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Abstract: Dengue fever is one of the diseases emerging in Kenya due to effects of
climate change and urbanization. The disease is caused by a family of four flavivirus
serotypes DENV 1 to DENV4. A deterministic compartmental model for the dengue
fever spread dynamics was developed and utilized to examine dengue fever spread
dynamics in Kenya. The model was established to be well-stated mathematically
and epidemiologically well-posed through positivity and boundedness analysis. The
dengue-free equilibrium state was determined as part of the solution to the system of
differential equations defining the spread dynamics. The basic reproduction number
was determined through the next-generation matrix and used to confirm the stability of
the steady state determined before. The study found that when the basic reproduction
number was greater than one, the dengue endemic state dominated the solution of the
spread dynamics, while when the basic reproduction number was less than one, the
dengue free state dominated the solution, implying the disease died down progressively.
Sensitivity analysis of the basic reproduction number was carried out to determine the
candidate parameters for an optimal control solution. The study found that the infection
rate of susceptible mosquitoes, the survival rate of pre-adult mosquitoes, the natural
death rate of mosquitoes, the rate at which mosquito survived the extrinsic incubation
stage, and the egg-laying ofmosquitoeswere themost sensitive parameters of themodel.

Keywords: basic reproductive number; dengue fever; equilibrium points; mathematical
modelling; numerical simulations

1. Introduction
Dengue fever is one of the most common mosquito-borne diseases that is posing

a major public health threat especially in urban and semi-urban areas. It is an emerging
vector-borne disease caused by the dengue virus that has been increasing progressively
in the last 40 years. The increase is attributed to the expansion of both the virus and
the mosquitoes in the tropics and subtropic regions [1]. The virus is consist of a family
of four flavivirus serotypes: DENV 1, DENV 2, DENV 3 and DENV 4, which are
antigenically specific but firmly related [2]. The disease has colonised urban and
semi-urban centers in the subtropical and tropical climatic regions across the globe.
The disease burden is felt more in the Americas, Eastern Mediterranean, Southeast
Asia, Africa and the West Pacific regions [3]. About 70% of the disease burden is felt
in the continent of Asia [4]. However, most countries across the globe are at risk of
an epidemic from dengue fever, with more than 100 countries at risk. It is the second
deadliest mosquito-borne disease after Malaria, with thousands of fatalities globally
and over 390 million infections across the globe. The clinically manifested cases are
approximately 25%, translating to about 96 million cases [5].
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Additionally, about half of the global human inhabitants live in places that
predispose them to high susceptibility to dengue fever. The Aedea Aegypi mosquitoes
that are mainly responsible for the spread of dengue fever are temporal-specific. They
thrive in the tropical and subtropical urban and peri-urban centers of the world. Their
existence is further boosted by emerging issues such as climate change. In particular,
climate change has led to an increase in temperature, leading to more favourable
conditions for the dengue fever endemic intensity to thrive.

The dengue virus is spread by mosquitoes, more especially the Aedes Aegyti
mosquitoes. It belongs to the same family as other flaviviruses, such as Omsk
haemorrhage fever, West Nile virus, Kyasanur forest virus, and yellow fever [6].
Dengue fever is known to cause mortality and mild morbidity, but generally, the
infected individuals recover within two weeks from the onset of the fever. Recovered
individuals attain permanent immunity from the strain they have recovered from [7].
However, some individuals develop more severe illnesses, such as dengue shock
syndrome (DSS) and dengue haemorrhagic fever (DHF), which are more morbid
[8]. These two forms are life-threatening conditions associated with dengue fever
infectionwhere DHF is associatedwith thrombocytopenia and haemorrhagewhile DSS
is characterised by excessive plasma leakage. As a consequence, of the two conditions,
dengue fever has an average case fatality of 5% [9].

In the last ten years, various vaccines have progressed through different
development stages, with some in the clinical trials stage [10] in both endemic and
non-endemic areas. One of the most progressive vaccines is the live-attenuated
vaccine, Dengvaxia, which has been incensed in several countries. However, the
initial reviews have shown that it has low efficacy in children and individuals who
have never contracted dengue fever before . On the other hand, it has been shown to
lead to severe sickness for people who have no history of exposure before [11]. As
such, control measures of dengue fever are dependent on control measures that target
vector control as opposed to vaccines [12].

