

𝑑𝑡
= 𝑚𝐶 + 𝐷ሜ (𝐶 − 𝐶) + 𝛲(

1

𝑌
)(

𝐶ௌ𝐶

𝐾ௌ + 𝐶ௌ
) (17)

D is the dilution rate. The values of K1, K2, K3, Ypx, Ks, P, ms, mp, Ysx are 
16,0.497, 0.00383, 0.0526315,0.5,0.1283,2.16,1.1 and 0.02444498. 
5) Saccharomyces cerevisiae fermentation process 

The Saccharomyces Cerevisiae fermentation process problem was discussed by 
Jones and Kompala [17], Simpson et al. [18], and Sridhar [14]. The equations are 

𝑢 =
𝑟

∑ 𝑟
 (18)

𝑣 =
𝑟

𝑚𝑎𝑥 𝑟
 (19)
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while the expressions 𝑟 are given by 

𝑟ଵ = 𝜇ଵ𝑒ଵ

𝐺

𝐾ଵ + 𝐺
 (20)

𝑟ଶ = 𝜇ଶ𝑒ଶ(
𝐸

𝐾ଶ + 𝐸
)(

𝑂

𝐾ைమ
+ 𝑂

) (21)

𝑟ଷ = 𝜇ଷ𝑒ଷ(
𝐺

𝐾ଷ + 𝐺
)(

𝑂

𝐾ைయ
+ 𝑂

) (22)

The dynamic equations are given by 

𝑑𝑋

𝑑𝑡
= ( 𝑟𝑣



− 𝐷)𝑋 (23)

𝑑𝐺

𝑑𝑡
= (𝐺 − 𝐺)𝐷 − (

𝑟ଵ𝑣ଵ

𝑌ଵ
−

𝑟ଶ𝑣ଶ

𝑌ଶ
)𝑋 − (𝐶

𝑑𝑋

𝑑𝑡
+ 𝑋

𝑑𝑐

𝑑𝑡
)𝜙ସ (24)

𝑑𝐸

𝑑𝑡
= −𝐷𝐸 + (𝜙ଵ

𝑟ଵ𝑣ଵ

𝑌ଵ
−

𝑟ଶ𝑣ଶ

𝑌ଶ
)𝑋 (25)

𝑑𝑂

𝑑𝑡
= 𝑘𝑎(𝑂∗ − 𝑂) − (𝜙ଶ

𝑟ଶ𝑣ଶ

𝑌ଶ
+ 𝜙ଷ

𝑟ଷ𝑣ଷ

𝑌ଷ
)𝑋 (26)

𝑑𝑒

𝑑𝑡
= 𝛼𝑢

𝑆

𝐾 + 𝑆
− ( 𝑟



𝑣 + 𝛽)𝑒 + 𝛼∗ (27)

𝑑𝐶

𝑑𝑡
= 𝛾ଷ𝑟ଷ𝑣ଷ − (𝛾ଵ𝑟ଵ𝑣ଵ + 𝛾ଶ𝑟ଶ𝑣ଶ)𝐶 − (𝑟𝑣



)𝐶 (28)

G, E, O. are the glucose, ethanol and dissolved oxygen and 𝜇  is the modified 
growth rate constant. The concentrations of glucose, ethanol and dissolved oxygen are 

given by G, E, O. 𝜇represents the modified growth rate constant. and 𝐾 represent 

the saturation constant for each pathway. is 𝐺  represents the inlet glucose feed 
concentration; and X the cell mass concentration. the dissolved oxygen mass transfer 

coefficient is 𝑘𝑎 .𝛼and 𝛽 represent the enzyme synthesis and decay rate constants 
the yield coefficient. The stoichiometric coefficients for the intercellular storage 

carbohydrate synthesis and consumption are given by 𝜙 and 𝛾. The values of G0, 

Y1, Y2, Y3, 𝜙ଵ,𝜙ଶ, 𝜙ଷ,𝜙ସ, O*𝐾ைమ
,𝐾ைయ

,𝛾(𝑖 = 1,2,3), 𝜇


௫∗
భమయ  are (10, 0.16, 0.75, 

0.6, 0.403, 2000, 1000, 0.95, 7.5, 0.01, 2.2, 10, 10, 0.8, 0.44, 0.19, 0.36, 0.3, 0.1, 0.7, 
0.05, 0.01, 0.001) 

For both the Zymomonas mobilis and Saccharomyces Cerevisiae fermentation 
process problems the Hopf bifurcation points were eliminated using some 
experimental strategies by Sridhar [14]. In this article, an elegant and easy to use 
activation factor that eliminates the Hopf bifurcation point is presented 
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5. Results and discussion 

Bifurcation analysis using MATCONT was performed on the five problems with 
and without the tanh activation function. For problem 1, MATCONT resulted in two 
Hopf bifurcation points and two limit points. These Hopf bifurcations occur at 
(0.016357 0.523973 0.328336 1.051558) and x = (0.077929 0.233063 0.492149 
1.040991). (Figure 1). These values represent the variabeles (x, y, z) and the 
bifurcation parameter k. When the parameter k was modified to ktanh (k) the Hopf 
bifurcations disappear (Figure 2). 

