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Abstract: While in acknowledgment of varying existing novel results on control of hepatitis 

B virus (HBV) dynamic infection, the methodological implementation of bilinear control 

functions in the presence of designated vaccination has not been explicitly considered. 

Therefore, the present investigation extending an existing study formulated and redeveloped a 

6-dimensional HBV mathematical model that seeks and investigates the mathematical and 

epidemiological composition of the derived model as well as the methodological behavioral 

impact of applied bilinear therapeutic control functions and monolytic vaccination. The 

components of analytic predictions explored differential theory in conjunction with the 

classical Cauchy-Lipschitz condition. Numerical simulations were conducted using the in-built 

Runge-Kutta in a Mathcad surface. Results obtained indicated early decline of HBV viral load 

with intense rejuvenation of the recovered and susceptible state-space, following coherent 

induced bilinear control functions with designated vaccines. The study is highly recommended 

for HBV-related cases of co-infectivity. 
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1. Introduction 

Hepatitis B is arguably considered one of the deadliest diseases and has been 

created as a liver infection caused by the hepatitis B virus (HBV), which, under 

untreated scenarios, often leads to either liver cirrhosis, liver cancer, and 

hepatocellular carcinoma or, worse still, could aggravate to lethal consequences [1,2]. 

Biologically, HBV is considered a prototype member of the Hepadnaviride family 

(hepatotropic deoxynucleic acid-DNA virus), which constitutes hyper-string infection 

fibers to the liver cells and is traceable to the pancreas, kidney, and mononuclear cells 

[3,4]. In the study [5], the role of covalently closed circular deoxynucleic acid 

(cccDNA) in HBV maintenance was investigated and observed that though the 

molecular mechanisms responsible for HBV persistence seem not to be fully 

understood, the mechanism is multifactorial. Moreover, the unique replication of 

strategy deployed by HBV enhances its sustainability in infected hepatocytes. In a 

more precarious dimension, the observed stability of the HBV minichromosomal 

genome and the inability of the immune system to suppress chronic HBV infection 

substantiate a pivot mechanism for HBV chronicity [5]. Buttressing the 

aforementioned impact of cccDNA, the World Health Organization (WHO), in a key 

facts survey, revealed that an estimated 254 million people were living with chronic 

hepatitis B infection with 1.2 million new infections each year and a 1.1 million death 

toll [6]. 

CITATION 

Bassey BE. On mathematical analysis 

of the impact of bilinear therapeutic 

controls with monolytic vaccination 

for HBV infection model. Journal of 

AppliedMath. 2024; 2(5): 1797. 

https://doi.org/10.59400/jam1797 

ARTICLE INFO 

Received: 10 August 2024 

Accepted: 26 September 2024 

Available online: 15 October 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 

Journal of AppliedMath is published 

by Academic Publishing Pte. Ltd. 

This work is licensed under the 

Creative Commons Attribution (CC 

BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Journal of AppliedMath 2024, 2(5), 1797.  

2 

Hepatitis B infection could assume a varying range from acute (short and severe) 

to chronic (long term) and has been a major cause of high mortality and morbidity 

rates worldwide [6]. Earlier investigations show that over 2 billion worldwide are 

infected with HBV, transmitting to 350 million chronic cases with an estimated 

600,000 lethal consequences [3,7]. More complicated is the fact that the ubiquitous 

and asymptotic build-up of symptoms of HIV co-infectivity worsens early detection 

of HBV presence [8,9]. Perturbingly, HBV incubation period, which is known to be 

30–180 days, seems not to be adequately understood, noting that several infectious 

cases are clinically documented after acute stages of the infection [10,11]. Unlike HIV, 

risk factors accompanying chronic HBV include its progression to HBsAg, anti-

HBeAg, and HBV-DNA, as well as problems of HAART toxicity, as often is the case 

for co-infection. HBV transmission mode cut across percutaneous (horizontal) or 

direct contact with infected body fluids like blood, silver, vaginal fluids, and semen, 

as well as perinatal or vertical transmission, i.e., mother-to-child [6,12]. For chronic 

monolithic HBV, literature has revealed that possible chemotherapies include 

application of interferon in the form of standard or PEGylated IFN, which is the 

nucleos(t)ide analogues (NAs), among others [1,13,14]. Of note, early management of 

HBV infection could lead to permanent recovery due to intense build-up of the 

immune system [15]. 

Interestingly, the dynamics of HBV transmission, treatment, and control 

measures are studied and understood using classical mathematical modeling among 

other methods. That is, several novel mathematical models have been formulated in 

this direction. For instance [16], a mathematical model had been formulated that 

studied the characteristics of HV = BV transmission dynamics. That investigation 

explored the fundamental theory of differential equations. Results obtained gave 

explicit impact of long-term exposure to a population with acute and chronic HBV 

[17], extending the above model by formulating a 5-dimensional HBV 

epidemiological model with a linear control function but could not distinguish 

recovery compartments and was devoid of a vaccinated subpopulation. Further 

investigation was conducted by extending the latter model with the incorporation and 

redefinition of three compartments—latent, carriers, and recovery in the presence of 

monolithic vaccination [1]. That is, the model explored a 6-dimensional mathematical 

dynamic but without any clear-cut indications of some paramount indicators in the 

form of treatment rate and impact of proliferated recovered subpopulation. Moreover, 

the nature of the vaccine was not specified.  

Other studies [18,19] demonstrated the fact that acute HBV infection could be 

found in newborns of infected mothers. In related co-infectivity, [12] formulated a 7-

dimensional HIV-HBV mathematical model that investigated the interplay of these 

subpopulations with multi-therapies in the presence of a dual-adaptive immune system 

and intracellular delay function. The exclusion of both latent cells and non-cytotoxic 

carriers was adopted, noting that identification of these stages often occurs at the acute 

stage of the infection transmission, an approach conducted by [20]. On the premise of 

these seeming incoherent literatures for HBV, the present study is primed by the 

investigation of the impact of the application of the bilinear control function induced 

by designated linear vaccination. Therefore, adopting the innovative ideas of [12] and 

extending existing model [1], the objectives of the study are to seek and formulate a 
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6-dimensional homogenous dynamic mathematical model investigated using bilinear 

control functions in the presence of monolithic vaccination. Moreover, the novelty of 

the investigation is in the determination of distinct specifications of both the 

directional impact of the recovered compartment on the susceptible and the rate of 

induced treatment control functions with enhanced vaccination on infectious 

subpopulations. 

Therefore, the composition of this present investigation revolves around 6 

sections, with Section 2, devoted to the materials and methods as adopted in this work. 

Section 3 focuses on the analytical prediction of system well-posedness. The 

computational illustrations arising from analytical predictions are domiciled in Section 

4. Resultant analysis in the form of discussion forms the fulcrum of Section 5. Finally, 

we devote Section 6 to the invaluable remarks and conclusion of the study. 

Remarkably, this investigation is targeted to exhume insight into the methodological 

application of bilinear control functions in the presence of monolithic vaccination with 

the intense possibility of eradicating this deadly virus—HBV.  