2. Dengue fever in Kenya
The first ever case of dengue fever (DF) recorded in Kenya was identified in a

Canadian tourist in 1982 in the coastal town of Malindi [13, 14]. It was attributed
to the DENV-2 serotype, which was again isolated in 1997 in Kilifi County. There
were several reported outbreaks between 2011 and 2014 in the coastal towns and in the
Northeastern counties, specifically in Mandera county, mostly among officers serving
the AMISOM (African Mission Soldiers in Somalia) [15].

These outbreaks can be summarised geospatially by the geographical map of
Kenya with the outbreak points as shoen in the Figure 1 below.

These later outbreaks were attributed to the other remaining serotypes of DENV-1,
DENV-2, and DENV-3. An outbreak involving DENV-2 was reported between 2014
and 2015 in Kilifi County, and later in 2017 the same cosmopolitan serotype caused
another outbreakwithinMalindi town inKilifi county [17]. The cosmopolitanDENV-2
dominated outbreaks in 2017 with another outbreak in North Eastern Kenya. Later the
DENV-4 serotype was reported in Busia county opening a new chapter of the spread of
DENV in the highland region of the country. The epidemiology of dengue fever in East
Africa and Africa is little understood compared to other tropical areas of the globe [18].
The spatial distribution of the serotype within the country remains unaccounted for and
more research is needed to establish the geographical distribution of the serotype and
the enabling spatial factors. Some of the factors could be limited surveillance of the
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disease, limited diagnostics specific to dengue fever, and limited expertise awareness
of the disease by clinicians in the non-coastal regions of the country [17].

Figure 1. Map of outbreaks and seroprevalence od dengue fever in Kenya [16].

In the recent past, dengue fever outbreaks have become annual outcomes due
to various factors affecting the coastal region. Such multifactorial contributing
factors include increased population growth, increased urbanization, increased rapid
movement of people from place to place, and climate change that favours increased
activity of Aedes Aegyti and Aedes albopictus. The Aedes Aegyti and Aedes albopictus
are the principalmosquitoes responsible for the spread dengue fever in countries around
the Indian Ocean [17].

The first reported cases of the latest outbreak of dengue fever were documented
in January 2021 in the coastal counties of Lamu and Mombasa. The initial cases had
ballooned in Lamu County by April of the same year, indicating a high transmission
rate of about 51% of the targeted sample of the community. Immediate interventions
were sought from the Red Cross Society through the Medical Services and Public
Health Department of the county government of Lamu. Cases were on the rise in both
counties, necessitating public health awareness across the two counties withmore focus
on Mvita sub-county, which accounted for a majority of the reported cases. However,
the reported cases are not a true reflection of the transmission dynamics due to the high
number of unreported cases and misdiagnoses that could have occurred [17].
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Studies on dengue fever spread dynamics have been considered by various studies
to investigate the trends of dengue fever in the population. For instance Asamoah et
al., discussed the analysis for dengue virus infection model, focusing on a model that
incorporated partial immune individuals and asymptomatic individuals. Their work
incorporated the partial immune class and the carrier (asymptomatic) class, which
accounts for partial immunity acquired from vaccination or recovery from one serotype
of the dengue virus [19]. The study utilised mathematical modelling as a tool for
investigating the spread dynamics with the objective of conducting optimal control
analysis. As such, this study is based on similar foundations aimed at investigating the
spread of dengue fever dynamics in Kenya as an emerging disease catalysed by climate
change.

This study employs the powerful tool of mathematical modelling for strategic
preparedness of disease outbreaks. As such, it will provide fundamental information
necessary for development of interventions to curb and contain outbreaks of dengue
fever in Kenya. In particular, the findings and recommendations of the study will
resource allocation and research in the dengue fever spread dynamics. Furthermore,
the information will provide insights into the dengue fever spread dynamics, introduce
a combination of novel control strategies that are aligned with modern challenges [20].