 
Figure 1. Hopf bifurcation for catalytic oscillator problem. 

 
Figure 2. Hopf Bifurcation for catalytic oscillator problem eliminated by activation 
factor. 

For problem, Hopf bifurcation point was found at, x = (0.000000 0.000000 

0.000000 1.000002), (Figure 3) and when 𝛼, 𝛽  were modified to 𝛼 tanℎ  ( 𝛼),

𝛽 tanℎ  ( 𝛽) the Hopf bifurcation point dissappears (Figure 4). 

k

K
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Figure 3. Hopf Bifurcation for adaptive control problem. 

 
Figure 4. Hopf Bifurcation for Adaptive control Eliminated by Activation factor. 

In the Crowley Martin phytoplankton-zooplankton model, a Hopf bifurcation was 
found at label = H, x = (0.249760 0.364966 3.731642 0.143967) (Figure 5). 

 
Figure 5. Hopf Bifurcation for Phytoplankton-zooplankton Problem. 

al
ph

a

a
lp

ha

P



Journal of AppliedMath 2024, 2(5), 1826.  

8 

. 

 
Figure 6. Hopf Bifurcation for Phytoplankton-zooplankton Problem Eliminated by 
Activation Factor. 

the Hopf bifurcation disappears (Figure 6) when the parameter 𝛽 was modified 

to 𝛽 tanℎ  ( 𝛽)/8. 
In problem 4, a Hopf bifurcation point was found at label = H, x = (1.749993 

1.458091 0.519342 48.147753 0.078453) (Figure 7). When the dilution rate D was 
modified to Dtanh (D) the Hopf bifurcation point disappears (Figure 8). 

 
Figure 7. Hopf Bifurcation for Zymomonas Fermentation process Problem. 

C
e
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Figure 8. Hopf Bifurcation for Zymomonas Fermentation process Problem 
Eliminated by activation factor. 

In problem 5, a Hopf bifurcation point (Figure 9) was found at (7.642545 
0.018353 0.014161 0.047815 0.174613 0.393904 0.736104 0.001461 0.126028When 
the dilution rate was modified to D tanh (D)/1.35, the HOPf bifurcation point 
disappeared (Figure 10). In all five cases it is seen that the hyperbolic tangent function 
was effective in eliminating the Hopf bifurcation point. 

 
Figure 9. Hopf Bifurcation for Saccharomyces Cerevisiae Fermentation Problem. 
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Figure 10. Hopf Bifurcation for Saccharomyces Cerevisiae Fermentation Eliminated 
by activation factor. 

The figures show that each Hopf bifurcation point was eliminated without any 
undesirable side effects demostrating that the use of the activation factor is generic. 
Normally experimental/practical strategies are needed to eliminnate the Hopf 
bifurcations. This was especially true in the fermentation problems as shown by 
Sridhar [14]. These experimental strategies cause reduction in the quantity of the 
product obtained. The figures clearly demonstrate that the activation factor eliminates 
the Hopf bifurcations without too many undesirable side effects. 

6. Explanation of why the tanh factor eliminates the Hopf 

bifurcation point 

The tanh factor is very effective in eliminating spikes that occur in control 
profiles. Hopf bifurcation points cause oscillatory behavior which are similar to spikes 
and the examples described demonstrate the effectiveness of the tanh factor in 
eliminating the Hopf bifurcation by preventing the occurrence of oscillations. Figures 
11 and 12 demonstrate this fact. Figure 11 shows sinx vs x and the waves (oscillations) 
are clearly visible, however a plot of sin x vs tanhx (Figure 12) demonstrates an 
absence of the oscillations. The tanh factor takes all the variables to (−1,1) causing the 
oscillations to disappear resulting in a non-oscillatory curve and thereby eliminating 
the Hopf bifurcations. 

C
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Figure 11. Sin X vs. X showing oscillations. 

 
Figure 12. Sin X vs. tanh X oscillations eliminated. 

7. Conclusion 

Two classic books on Hopf bifurcations [19,20] show several properties of Hopf 
bifurcation points. They demonstrate that the Hopf bifurcations cause oscillatory 
behavior and limit cycles. There exist no articles in the open literature that demonstrate 
techniques to eliminate these problematic Hopf bifurcations. This research is the first 
attempt to provide a generic strategy to remove these Hopf bifurcations. The results 
indicate that the hyperbolic tangent activation factor eliminates the Hopf bifurcations 
without any unwanted side effects. Five different problems that exhibit Hopf 
bifurcations were considered. It is shown that the tanh activation factor successfully 
eliminates the undesirable oscillation causing Hopf bifurcations in all these problems. 

The strength of this work lies in the elimination of the damaging oscillatory 
behavior by the use of a reliable activation factor. Future work involves dealing with 
problems that have oscillations and multiple steady states 
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