2. Materials and methods 

The materials and methods adopted in this investigation are thematically 

determined by the problem statement of the study and model derivation. Basically, 

using ordinary differential equations, we investigate a 6-dimensional HBV 

mathematical model via the interplay of bilinear control functions (anti-hepatitis B 

surface/encore antigens–HBs e Ag and alanine amino-transferase–ALT) in the 

presence of a monolithic vaccine (Recombivax–Merck) at one dose of 40 meg/mL, on 

a three-dose of 0, 1, and 6 months [21]. The investigation of system analytical 

predictions explored the differential method in conjunction with the concept of the 

Cauchy-Lipschitz condition. Numerical computations exclusively deployed in-built 

Runge-Kutta of order of precision 4 in a Mathcad surface. 

2.1. Problem statement of the study 

Remarkably, the use of mathematical modeling in studying HBV transmission, 

control, and prevention dynamics has been severely conducted. However, accounting 

for model well-posedness using the Cauchy-Lipschitz condition and incisive 

application of both designated treatment functions and vaccination with enhanced 

parameter values has not been given the desired consideration. For instance, the model 

[12] had investigated the application of multi-therapies with dual-immune response 

for the treatment of dual-delayed HIV-HBV co-infectivity using optimal control 

strategy. Of interest, with the novel results attained from this study, the investigation 

couldn’t account for the analytical deployment of the Cauchy-Lipschitz condition in 

its mathematical analysis coupled with the non-inclusion of the vaccinated 

compartment. More so, [1] had considered the HBV model with the incorporation of 

a vaccine-treated chamber but without accounting for the system's well-posedness and 

the consequential impact of the recovered population on the system, as well as non-

numeric value for control parameters. 

Therefore, in this present investigation, extending the latter model, the 

investigation seeks to account for the reunification of the proliferated recovered 
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population and the thematic determination of system model well-posedness, as well as 

quantify immunization enhancement parameters in the presence of designated 

vaccination. 

2.2. Derivation of model mathematical equations 

The present investigation is initialized by giving a brief outline of the system 

motivating model [1]. The aforementioned model was developed using 6 

subpopulations with the primary aim of investigating the impact of vaccination on an 

HBV dynamics model (readers are encouraged to access the paper for more details). 

Of note, the biological derivation of the model was given as:  

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑑𝑋

𝑑𝑡
= 𝜇𝜔(1-vC) − 𝜆𝑋 − 𝜎𝑋 + (1 − 𝜎)𝑌 − 𝜇1𝑋

𝑑𝑌

𝑑𝑡
= 𝜇(1 − 𝜔) + 𝜎𝑋 − (1 − 𝜎)𝑌 − 𝜇1𝑌

𝑑𝐿

𝑑𝑡
= 𝜇𝜔𝑣𝐶 + 𝜉𝜆𝑋 − 𝜔1𝜀1𝐿 − 𝛽1𝜀2𝐿 − 𝜔2𝜓𝑒𝜆𝐿 − 𝜇1𝐿

𝑑𝐼

𝑑𝑡
= (1 − 𝜉)𝜆𝑋 + 𝜔1𝜀1𝐿 + 𝜔2𝜓𝑒𝜆𝐿 + 𝜔3𝜓𝑐𝜆𝐶 − 𝛽2𝜀3𝐼 − 𝛽3𝑡1𝐼 − 𝜇1𝐼 − 𝜇2𝐼

𝑑𝐶

𝑑𝑡
= 𝛽1𝜀2𝐿 + 𝛽2𝜀2I −𝜔3𝜓𝑐𝜆C − 𝛽4𝑡1𝐶 − 𝜇1𝐶 − 𝜇2𝐶 + 𝜔4𝜓𝑟𝜆𝑅  

𝑑𝑅

𝑑𝑡
= 𝛽3𝑡1𝐼 + 𝛽4𝑡1𝐶 - 𝜔4𝜓𝑟𝜆R - 𝜇1𝑅

 (1) 

where {(𝑋, 𝑌, 𝐿, 𝐼, 𝐶, 𝑅) ∈ 𝑁(𝑡)} ≥ 0  for all 𝑡0 ∈ 𝑡 = 0 , are the model state-space 

having initial time 
0t . For detail description of both model state-space and parameters, 

we refer readers to the aforementioned authors.  

Thus, in extending and restructuring this model, the present investigation seeks 

to incorporate the following: 

1) Reunification of proliferated recovered population with the susceptible 

compartment. 

2) Redefined with appropriate valuation of rate of immunization of latently infected 

and chronic HBV population. 

3) Analytical deployment of classical Cauchy-Lipchitz condition in evaluation of 

model well-posedness. 

4) Detection and valuation of unprotected chronic carriers. 

5) Specification of vaccination control function. 

6) Conduction of numerical computation using in-built Runge-Kutter of order of 

precision 4 in a Mathcad surface. 

More significant in model building is the conceptualization of model 

assumptions. Therefore, the present model in conjunction with existing assumptions 

[1,12], the following assumptions holds: 

Assumptions 

1) Redefinition of existing model to capture reunification of proliferated recovered 

population, i.e. 𝑟𝑅(𝑡) → 𝑋𝑝(𝑡).  

2) Immunization could take place on day-one of child birthing, i.e. (1 − 𝜎) > 0 for 

all 0 ≤ 𝜎 ≤ 1. 

3) Chronic carriers subpopulation are vaccinated arte the rate 𝜎 ≥ 0. 
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4) Only acute infectious and chronic carriers die due to infection, i.e. 𝜇2 ≥ 0. 

5) Unprotected chronic carriers are detected at rate 𝑣 ≥ 0. 

6) Natural exists in all compartments i.e. 𝜇1 ≥ 0. 

7) Only the acute infectious and chronic carriers transmit the virus i.e. 0  . 

On a general assumption is the fact that if we let 𝑁(𝑡) denote the total 

homogeneously mixing population understudy at time 𝑡 ∈ [𝑡0, 𝑡𝑓] , then this host 

population is partitioned into six subpopulations: the susceptible individuals 𝑋𝑝(𝑡), 

the protective immunized subpopulation 𝑌(𝑡) and the latently infected individuals 

𝐿(𝑡). Others include acute infected class 𝐼(𝑡), the chronic HBV carriers 𝐶(𝑡) and the 

recovered subpopulation that reunite with the susceptible denoted by 𝑅(𝑡) . This, 

accounting for this homogeneous subpopulations and assumptions, the present 

epidemiological equation of the system is derived as follows: 

{
 
 
 

 
 
 𝑋𝑝

.
(𝑡) = 𝑏𝑝𝜔(1 − vC) + (1 − 𝜎)𝑌 + 𝑟𝑅 − 𝜆𝑋𝑝 − (𝜎 + 𝜇1)𝑋𝑝

𝑌
.
(𝑡) = 𝑏𝑝(1 − 𝜔) + 𝜎𝑋𝑝 − (1 − 𝜎)𝑌 − 𝜇1𝑌

𝐿
.
(𝑡) = 𝑏𝑝𝜔𝑣𝐶 + 𝜉𝜆𝑋𝑝 −𝜔1𝜀1𝐿 − 𝛽1𝜀2𝐿 − 𝜔2𝜓𝑒𝜆𝐿 − 𝜇1𝐿

𝐼
.
(𝑡) = (1 − 𝜉)𝜆𝑋𝑝 +𝜔1𝜀1𝐿 + 𝜔2𝜓𝑒𝜆𝐿 + 𝜔3𝜓𝑐𝜆𝐶 − 𝛽2𝜀3𝐼 − 𝛽3𝑡1𝐼 − (𝜇1 + 𝜇2)𝐼

𝐶
.