In addition, the study will provide a link between scientific and public health
policy making, which will lead to evidence-based policy that ensure the well-being
of members of the community. It will also provide guidance to the necessary steps that
can be taken to prevent dengue fever from being endemic in Kenya by utilizing the
available data to give simulations at a lower cost than when addressing an outbreak.

3. Model description and formulation
The model is divided into two broad subpopulations of vectors (Female Aedes

egypti mosquitoes) and human beings. The Female Aedes egypti mosquitoes will
be divided into sub-populations as follows: Aquatic phase mosquitoes (eggs, larva,
and pupa) (L(t)), Susceptible mosquitoes (Sv(t)), Exposed mosquitoes (Ev(t)), and
Infectious mosquitoes (Iv(t)). The Exposed compartment contains all mosquitoes that
have been infected with dengue virus but are in the latent stage, where they are not
infectious yet. Once a mosquito is infected with the dengue virus, it does not recover
from it; it dies with the virus. The total population of the vectors is given by

Nv = L(t) + Sv(t) + Ev(t) + Iv(t)

The human subpopulation constitutes the following compartments: The
Susceptible humans (Sh(t)), the exposed humans (Eh(t)), the infectious humans
(Ih(t)), and the recovered (Rh(t)). The exposed humans are individuals already
infected with dengue fever but in the latent stage before they become infectious. The
recovered humans (Rh(t)) obtain temporary immunity from the serotype they have
recovered from and a temporary immunity from the other three serotypes. The total
population of the human beings is given by

Nh = S(t)h + Eh(t) + Ih(t) +Rh(t)

3.1. Model formulation
The model subpopulations and their corresponding homogenous compartments

are illustrated by the Figure 2 below:
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Figure 2. Dengue fever transmission dynamics model encompassing human and
mosquito populations.

The pace of advancement from one compartment to another is quantified by the
model parameters, which represent the illness development dynamics. The recruitment
rate of the human subpopulation is denoted by Λh and it encompasses the natural
birth rate as the dominating contributor. The recovery rate of human beings from
one serotype is represented by τh, while the rate at which human temporary immunity
wanes is represented by ωh. The rate of infection of susceptible humans is represented
by βh, while the rate of human beings moving from the intrinsic incubation phase
to the infectious phase is represented by αh, while the natural death rate of human
beings is represented by µh. Lastly, σh represents the disease-induced death. On the
vector subpopulation, τv represents the rate at which vectors leave the extrinsic latent
stage to become infectious. The egg-laying rate of Aedes aegypti, which dominates the
recruitment rate of vector, is represented by Λv, while the survival rate of mosquitoes
during the transition from pre-larvae to adults is represented by κ. βv represents the
infection rate of susceptible mosquitoes while the natural death rate of Aedes aegypti
mosquitoes is represented by µv. A summary of the parameters that were considered
for the study is presented in Table 1 below.

3.2. Model equations
The model description in Figure 2 above gives rise to a system of non-linear

differential equations below that describe the dengue fever disease host-vector
transmission dynamics.
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dSh

dt
= Λh − (β βh + µh)Sh + ωhRh

dEh

dt
= β βh Sh − (αh + µh)Eh

dIh
dt

= αhEh − (τh + µh + σh) Ih
dRh

dt
= τh Ih − (ωh + µh)Rh

dL

dt
= Λv − (κ+ µv)L

dSv

dt
= κL− (β βv + µv)Sv

dEv

dt
= β βv Sv − (τv + µv)Ev

dIv
dt

= τv Ev − µv Iv

(1)

with the initial conditions

Sh(0) ⩾ 0, Eh(0) ⩾ 0, Ih(0) ⩾ 0, Rh(0) ⩾ 0 (2)
Sv(0) ⩾ 0, Ev(0) ⩾ 0, Iv(0) ⩾ 0, Rv(0) ⩾ 0 (3)

Table 1. A summary of parameter description, their values and sources.

Parameter Description Value (per day) Source

Λh Human recruitment rate. 1538 [21]
τh Human recovery rate. 0.154 [22]
ωh Immunity waning rate of humans. 0.1 Estimated
βh Infection rate of the susceptible Humans 4.8× 10−8 [19]
αh Rate of humans moving from latent stage

to infectious stage.
0.12 [22]

σh Dengue fever mortality rate 0.01969 [21]
µh Natural death rate of humans. 0.0138214021 Calculated
τv Rate of mosquitoes moving from latent

stage to infectious stage
0.1

Λv Egg-laying rates of Aedes aegypti
mosquitoes.

2938 [21]

κ Survival rates of mosquitoes at the
pre-development stage.

0.19 [22]

βv Infection rate of susceptible mosquitoes. 1× 10−5 [19]
µv Natural death rate of Aedes aegypti

mosquitoes.
0.0323 [22]

4. Basic properties of the model
In this section, we study the posedness of the epidemiological model as stated by

investigating the positivity and invariant region span by the model.
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4.1. The invariant region
Theorem 1. Let Φ =

{
(Sh(t), Eh(t), Ih(t), Rh(t), L(t), Sv(t), Ev(t), Iv(t)) ∈ R8

+ :

(Sh(0), Eh(0), Ih(0), Rh(0), L(0), Sv(0), Ev(0), Iv(0)) ⩾ 0} therefore the solutions
of {(Sh(t), Eh(t), Ih(t), Rh(t), L(t), Sv(t), Ev(t), Iv(t))} are non-negative at all
time t ⩾ 0.

Proof. The total human population at any given time is equal to Nh(t) = Sh(t) +

Eh(t) + Ih(t) + Rh(t); therefore, after differentiating both sides of the equation we
obtained :

dNh(t)

dt
=

dSh(t)

dt
+

dEh(t)

dt
+

dIh(t)

dt
+

dRh(t)

dt

which yields the result

dNh(t)

dt
= Λh − µhSh − µhEh − µhIh − σhIh − µhRh (4)

In the absence of death induced by dengue fever, the Equation (4) can be written
as

dNh(t)

dt
≤ Λh − µhSh − µhEh − µhIh − µhRh

which can be reduced to

dNh(t)

dt
≤ Λh − µhNh(t) (5)

solving the differential inequality in Equation (5)

Nh(t) ⩽
Λh

µh
−
(
Λh − µhNh(0)

µh

)
e−µht

As t → ∞ the total human population Nh converges to
Λh

µh

As a consequence, 0 ⩽ Nh ⩽ Λh

µh
. It follows that ifN0 ⩽

Λh

µh
thenNt ⩽

Λh

µh
. As

a result,

Φh =

{
(Sh(t), Eh(t), Ih(t), Rh(t)) ∈ R4

+ : Sh(t) + Eh(t) + Ih(t) +Rh(t) ⩽
Λh

µh

}
(6)

Similarly, the total vector population of dengue fever is described byNv = L(t)+

Sv(t) + Ev(t) + Iv(t) thus

dNv(t)

dt
=

dL(t)

dt
+

dSv(t)

dt
+

dEv(t)

dt
+

dIv(t)

dt

which simplifies to

dNv(t)

dt
⩽ Λv − µvNv(t) (7)
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Upon solving Equation (7) a solution of the form,

Nv(t) ⩽
Λv

µv
−
(
Λv − µvNv(0)

µv

)
e−µvt (8)

is obtained.
Therefore, from Equation (8), as t → ∞ the vector population Nv converges to

Λv

µv
that is

(
Nv → Λv

µv

)
. Therefore, 0 ⩽ Nv ⩽ Λv

µv
. As a result, if N0 ⩽ Λv

µv
then it

follows Nv(t) ⩽
Λv

µv
. On this basis, we had

Φv =

{
(L(t), Sv(t), Ev(t), Iv(t)) ∈ R4

+ : L(t) + Sv(t) + Ev(t) +Rv(t) ⩽
Λv

µv

}
(9)

In conclusion, the feasible region for the nonlinear system of differential Equation
(1) is given by

Φ = Φh × Φv ⊂ R4
+ × R4

+ (10)

Where Φh and Φv are defined as

Φh =

{
(Sh(t), Eh(t), Ih(t), Rh(t)) ∈ R4

+ : Sh(t) + Eh(t) + Ih(t) +Rh(t) ⩽
Λh

µh

}
(11)

and

Φv =

{
(L(t), Sv(t), Ev(t), Iv(t)) ∈ R4

+ : L(t) + Sv(t) + Ev(t) +Rv(t) ⩽
Λv

µv

}
(12)