(𝑡) = 𝛽1𝜀2𝐿 + 𝛽2𝜀2I−𝜔3𝜓𝑐𝜆C− 𝛽4𝑡1𝐶 + 𝜔4𝜓𝑟𝜆𝑅 − (𝜇1 + 𝜇2)𝐶

𝑅
.
(𝑡) = 𝛽3𝑡1𝐼 + 𝛽4𝑡1𝐶 − 𝜔4𝜓𝑟𝜆R− (𝜇1 + 𝑟)𝑅

 (2) 

where {(𝑋𝑝, 𝑌, 𝐿, 𝐼, 𝐶, 𝑅) ∈ 𝑁(𝑡)} ≥ 0 for all 𝑡0 ∈ 𝑡 = 0, are the model state-space 

having initial time 
0t . That is, the total population understudy id given by 

(𝑡) = 𝑋𝑝(𝑡) + 𝑌(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) + 𝐶(𝑡) + (𝑡)𝑅 = 1 (3) 

and having system force of infection defined by 

𝜆 = 𝛽
(𝐼 + 𝜂𝐶)

𝑁(𝑡)
 (4) 

Equations (2)–(4) is schematically represented by Figure 1: 

 

Figure 1. An epidemiological flow chart for the transmission dynamics of HBV infection. 



Journal of AppliedMath 2024, 2(5), 1797.  

6 

Intuitively, we represent the biological description of both state-space and 

parameter variables of model (2) and Figure 1 as depicted by Tables 1 and 2: 

Table 1. Description of state space for model (2). 

Symbols Description 

𝑋𝑝 Susceptible population 

𝑌 Protective Immunized population 

𝐿 Latently infected population 

𝐼 Acute infectious population 

𝐶 Chronic carriers population 

𝑅 Treated recovered population 

Table 2. Description of model parameter variables. 

Symbols Description  

𝑋𝑝 Natural birth rate 

𝜔 Proportion of birth rate without protective immunity 

(1 − 𝜔) Proportion of birthrate with protective immunity 

  Vaccination rate 

(1 − 𝜎) Unsuccessful vaccination rate 

𝜇1 Natural death rate 

𝜇2 Death rate due to infection 

𝜆 Force of infection 

𝛽 Effective contact rate for HBV infection 

𝜂 Rate of infectiousness of carriers relative to acute infection 

𝜀1 Transfer rate from latent to acute 

𝜀2 Transfer rate from latent to carrier 

𝜀3 Transfer rate from acute to carrier 

𝛽1 Transmission probability from latent to carrier 

𝛽2 Transmission probability from acute to carrier 

𝛽3 Transmission probability from acute to recovered acquiring treatment 

𝛽4 Transmission probability from carriers to recovered acquiring treatment 

𝑡1 Rate of treatment 

(1 − 𝜉) The fraction of the newly individuals who are fast progresses  

𝜓𝑒 Reinfection rate of latent individuals 

𝑣 Rate at which carrier mothers are immunized 

𝜔1 Fraction of latent individuals who develop symptoms are infected 

𝜔2 Fraction of re-infected latent individuals who are infected 

𝜔3 Fraction of re-infected carrier individuals who are infected 

𝜔4 Fraction of recovered individuals who are infected 

𝑟 Recovered reuniting with the susceptible 

Next, we are confronted with the determination of model analytical predictions. 
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3. Analysis of model mathematical properties 

In diffusing the model mathematical properties, we are required to thematically 

account for the system positivity of the solution, the system boundedness of the 

solution, and the existence of the system solution. 

3.1. Positivity of system solution 

In this sub-section, we attempt to show that all state space, which are exact 

representation of set of living organisms are all positive for all 0t  . That is, we 

present analytic computation of the model positivity using the following theorem. 

Theorem 1. (Positivity) Let the system initial conditions be given by 

{𝑋𝑝(0), 𝑌(0), 𝐿(0), 𝐼(0), 𝐶(0), 𝑅(0)} ∈ ℜ+
6

. Then, the solution set 

{𝑋𝑝(𝑡), 𝑌(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝑅(𝑡)} for system (2) remains positive for all 𝑡 ≥ 0. 

Proof. Here, we apply existing studies [22,23]. In this case, taking on the first equation 

of system (1), we have. 

𝑋𝑝
∙
(𝑡) = 𝑏𝑝𝜔(1-vC) + (1 − 𝜎)𝑌 + 𝑟𝑅 − 𝜆𝑋𝑝 − (𝜎 + 𝜇1)𝑋𝑝 

Taking the differential of 𝑋𝑝 with respect to time 𝑡, we have 

𝑋𝑝
∙
(𝑡) = 𝑏𝑝𝜔 − (𝜎 + 𝜆 + 𝜇1)𝑋𝑝 

Then, by separation of variables, we have 

𝑋𝑝
∙
(𝑡) + (𝜎 + 𝜆 + 𝜇1)𝑋𝑝 = 𝑏𝑝𝜔 

The solution of the equation is obtained by applying the integrating factor method 

𝐼𝐹 = 𝑒∫(𝜎+𝜆+𝜇1)𝑑𝑡 = 𝑒(𝜎+𝜆+𝜇1)𝑡. That is, by multiplying both side of the above by 

the integrating factor IF, we have  

𝑒(𝜎+𝜆+𝜇1)𝑡𝑋𝑝
∙
(𝑡) + (𝜎 + 𝜆 + 𝜇1)𝑋𝑝𝑒

(𝜎+𝜆+𝜇1)𝑡 = 𝑏𝑝𝜔𝑒
(𝜎+𝜆+𝜇1)𝑡 

or 

𝑑

𝑑𝑡
[(𝜎 + 𝜆 + 𝜇1)]𝑋𝑝𝑒

(𝜎+𝜆+𝜇1)𝑡 = 𝑏𝑝𝜔𝑒
(𝜎+𝜆+𝜇1)𝑡 

Integrating, we have 

𝑋𝑝𝑒
(𝜎+𝜆+𝜇1)𝑡 =

𝑏𝑝𝜔

(𝜎 + 𝜆 + 𝜇1)
𝑒(𝜎+𝜆+𝜇1)𝑡+𝐾 

Where 𝐾 is the constant of integration, simplifying we have 

𝑋𝑝(𝑡) =
𝑏𝑝𝜔

(𝜎 + 𝜆 + 𝜇1)
+𝐾 𝑒−(𝜎+𝜆+𝜇1)𝑡 (5) 