Where Φ is a positively invariant region, as a result the models, as constituted is
well-posed and epidemiologically well stated for analysis.□

4.2. Positivity of the solutions
In this subsection, the necessary criteria for which the solutions to the system of

differential Equation (1) remain positive are discussed. It is necessary for the solutions
for both the human population and mosquito population to remain positive for the
model to remain well-stated and well-posed.
Theorem 2. Each solution of the system of differential Equation (1) governed by the
initial conditions 2 and 3 is non-negative; that is, it exists in the interval [0,∞] for all
t ⩾ 0.

Proof. Let’s consider the system of differential Equations (1) written below as

dSh

dt
= Λh − (β βh + µh)Sh + ωhRh (13)

dEh

dt
= β βh Sh − (αh + µh)Eh (14)

dIh
dt

= αhEh − (τh + µh + σh) Ih (15)

dRh

dt
= τh Ih − (ωh + µh)Rh (16)

dL

dt
= Λv − (κ+ µv)L (17)
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dSv

dt
= κL− (β βv + µv)Sv (18)

dEv

dt
= β βv Sv − (τv + µv)Ev (19)

dIv
dt

= τv Ev − µv Iv (20)

Considering Equation (13) whose solution upon integration is obtained as

Sh(t) ⩾ Sh(0)e
−t(β βh+µh) ⩾ 0 (21)

and in a similar manner the solutions of Equations (14)–(20) were obtained as

Eh(t) ⩾ Eh(0)e
−t(β βh+µh) ⩾ 0

Ih(t) ⩾ Ih(0)e
−t(τh+µh+σh) ⩾ 0

Rh(t) ⩾ Rh(0)e
−t(ωh+µh) ⩾ 0

L(t) ⩾ L(0)e−t(κ+µv) ⩾ 0

□
In conclusion, the solutions of the system of differential Equation (1) are both

positive and invariant in Φ [23, 24]. As a consequence, the solutions are contained
in the closed and bounded interval 0 ⩽ Nh(t) ⩽ Λh

µh
for the human population and

0 ⩽ Nv(t) ⩽ Λv

µv
for the mosquito population. As such, the model is well posed

mathematically and epidemiologically well stated.

5. Dengue-free equilibrium
The dengue-free Equilibrium (DFE) state was determined to exist by setting the

derivatives on the left-hand side in Equation (1) to zero [25]. At the disease-free
equilibrium, dengue fever disease does not exist in the community [26]; therefore,
Ih(t) = 0, Eh(t) = 0, Iv(t) = 0 and Ev(t) = 0. As a result, there is no recovery
from the disease implying that Rh(t) = 0.

The system reduces to the following non-trivial system of equations

0 = Λh − (β βh + µh)Sh + ωhRh

0 = Λv − (κ+ µv)L

0 = κL− (β βv + µv)Sv

This system of equations was solved to obtain the dengue-free equilibrium state
given by

ξ0 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, L

∗, S∗
v , E

∗
v , I

∗
v ) =

(
Λh

µh
, 0, 0, 0,

Λv

κ+ µv
,
Λv

µv

(
κ

κ+ µv

)
, 0, 0

)
(22)

Hence confirming the existence of the Dengue-Free Equilibrium point in the
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spread dynamics characterised by the system of differential Equation (1).

5.1. The basic reproductive number
The basic reproduction number R0 was calculated using the next-generation

matrix which requires the heterogeneous population to be divided into infective and
non-infective compartments [27, 28]. The infective compartments, which included
Eh, Ih, Ev, Iv, were used to determine the matrices F and V , which are necessary
in the next-generation matrix scheme. The F and V matrices were given as follows

F =



0 βh Λh
µh

0 βh Λh
µh

0 0 0 0

0 βv κΛv
µv(κ+µv)

0 βv κΛv
µv(κ+µv)