Applying the initial condition i.e. 𝑡 = 0 ⇒ 𝑋𝑝(𝑡) = 𝑋𝑝(0). Then, Equation (5) 

becomes  

𝑋𝑝(0) =
𝑏𝑝𝜔

(𝜎 + 𝜆 + 𝜇1)
 + 𝐾 

or 
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𝑋𝑝(0) −
𝑏𝑝𝜔

(𝜎 + 𝜆 + 𝜇1)
 = 𝐾 

Substituting 𝐾 into Equation (5) we obtain 

𝑋𝑝(𝑡) =
𝑏𝑝𝜔

(𝜎+𝜆+𝜇1)
+ [𝑋𝑝(0) −

𝑏𝑝𝜔

(𝜎+𝜆+𝜇1)
] 𝑒−(𝜎+𝜆+𝜇1)𝑡 ≥ 0. 

Hence, since (𝜎 + 𝜆 + 𝜇1) > 0 then, 𝑋𝑝(0) > 0 as 0t =  and 𝑋𝑝(𝑡) ≤ 0 as 𝑡 →

∞.  

From the immunized individuals ( )Y t , we have 

𝑌
∙
(𝑡) = 𝑏𝑝(1 − 𝜔) + 𝜎𝑋𝑝 − (1 − 𝜎)𝑌 − 𝜇1𝑌 

Taking the differentiation of 𝑌 with respect to time 𝑡, we have 

𝑌
∙
(𝑡) = 𝑏𝑝(1 − 𝜔) − [(1 − 𝜎) + 𝜇1]𝑌 

Then, by separation of variables, we have  

𝑌
∙
(𝑡) + [(1 − 𝜎) + 𝜇1]𝑌 = 𝑏𝑛(1 − 𝜔) 

The solution of the equation is obtained by using the integrating factor method, 

𝐼𝐹 = 𝑒∫[(1−𝜎)+𝜇1]𝑑𝑡 = 𝑒[(1−𝜎)+𝜇1]𝑡. That is, by multiplying both side of the above by 

the integrating factor IF, we have  

𝑒[(1−𝜎)+𝜇1]𝑡𝑌′(𝑡) + [(1 − 𝜎) + 𝜇1]𝑌𝑒
[(1−𝜎)+𝜇1]𝑡 = 𝑏𝑛(1 − 𝜔)𝑒

[(1−𝜎)+𝜇1]𝑡 

or 

𝑑

𝑑𝑡
[(1 − 𝜎) + 𝜇1]𝑌𝑒

[(1−𝜎)+𝜇1]𝑡 = 𝑏𝑛(1 − 𝜔)𝑒
[(1−𝜎)+𝜇1]𝑡 

Integrating, we have 

Y𝑒[(1−𝜎)+𝜇1]𝑡 =
𝑏𝑛(1 − 𝜔)

[(1 − 𝜎) + 𝜇1]
𝑒[(1−𝜎)+𝜇1]𝑡 + 𝐾 

where 𝐾 is the constant of integration. Simplifying, we have 

𝑌(𝑡) =
𝑏𝑝(1 − 𝜔)

[(1 − 𝜎) + 𝜇1]
 + 𝐾𝑒−[(1−𝜎)+𝜇1]𝑡 (6) 

Applying the initial condition i.e. as𝑡 = 0   Y(𝑡)=Y(0). Then, Equation (6) 

becomes 

Y(0) =
𝑏𝑝(1 − 𝜔)

[(1 − 𝜎) + 𝜇1]
 + 𝐾 

or 

Y(0) −
𝑏𝑝(1 − 𝜔)

[(1 − 𝜎) + 𝜇1]
 = 𝐾 

Substituting 𝐾 into Equation (6) we obtain 
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Y(𝑡) =
𝑏𝑝(1 − 𝜔)

[(1 − 𝜎) + 𝜇1]
 + {𝑌(0) −

𝑏𝑝(1 − 𝜔)

[(1 − 𝜎) + 𝜇1]
} 𝑒−[(1−𝜎)+𝜇1]𝑡 ≥ 0 

Hence, since [(1 − 𝜎) + 𝜇1] > 0 then, 𝑌(0) > 0 as 𝑡 = 0 and 𝑌(𝑡) ≤ 0 as 𝑡 =

0 and thus, 𝑌(𝑡) ≤ 1 as 𝑡 →∞. 

From the latent individuals, 𝐿(𝑡) we have 

𝐿(𝑡)
∙

= 𝑏𝑝𝜔𝑣𝐶 + 𝜉𝜆𝑋𝑝 −𝜔1𝜀1𝐿 − 𝛽1𝜀2𝐿 − 𝜔2𝜓𝑒𝜆𝐿 − 𝜇1𝐿. 

Taking the differential of 𝐿 with respect to time t , we have 

𝐿(𝑡)
∙

= −(𝜔1𝜀1 + 𝛽1𝜀2 +𝜔2𝜓𝑒𝜆 + 𝜇1)𝐿 

or 

𝐿(𝑡)
∙

+ (𝜔1𝜀1 + 𝛽1𝜀2 +𝜔2𝜓𝑒𝜆 + 𝜇1)𝐿 = 0 

The solution of the equation is obtained by using the integrating factor method, 

𝐼𝐹 = 𝑒∫[𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1]𝑑𝑡 = 𝑒(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡 . That is, by multiplying 

both side of the above by the integrating factor IF, we have  

𝑒(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡𝐿(𝑡)
∙

+ (𝜔1𝜀1 + 𝛽1𝜀2 + 𝜔2𝜓𝑒𝜆 + 𝜇1)𝐿𝑒
(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡 = 0 

or 

𝑑

𝑑𝑡
[(𝜔1𝜀1 + 𝛽1𝜀2 + 𝜔2𝜓𝑒𝜆 + 𝜇1)]𝐿𝑒

(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡 = 0 

Integrating, we have 

L𝑒(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡 = 𝐾 

where 𝐾 is the constant of integration. Simplifying we have 

𝐿(𝑡) =𝐾𝑒−(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡 (7) 

Applying the initial condition i.e. 𝑡 = 0 ⇒ 𝐿(𝑡) = 𝐿(0) . Then, the above 

equation becomes 

L(0) = 𝐾 

Substituting 𝐾 into Equation (7) we obtain 

L(𝑡) = L(0)𝑒−(𝜔1𝜀1+𝛽1𝜀2+𝜔2𝜓𝑒𝜆+𝜇1)𝑡 ≥ 0 

Hence, since [(𝜔1𝜀1 + 𝛽1𝜀2 +𝜔2𝜓𝑒𝜆 + 𝜇1)] > 0 then, 𝐿(0) > 0 as 𝑡 = 0 and 

𝐿(𝑡) ≤ 0 as 𝑡 →∞. 

From acute individuals 𝐼(𝑡), we have 

𝐼(𝑡)
∙

= (1 − 𝜉)𝜆𝑋𝑝 +𝜔1𝜀1𝐿 + 𝜔2𝜓𝑒𝜆𝐿 + 𝜔3𝜓𝑐𝜆𝐶 − 𝛽2𝜀3𝐼 − 𝛽3𝑡1𝐼 − (𝜇1 + 𝜇2)𝐼 

Taking the differential of 𝐼 with respect to 𝑡, we have 

𝐼(𝑡)
∙

= −(𝛽2𝜀3 + 𝛽3𝑡1 + 𝜇1 + 𝜇2)𝐼 

or 
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𝐼(𝑡)
∙

+ (𝛽2𝜀3 + 𝛽3𝑡1 + 𝜇1 + 𝜇2)𝐼 = 0 

The solution of the equation is obtained by using the integrating factor i.e. 𝐼𝐹 =

𝑒∫[𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2]𝑑𝑡 = 𝑒(𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2)𝑡. That is, by multiplying both side of the 

above by the integrating factor IF, we have  

𝑒(𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2)𝑡𝐼′(𝑡) + (𝛽2𝜀3 + 𝛽3𝑡1 + 𝜇1 + 𝜇2)𝐼𝑒
(𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2)𝑡 = 0 

Integrating, we have 

I𝑒(𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2)𝑡 = 𝐾 

where 𝐾 is the is the constant of integration, simplifying we have 

𝐼(𝑡) =𝐾𝑒−(𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2)𝑡 (8) 

Applying the initial condition i.e. 𝑡 = 0 ⇒ 𝐼(𝑡) = 𝐼(0).Then Then Equation (8) 

becomes 

I(0) = 𝐾 

Substituting 𝐾 into Equation (8) we obtain 

I(𝑡) = 𝐼(0)𝑒−(𝛽2𝜀3+𝛽3𝑡1+𝜇1+𝜇2)𝑡 ≥ 0 

Hence, since (𝛽2𝜀3 + 𝛽3𝑡1 + 𝜇1 + 𝜇2) > 0 then, 𝐼(0) > 0 as 0t =  and 𝐼(𝑡) ≤ 0 

as 𝑡 →∞. 

From the chronic individuals 𝐶(𝑡), we have 

𝐶(𝑡)
∙

= 𝛽1𝜀2𝐿 + 𝛽2𝜀2I −𝜔3𝜓𝑐𝜆C − 𝛽4𝑡1𝐶 + 𝜔4𝜓𝑟𝜆𝑅 − (𝜇1 + 𝜇2)𝐶 

Taking the differential of 𝐶(𝑡) with respect to t , we have 

𝐶(𝑡)
∙

= −(𝜔3𝜓𝑐𝜆 + 𝛽4𝑡1 + 𝜇1 + 𝜇2)𝐶 

or 

𝐶(𝑡)
∙

+ (𝜔3𝜓𝑐𝜆 + 𝛽4𝑡1 + 𝜇1 + 𝜇2)𝐶 = 0 

The solution of the equation is obtained by using the integrating factor i.e. 

𝐼𝐹 = 𝑒∫[(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)]𝑑𝑡 = 𝑒(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡. That is, by multiplying 

both side of the above by the integrating factor IF, we have  

𝑒(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡𝐶 ′(𝑡) + (𝜔3𝜓𝑐𝜆 + 𝛽4𝑡1 + 𝜇1 + 𝜇2)𝐶𝑒
(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡 = 0 

or 

𝑑

𝑑𝑡
[(𝜔3𝜓𝑐𝜆 + 𝛽4𝑡1 + 𝜇1 + 𝜇2)]𝐶𝑒

(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡 = 0 

Integrating, we have 

C𝑒(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡 = 𝐾 

where 𝐾 is the is the constant of integration, simplifying we have: 

𝐶(𝑡) =𝐾𝑒−(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡 (9) 
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Applying the initial condition i.e. 𝑡 = 0 ⇒ 𝐶(𝑡) = 𝐶(0). Then, Equation (9) 

becomes 

C(0) = 𝐾 

Substituting 𝐾 into Equation (9) we obtain 

C(𝑡) = 𝐶(0)𝑒−(𝜔3𝜓𝑐𝜆+𝛽4𝑡1+𝜇1+𝜇2)𝑡 ≥ 0 

Hence, since [(𝜔3𝜓𝑐𝜆 + 𝛽4𝑡1 + 𝜇1 + 𝜇2)] > 0  then, 𝐶(0) > 0  as 𝑡 = 0  and 

𝐶(𝑡) ≤ 0 as 𝑡 →∞. 

From the recovered individuals 𝑅(𝑡), we have 

𝑅(𝑡)
∙

= 𝛽3𝑡1𝐼 + 𝛽4𝑡1𝐶 - 𝜔4𝜓𝑟𝜆𝑅 − (𝑟 + 𝜇1)𝑅 

Taking the differential of 𝑅 with respect to 𝑡, we have 

𝑅(𝑡)
∙

= −(𝜔4𝜓𝑟𝜆+ 𝑟 + 𝜇1)𝑅 

or 

𝑅(𝑡)
∙

+ (𝜔4𝜓𝑟𝜆+ 𝑟 + 𝜇1)𝑅 = 0 

The solution of the equation is obtained by using the integrating factor i.e. 𝐼𝐹 =

𝑒∫[𝜔4𝜓𝑟𝜆+ 𝜇1+𝑟]𝑑𝑡 = 𝑒(𝜔4𝜓𝑟𝜆+𝜇1+r)𝑡. That is, by multiplying both side of the above by 

the integrating factor IF, we have  

𝑒(𝜔4𝜓𝑟𝜆+ 𝜇1)𝑡𝑅′(𝑡)  + (𝜔4𝜓𝑟𝜆+ 𝜇1+r)𝑅𝑒(𝜔4𝜓𝑟𝜆+ 𝜇1)𝑡 = 0 

Integrating, we have 

R𝑒(𝜔4𝜓𝑟𝜆+ 𝜇1+r)𝑡 = 𝐾 

where 𝐾 is the is the constant of integration, simplifying we have 

𝑅(𝑡) =𝐾𝑒−(𝜔4𝜓𝑟𝜆+ 𝜇1)𝑡 (10) 

Applying the initial condition i.e. 𝑡 = 0 ⇒ 𝑅(𝑡) = 𝑅(0). Then, Equation (10) 

becomes 

R(0) = 𝐾 

Substituting 𝐾 into Equation (7) we obtain 

R(𝑡) = 𝑅 (0)𝑒−(𝜔4𝜓𝑟𝜆+ 𝜇1)𝑡 ≥ 0 

Hence, since [(𝜔4𝜓𝑟𝜆+ 𝜇1+r)] > 0, then, 𝑅(0) > 0 as 𝑡 = 0  and 𝑅(𝑡) ≤ 0 as 

𝑡 →∞. 