0 0 0 0


and V =



αh + µh 0 0 0

−αh τh + µh + σh 0 0

0 0 τv + µv 0

0 0 τv −µv



The basic reproduction number R0 was determined by the spectral radius of the
matrix F · V −1 [29,30], which was determined to be

R0 =
Λh µv βh α1 (τv + µv)µv (κ+ µv) + βv κΛv τv (αh + µh) (τh + µh + σh)µh

µh µv µv (κ+ µv) (α1 + µh) (τh + µh + σh) (τv + µv)
(23)

The basic Reproductive numberR0 in Equation (23) can be simplified further into

R0 =
βv κΛv τv

µv (κ+ µv) (τv + µv)µv
+

βh Λh αh

µh (αh + µh) (τh + µh + σh)
(24)

The Equation (24) implies that the basic reproductive number is a linear
combination of the basic reproductive in the mosquito population( R0v) and the
basic reproductive number of the human population (R0h) i.e R0 = R0v + R0h.
Where

R0h =
βv κΛv τv

µv (κ+ µv) (τv + µv)µv
and R0v =

βh Λh αh

µh (αh + µh) (τh + µh + σh)

5.2. Local stability of the Dengue-Free Equilibrium (DFE)
Theorem 3. The Dengue-Free Equilibrium (ξ0) is locally asymptotically stable point
of the dynamical system 1 whenever R0 < 1.
Proof. In order to prove the local stability of the DFE we need to determine the
Jacobian of the non-linear system of differential Equation (1) at the DFE ξ0 [31]. The
DFE is locally stable if the Eigenvalues of the system of the linearised differential
equations arising from the system of differential Equation 1 are less than 0 [32].
Linearising the ODE system1 we obtained the Jacobian matrix as

JDFE =



−β βh − µh 0 0 0 0 0 0 0

β βh −αh − µh 0 0 0 0 0 0

0 αh −τh − µh − σh 0 0 0 0 0

0 0 τh −ω1 − µh 0 0 0 0

0 0 0 0 −κ− µv 0 0 0

0 0 0 0 κ −β βv − µv 0 0

0 0 0 0 0 0 −τv − µv 0

0 0 0 0 0 0 τv −µv
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Which was evaluated about the DFE
(
Λh

µh
, 0, 0, 0,

Λv

κ+ µv
,
Λv

µv

(
κ

κ+ µv

)
, 0, 0

)
we

obtained

−µh 0 0 0 0 0 0 0

0 −αh − µh 0 0 0 0 0 0

0 αh −τh − µh − σh 0 0 0 0 0

0 0 τh −ω1 − µh 0 0 0 0

0 0 0 0 −κ− µv 0 0 0

0 0 0 0 κ −µv 0 0

0 0 0 0 0 0 −τv − µv 0

0 0 0 0 0 0 τ2 −µv


The eigenvalues of the linearised system at DFE were given by

−µh

− (ω1 + µh)

− (αh + µh)

− (τh + µh + σh)

− (τv + µv)

− (κ+ µv)

−µv,

−µv


All the Eigenvalues of the systems are less than zero thus the system is locally

asymptotically stable since the solutions will approach zero when t → ∞. As such,
R0 is guaranteed to be less than one.

5.3. Global stability of the Dengue-Free Equilibrium
Theorem 4. The Dengue-Free Equilibrium is globally asymptotically stable if the
basic reproductive number is less than one in the given interval.
Proof. We considered the Lyapunov function [33]

V(t, Sh, Eh, Ih, Rh, L, Sv, Ev, Ev) = C1Eh + C2Ih + C3Ev + C4Iv (25)

Differentiating the Lyapunov function 25 with respect with respect to time [34]
we obtained

dV
dt

= C1
dEh

dt
+ C2

dIh
dt

+ C3
dEv

dt
+ C4

dIv
dt

replacing the values of Eh, Ih, Ev, and Iv from 1 we obtained the equation

dV
dt

= C1 ((Ih + Iv)βh Sh − (αh + µh)Eh) + C2 (αhEh − (τh + µh + σh) Ih)+

C3 ((Ih + Iv)βv Sv − (τ2 + µv)Ev) + C4 (Ev τv − Iv µv)

At the Dengue-Free Equilibrium ξ0 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, L