Therefore, any solution of system (2) is such that the set: 

{(𝑋𝑝(0), 𝑌(0), 𝐿(0), 𝐼(0), 𝐶(0), 𝑅(0)) ≥ 0} ∈ ℜ+
6  and the proof is completed.  

3.2. Boundedness of system solution 

Here, we initiate the investigation for the system boundedness by first showing 

that the differential sum of the model equations is completely a function of system 

natural birth rate and natural clearance rate as well as death due to infection. 

It is obvious that the system differential sum from Equation (2) is given by  
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𝑑𝑁

𝑑𝑡
=
𝑑𝑋𝑝
𝑑𝑡

+
𝑑𝑌

𝑑𝑡
+
𝑑𝐿

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝐶

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 𝑏𝑝𝜔(1 − 𝑣𝐶) − 𝜆𝑋𝑝 + 𝑟𝑅 + (1 − 𝜎)𝑌 − (𝜎 + 𝑟 + 𝜇1)𝑋𝑝 + 𝑏𝑝(1 − 𝜔)

+𝜎𝑋𝑝 − (1 − 𝜎)𝑌 − 𝜇1𝑌 + 𝑏𝑛𝜔𝑣𝐶 + 𝜉𝜆𝑋𝑝 −𝜔1𝜀1𝐿 − 𝛽1𝜀2𝐿

−𝜔2𝜓𝑒𝜆𝐿 − 𝜇1𝐿 + (1 − 𝜉)𝜆 + 𝜔1𝜀1𝐿 + 𝜔2𝜓𝑒𝜆𝐿 + 𝜔3𝜓𝑐𝜆𝐶
−𝛽2𝜀3𝐼 − 𝛽3𝑡1𝐼 − 𝜇1𝐼 − 𝜇2𝐼 + 𝛽1𝜀2𝐿 + 𝛽2𝜀3𝐼 − 𝜔3𝜓𝑐𝜆𝐶

−𝛽4𝑡1𝐶 − 𝜇1𝐶 − 𝜇2𝐶 +𝜔4𝜓𝑟𝜆𝑅 + 𝛽3𝑡1𝐼 + 𝛽4𝑡1𝐶 − 𝜔4𝜓𝑟𝜆𝑅 − (𝑟 + 𝜇1)𝑅

 

Simplifying, we obtain, 

𝑑𝑁

𝑑𝑡
= 𝑏𝑝 − 𝜇1𝑋𝑝 − 𝜇1𝑌 − 𝜇1𝐿 − 𝜇1𝐼 − 𝜇1𝐶 − 𝜇1𝑅 − 𝜇2𝐼 − 𝜇2𝐶

= 𝑏𝑝 − 𝜇1𝑁 − 𝜇2𝐼 − 𝜇2𝐶
 (11) 

since 𝑁(𝑡) =  {𝑋𝑝(𝑡) + 𝑌(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) + 𝐶(𝑡) + 𝑅(𝑡)} = 1. 

The following theorem satisfies the boundedness of system solution. 

Theorem 2. (Boundedness). Suppose system (2) is bounded in a closed set ℜ𝐷 =

{(𝑋𝑝, 𝑌, 𝐿, 𝐼, 𝐶, 𝑅) ∈ ℜ+
6  : 𝑁 ≤

𝑏𝑝

𝜇1
}. 

Then, all the solution of the closed set 
D is bounded, positively invariant and 

attracting with respect to system (2). 

Proof. Adopting classical approach for boundedness as applied by [24,25]. We recall Equation 

(11) i.e. 

𝑑𝑁

𝑑𝑡
= 𝑏𝑛 − 𝜇1𝑁 − 𝜇2𝐼 − 𝜇2𝐶 

or 

𝑑𝑁

𝑑𝑡
+ 𝜇1𝑁 = 𝑏𝑛 − 𝜇2𝐼 − 𝜇2𝐶 

At zero mortality rate 𝜇2=0 then we have, 

𝑑𝑁

𝑑𝑡
+ 𝜇1𝑁 = 𝑏𝑝 

The solution of the equation is obtained by applying the integrating factor, 𝐼𝐹 =

𝑒∫𝜇1𝑑𝑡 = 𝑒𝜇1𝑡 

𝑒𝜇1𝑡
𝑑𝑁

𝑑𝑡
+ 𝜇1𝑁𝑒

𝜇1𝑡 = 𝑏𝑝𝑒
𝜇1𝑡 

Integrating we have, 

𝑒𝜇1𝑡𝑁 =
𝑏𝑝
𝜇1
𝑒𝜇1𝑡 + 𝐾 

where 𝐾 is the constant of integration, simplifying we obtain 

𝑁(𝑡) =
𝑏𝑝

𝜇1
+ 𝐾𝑒−𝜇1𝑡 (12) 

At initial condition i.e. 𝑡 = 0 ⇒ 𝑁(𝑡) = 𝑁(0) . Then, the above equation 

becomes 

N(0) =
𝑏𝑝
𝜇1
+ 𝐾 
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or 

N(0) −
𝑏𝑝
𝜇1
= 𝐾 

Substituting 𝐾 into Equation (12), we have 

N(𝑡) =
𝑏𝑝

𝜇1
+ [𝑁(0) −

𝑏𝑝

𝜇1
] 𝑒−𝜇1𝑡 ≥ 0, 

where (0)N  is the initial population at time 
0 0t t= = . This result to the fact that 

𝑁(𝑡) ≤ 𝑁(0) as 𝑡 → 0 and 𝑁(0) ≤ 0 as 𝑡 → ∞. 

Inductively, using Birkhof and Rota’s theorem of differential inequality [26], 

then when 𝑡 →∞ we see that  

0 ≤ 𝑁(𝑡) ≤
𝑏𝑛

𝜇1
, ∀ 𝑡 ≥ 0 

Now, from system (2), we know that 

𝑑𝑋𝑝

𝑑𝑡
=
𝑑𝑌

𝑑𝑡
=
𝑑𝐿

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝐶

𝑑𝑡
=
𝑑𝑅

𝑑𝑡
= 0 

which implies that 

𝑑𝑁

𝑑𝑡
= 0 

By integrating 

N = 𝐶 

But 

N = 𝑋𝑝 + 𝑌 + 𝐿 + 𝐼 + 𝐶 + 𝑅 = 1 

Since population under investigation is unity. It follows that 𝐶 = 1, implying that 

the population under study is constant, positive and is unity. Hence, ℜ𝐷 =

{(𝑋𝑝, 𝑌, 𝐼, 𝐿, 𝐶, 𝑅) ∈ ℜ+
6 : 𝑋𝑝 + 𝑌 + 𝐼 + 𝐿 + 𝐶 + 𝑅 = 1}. Thus, the model is attracting, 

bounded, and mathematically well posed.  

3.3. Existence and uniqueness of system solution 

Theorem 3. (Existence and uniqueness). The system (2) is continuous and satisfies 

Cauchy-Lipschitz condition. 

Proof. We explore existence and uniqueness results [27,28]. Then, we show from system (2), 

taking the first equation, while the rest follow similar procedures. 

Now let. 

𝑍(𝑡, 𝑠) =
𝑑𝑋𝑝

𝑑𝑡
= 𝑏𝑝𝜔(1 − 𝑣𝐶) − 𝜆𝑋𝑝 + (1 − 𝜎)𝑌 − (𝜎 + 𝜇1)𝑋𝑝 (13) 

Then, substituting mass action equation 𝜆 =
𝛽(1−𝜂𝐶)

𝑁
, into Equation (13), we 

obtain the partial derivatives as:  

𝜕𝑍(𝑡, 𝑠)

𝜕𝑠
= −

𝛽(1 − 𝜂𝐶)

𝑁
− (𝜎 + 𝜇1) (14) 
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This shows that the function 𝑍(𝑡, 𝑠) and its partial derivatives 
𝜕𝑍(𝑡,𝑠)

𝜕𝑠
 are defined 

and continuous at all points  (𝑡, 𝑠) . Similarly, the right-hand functions of other 

equations and their respective partial derivatives inductively satisfy these conditions. 

This imply that by existence and uniqueness theorem, there exists a unique solution 

for 𝑋𝑝(𝑡), 𝑌(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝑅(𝑡)  in some open intervals centered 𝑡0 . We then 

have to show that the solution satisfies the Lipschitz condition. Now using (13) we see 

at once that 

|𝑍 (𝑡, 𝑠𝑋𝑝(1)) − 𝑍 (𝑡, 𝑠𝑋𝑝(2))| = |
|
𝜇𝜔(1 − 𝑣𝐶) − (−

𝛽(1 − 𝜂𝐶)

𝑁
)𝑋𝑝(1) − 𝜎𝑋𝑝(1) +

(1 − 𝑣𝐶)𝑌 − 𝜇1𝑋𝑝(1)

−𝜇𝜔(1 − 𝑣𝐶) − (−
𝛽(1 − 𝜂𝐶)

𝑁
)𝑋𝑝(2)

− 𝜎𝑋𝑝(2) + (1 − 𝑣𝐶)𝑌 − 𝜇1𝑋𝑝(2)
|
|

= |(−) [
𝛽(1 − 𝜂𝐶)

𝑁
+ 𝜎 + 𝑟 + 𝜇1] (𝑋𝑝(1) − 𝑋𝑝(2))|

≤ [
𝛽(1 − 𝜂𝐶)

𝑁
+ 𝜎 + 𝑟 + 𝜇1] |𝑋𝑝(1) − 𝑋𝑝(2)|

 

This implies that |𝑍(𝑡, 𝑠𝑋𝑝(1)) − 𝑍(𝑡, 𝑠𝑋𝑝(2))| ≤ 𝑀|𝑋𝑝(1) − 𝑋𝑝(2)|, where 𝑀 =

(
𝛽(1−𝜂𝐶)

𝑁
+ 𝜎 + 𝑟 + 𝜇1) is a Lipschitz constant. In a similar procedure, we show that 

the remaining variables satisfies the Lipschitz condition. Therefore, there exists a 

unique solution 𝑋𝑝(𝑡), 𝑌(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝑅(𝑡) for all 𝑡 ≥ 0.  

4. Numerical computations 

Table 3. Value specification for state and parameter variables of Tables 1 and 2 

State-space  Parameter variables 

Symbols Values Symbols values Symbols Values 

𝑋𝑝 0.4 𝑏𝑝 0.0247 𝛽1 0.1 

𝑌 0.1 𝜔 0.5 𝛽2 0.1 

𝐿 0.1 (1 − 𝜔) 0.5 𝛽3 0.5 

𝐼 0.1 𝜎 0,65 𝛽4 0.95 

𝐶 0.1 (1 − 𝜎) 0.25 𝑡1 0.0525 

𝑅 0.1 𝜇1 0.00693 (1 − 𝜉) 0.67 

 

𝜇2 0.31 𝜓𝑒 0.297 

𝜆 ∈ [0.1] 𝑣 0.35 

𝛽 0.98 𝜔1 0.045 

𝜂 0.45 𝜔2 0.0.4 

𝜀1 6/365 𝜔3 0.6 

𝜀2 8/365 𝜔4 0.6 

𝜀3 4/365 𝑟 0.4 

Note: Table 3, represent modified value generateds from motivating model [1]. 

Following the derivation of system model, generated numerical values are 

induced to Tables 1 and 2, to give us the required Table 3, desired of the present 
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numerical computations. Basically, we conduct two major simulations: the off-

treatment scenario and at on-set application of control functions. The entire 

computations explored in-built Runge-Kutter of order of precision 4, in a Mathcad 

surface. The empirical Table 3, is as seen below:  

4.1. Numerical simulation of system model under off-treatment (𝝎 =

𝟎, 𝝈 = 𝟎, 𝒗 = 𝟎, 𝒕𝟏 = 𝟎) 

Of note, derived model represents a set of 6-dimensional nonlinear ordinary 

differential equation involving 6 sub-populations. Using Table 3, the basic model 

equation is simulated for off-treatment scenario as depicted by Figure 2a–f.  

  
(a) HBV susceptible popn. under off-treatment, 𝜇 =

0.045. 

(b) HBV protective immunize popn. under off-treatment, 

𝛽 = 0.98. 

  
(c) HBV latently infected popn. under off-treatment, 

𝛽 = 0.98. 

(d) Acute infectious HBV popn. under off-treatment, 

𝛽 = 0.98. 

  

(e) HBV chronic carriers popn. under off-treatment, 

𝛽 = 0.98. 

(f) HBV recovered sub-popn. under off-treatment, 𝛽 =

0.98. 

Figure 2. Dynamic flow of infectious HBV model under off-treatment scenario, 𝜇 = 0.47, 𝛽 = 0.98. 
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From Figure 2a, the simulation depicts a class of HBV susceptible population 

investigated under off-treatment scenario. This compartment exhibits steady decline 

with value range of 0.028 ≤ 𝑋(𝑡) ≤ 0.4 for all 𝑡𝑓 ≤ 30 months. Under the protective 

immunized sub-population 𝑌(𝑡), as depicted by Figure 2b, rapid decline is observed 

following non-inducement of immunization control functions with declining value 

range of 0.047 ≤ 𝑌(𝑡) ≤ 0.1 for all 30ft   months. Figure 2c represent the latently 

HBV infected sub-population under off-treatment scenario. This compartment exhibit 

initial inclination with value range of 0.1 ≤ 𝐿(𝑡) ≤ 0.47  at 𝑡𝑓 ≤ 12  month. 

Thereafter, the curve exhibited concave declination due to lack of control functions 

with decline value of 𝐿(𝑡) ≤ 0.2 for all 12 ≤ 𝑡𝑓 ≤ 30 months.  