∗, S∗
v , E

∗
v , I

∗
v )

=

(
Λh

µh
, 0, 0, 0,

Λv

κ+ µv
,
Λv

µv

(
κ

κ+ µv

)
, 0, 0

)
we noted that Sh ⩽ S∗

h, Eh ⩽

11
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E∗
h, Ih ⩽ I∗h, Rh ⩽ R∗

h, L ⩽ L∗, Sv ⩽ S∗
v , Ev ⩽ E∗

v , Iv ⩽ I∗v . Therefore,
we substituted the Dengue-free Endemic equilibrium values for the non-infected
compartments and obtained

dV
dt

⩽ C1

(
(Ih + Iv)βh

(
Λh

µh

)
− (αh + µh)Eh

)
+ C2 (αhEh − (τh + µh + σh) Ih)+

C3

(
(Ih + Iv)βv

Λv

µv

(
κ

κ+ µv

)
− (τ2 + µv)Ev

)
+ C4 (Ev τv − Iv µv)

(26)

Equation (26) was re-organised to

dV
dt

⩽ (C1 (−αh − µh) + C2 αh)Eh +

(
C1 βh Λh

µh
+ C2 (−τh − µh − σh) +

C3 βv κΛv

µv (κ+ µv)

)
Ih (27)

+(C3 (−τv − µv) + C4 τv)Ev +

(
C1 βh Λh

µh
+

C3 βv κΛv

µv (κ+ µv)
− C4 µv

)
Iv (28)

Where the constant C1, C2, C3, and C4, were given as follows

C1 = − C2 αh

−αh − µh

C2 = 1

C3 =
µv (κ+ µv)

βv κΛv

(
−C1 βh Λh

µh
− C2 (−τh − µh − σh)

)
C4 = − 1

µv

(
−C1 βh Λ1

µh
− C3 βv κΛv

µv (κ+ µv)

)
Equation (28) simplifies to

dV
dt

⩽
[

1

R0v
−

1

R0h
·

βhΛhαh

(τh + µh + σh)µh (αh + µh)

]
(−1)τv (τh + µh + σh) (αh + µh) Λv

αh + µh
Ev ⩽ 0 (29)

Which implied that dV
dt

= 0 only when Ev = 0. As such, the Dengue-free
Equilibrium ξ0 is globally asymptotically stable when R0v < 1 based on LaSalle’s
invariance principle [33, 35]. That is, When R0v < 1 in Equation (29), then[

1

R0v
− 1

R0h
· P − 1

]
will approach

[
1

R0v
> 1 +

1

R0h
· P

]
which guarantees global

stability. Where P =
βhΛhαh

(τh + µh + σh)µh (αh + µh)
.

6. Numerical analysis and discussions
In this section, we present numerical analysis simulations that illustrate the

dynamical behaviours of the systems of the non-linear differential Equation (1).

6.1. Sensitivity indices
Sensitivity analysis was conducted to determine the prominence of each parameter

contributing to the basic reproductive number (R0), which consequently makes them
the most significant drivers of the disease in the spread dynamics [34]. The indices
were determined using the normalised forward-sensitivity index method [36], whose
results were presented in Table 2 below.
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Table 2. Local Sensitivity indices of the basic reproductive numberR0.

Parameter Description Sensitivity index

Λh Human Recruitment rate. 0.6781034150× 10−3

τh Human recovery rate. −0.8262326545× 10−4

βh Infection rate of the susceptible Humans 0.6781034150× 10−3

αh Rate of humans moving from latent stage to
infectious stage.

0.7125629625× 10−4

σh Dengue fever mortality rate. −0.5198827545× 10−3

µ1 Natural death rate of humans. −0.8249571056× 10−3

τv Rate of mosquitoes moving from latent stage to
infectious stage.

0.2439765474

Λv Egg-laying rates of Aedes aegypti mosquitoes. 0.9993218966

κ Survival rates of mosquitoes at the
pre-development stage.

0.9993218964

βv Infection rate of susceptible mosquitoes. 0.9993218966

µv Natural death rate of Aedes aegypti mosquitoes. −1.243298445

6.2. Numerical simulations of the dengue fever spread dynamics
In this subsection, we present graphical illustrations of the dengue fever disease

spread dynamics in Kenya. The graphical illustrations are presented to illustrate some
of the analytical solutions discussed earlier. The illustrations are based on the system of
differential Equation (1) which has been proven to be both mathematically well-stated
and epidemiologically well-posed.

The numerical values of the parameters utilised in the graphical simulations were
summarised in Table 2. They were used together with the following initial conditions
S(0) = 99999, Eh = 100, Ih = 10, Rh = 0, L(0) = 900, Sv = 900, Ev = 10, Iv =

10. Consequently, the combined dengue fever spread dynamics trends were illustrated
in Figure 3 below.

(a) Dengue fever spread dynamics among
the human population.

(b) Dengue fever spread dynamics in the
mosquito population.

Figure 3. General Dengue fever spread dynamics.

The study further investigated the impact of some sensitive parameters on the
spread dynamics of the exposed and infected human beings and the exposed and
infected mosquitoes. An increase in the infection rate of mosquitoes denoted by βv
leads to an increased number of exposed and infectious populations of both human
beings and mosquitoes. These dynamics are illustrated in Figure 4 below

13
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(a) Exposed human population at different
values of the infection rates of susceptible
mosquitoes βv .

(b) Infected human population at different
values of the infection rates of susceptible
mosquitoes βv .

(c) Exposed mosquito population at different
values of the infection rates of susceptible
mosquitoes βv .

(d) Infected mosquito population at different
values of the infection rates of susceptible
mosquitoes βv .

Figure 4. Impact of infection rate of susceptible mosquitoes (βv) on infective compartments.

The rate at which mosquitoes survive the pre-adult stage, denoted by κ, also has a
directly proportional impact on the basic reproduction numberR0. When κ decreases,
both exposed and infected populations of human beings and mosquitoes decrease with
a proportional margin as illustrated in Figure 5.

As such, control measures targeting these two parameters can effectively contain
the spread dynamics of dengue fever in Kenya.

7. Conclusions and recommendation
Dengue fever is an emerging disease in Kenya that is occasioned by climate

change and its impact. To understand its spread dynamics in the country, a new
mathematical model has been developed that entails the intrinsic incubation period
and the extrinsic incubation period in the form of the exposed mosquito compartment
and the exposed human population compartment. The basic properties of the disease
spread dynamics have been explored through the determination of the invariant and
bounded region. The solutions to the system of differential equations representing the
mathematical model have been established to be positive. As such, the model was
shown to be both epidemiologically well-stated and mathematically well-posed. The
basic reproduction number was determined using the next-generation matrix. It was
used to establish the existence of dengue-free equilibrium and the endemic equilibrium.
The local and global stabilities of the dengue-free equilibrium were established. The
sensitivity indices of the parameters making up the basic reproduction number (R0)
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were determined using the normalised forward-sensitivity index method. It was
established that βv, κ, µv, τv and Λv were the most sensitive parameters of the basic
reproduction number, R0. Numerical results of the system of differential equations
arising from the dengue fever spread dynamics in Kenya were presented to illustrate
the trend of the spread dynamics.

The study recommended that control measures be instituted on the most sensitive
parameters as established by the sensitivity analysis. The control measures to be
implemented should be aimed at containing the spread of dengue fever in Kenya.
Furthermore, the mathematical epidemiological model can be expanded by including
new compartments that investigate other aspects of the spread dynamics such as
misdiagnosis. The impact of climate change on the driving factors of dengue fever
spread dynamics can also be explored to determine their influence on dengue fever
spread dynamics in Kenya.

(a) Exposed human population at different
values of the survival rates of mosquitoes at the
pre-development stage κ.

(b) Infected human population at different
values of the survival rates of mosquitoes at the
pre-development stage κ.

(c) Exposed mosquito population at different
values of the survival rates of mosquitoes at the
pre-development stage κ.

(d) Infected mosquito population at different
values of the survival rates of mosquitoes at the
pre-development stage κ.

Figure 5. Impact of the survival rates of mosquitoes at the pre-development stage (κ) on the infective compartments.
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