From Figure 2d, the simulation observed a smooth inclined rate of acute infected 

HBV sub-population under off-treatment scenario. This depicts high spread of the 

virus under no control functions 0.1 ≤ 𝐼(𝑡) ≤ 1.572for all 𝑡𝑓 ≤ 30 months. Figure 

2e represent chronic carriers of HBV infection under off-treatment. The study observe 

that in the absence of any control function, there exist a rapid extinction infections 

HBV in this deteriorating value of 0.1 ≥ 𝐶(𝑡) ≥ 4.212 × 10−3 for all 𝑡𝑓 ≤ 30 

months. Furthermore, the compartment for recovered population depicted by Figure 

2f initiate smooth rapid linear decline to near zero due to complete lack of any control 

function 0.1 ≥ 𝑅(𝑡) ≥ 8.147 × 10−4 for all 𝑡𝑓 ≤ 30 months. 

4.2. Numerical simulation of system model under onset-treatment, 

(𝝎, 𝝈, 𝒗, 𝒕𝟏) ≥ 𝟎 

Furthermore, the investigation consider derived model with the introduction of 

control functions denoted by (𝜔, 𝜎, 𝑣, 𝑡1), while other parameters remains the same as 

in Section 4.1. Thus, the required simulations involving the 6 subpopulations are 

depicted by Figure 3a–f below: 

  
(a) HBV susceptible popn. under onset-treatment, 𝜇 =
0.045. 

(b) HBV protective immunize popn. under onset-

treatment, 𝛽 = 0.98. 
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(c) HBV latently infected popn. under onset-treatment, 

𝛽 = 0.98. 

(d) HBV acute infectious popn. under onset-treatment, 

𝛽 = 0.98. 

  
(e) HBV chronic carriers popn. under onset-treatment, 

𝛽 = 0.98. 

(f) HBV recovered sub-popn. under onset-treatment, 

𝛽 = 0.98. 

Figure 3. Dynamic flow of infectious HBV model under onset-control functions, 𝜇 = 0.47, 𝛽 = 0.98. 

Figure 3a represents the susceptible compartment under coherent treatment 

functions. It is observe that an initial declined population in the first 20 months is seen 

exhibiting rapid inclination, following the introduction of designated control functions 

with maximum value range of 0.051 ≤ 𝑋𝑝(𝑡) ≤ 22.322 at 0 ≤ 𝑡𝑓 ≤ 24 month but 

declined We saw slightly for all 24 ≤ 𝑡𝑓 ≤ 30  months with value at 22.322 ≤

𝑋𝑝(𝑡) ≤ 10.088. Figure 3b exhibits undulating inclined immunize sub-population 

due to induce control function with maximal value of 0.1 ≤ 𝑌(𝑡) ≤ 3.92 at 𝑡𝑓 ≤ 30 

months. In Figure 3c, the simulation describes the dynamic of latently infected sub-

population under coherent application of control functions. It is observe that the curve 

exhibited initial stable latently infectious class is seen declining with minimum value 

range of 16.223 × 10−1 ≤ 𝐿(𝑡) ≤ 8.78 × 10−1 for all 24 ≤ 𝑡𝑓 ≤ 30 months.  

Figure 3d illustrate the presence of control functions in compartment of acute 

infected sub-population. The investigation observe initial inclined linear curve with 

0.1 ≤ 𝐼(𝑡) ≤ 9.864 at 𝑡𝑓 ≤ 24 months. However, with the introduction of control 

functions, acute infected population is seen declining rapidly with minimal value of 

𝐼(𝑡) ≥ 5.82  at 24 ≤ 𝑡𝑓 ≤ 30  months. Under coherent control function, chronic 

carrier displace an undulating concave declination as depicted by Figure 3e. Dynamic 

variation of compartment Centre is in the range of 0.1 ≥ 𝐶(𝑡) ≥ 0.06 at 𝑡𝑓 ≤6 months 

and 0.06 ≤ 𝐶(𝑡) ≤ 0.124 at 6 ≤ 𝑡𝑓 ≤ 30 months. The recovered population under 

coherent control function depicted by Figure 3f, is seen to exhibit a steady inclined 
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linear curve at 𝑡𝑓 ≤ 12 month. With value at  0.1 ≤ 𝑅(𝑡) ≤ 0.138.  Thereafter, the 

compartment observed steady state for all 12 ≤ 𝑡𝑓 ≤ 30 months. 

5. Analysis of results of numerical computations 

So far in this investigation, a 6-Dimensional HBV mathematical dynamic model 

have been developed, following the extension and modification of system motivating 

model [1]. The derived model was investigated using bilinear control functions in 

conjunction with application of monolithic vaccination. System analytical predictions 

focuses on the mathematical and epidemiological well-posedness of derived HBV 

model. In conjunction with fundamental differential theory, the investigation explored 

classical Cauchy-Lipschitz condition for the establishment of existence and 

uniqueness of system solutions. 

Numerical simulations were conducted with clear indications that under off-

treatment scenario, both the susceptible and protective immunized compartments as 

well as the recovery chamber exhibited rapid population declined to near-zero 

outcome for all 30ft  months. This delineative output was evidenced by the surging 

inclination rate exhibited by latently, acute and chronic carriers’ subpopulations. The 

introduction of bilinear control functions enhanced by induced monolytic vaccination 

saw rejuvenated of both the recovery compartment and the susceptible state-space as 

depicted by Figure 3a–f.  

Furthermore, the present results were an improvement to those of system 

motivating model in spite of diverging set goals. For instance, the main component of 

simulations of system motivating model was its system reproduction numbers as 

against the current target of behavioral impact of designated control functions. 

Moreso, we observed from system motivating model that infection of HBV at 

protective compartment where 
0 1R = , was intensively high, which can be aligned to 

the case of non-vaccine and lack of control functions for the present investigation. 

None-the-less, the present investigation depicts simplified methodological application 

of designated control function with specified vaccine, leading to a more seeming 

optimal results. 

6. Conclusion and recommendations 

Remarkably, amid novel results from dynamic controls of HBV infection, the 

present investigation presented a simplified, dynamic, 6-dimensional mathematical 

model. The goal of the study was the methodological implementation of bilinear 

control functions in conjunction with designated monolytic vaccination. Moreover, the 

study dwells on the determination of system mathematical and epidemiological well-

posedness as well as the behavioral impact of treated recovered populations on the 

susceptible population. In affirmation of aforementioned research goal, simulated 

results substantially indicated that under off-treatment scenario, population under 

HBV infectivity exhibited rapid extinction behavior for all 𝑡𝑓 ≤ 30 months.  

Resourcefully, the application of designated control functions aligned with 

vaccination exhibited tremendous suppression of the viral load, leading to rejuvenation 

of the recovery and the susceptible subpopulations with diminished latently and 
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acutely infected subpopulations. The overall outcome extensively dignified the study 

set goal, as results can be used for decision control policies by health sectors and 

biosciences research advancement. Moreover, the method could be replicated for 

HBV-related co-infectivity. Notably, the adverse impact of therapy abuse was not 

accounted for by this study. A process, if incorporated into existing study, could lead 

to future investigation.  
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