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Abstract: Syphilis is a sexually transmitted infection which when left untreated would
lead to major health problems. Syphilis can easily be contracted by direct contact with
Syphilis sore during vaginal, anal, or oral sex. Syphilis can also be passed on from
an infected mother to her unborn child. In this paper, a nonlinear deterministic model
of Syphilis disease was constructed to determine the dynamics of Syphilis infections.
The study deduced model’s equilibria and analyzed the local and global stability of
these equilibria. The model was extended to optimal control problem by adding time-
dependent controls that helped characterize a range of possible controls that minimized
the disease. The control system was solved qualitatively and numerically to evaluate
the effectiveness of the considered controls using Pontryagin’s Maximum Principle.
The analysis indicated that strategies B and C are considered most effective as they
substantially minimized the exposed, asymptomatic and symptomatic infectious. We
recommend that stakeholders should consider strategy B and C in their effort to miti-
gate the disease from the population as they all have the same effect of substantially
minimizing the exposed, symptomatic and asymptomatic populations.

Keywords: Syphilis infection; non-linear model; equilibria; Pontryagin’s Maximum Principle;
optimal control

1. Introduction
Syphilis can be contracted by direct contact with Syphilis sore during vaginal, anal, or

oral sex. Syphilis can also be passed on from an infected mother to her unborn child. A person
with primary Syphilis generally has a sore or sores at the original site of infection. Syphilis is
a sexually transmitted infection which when left untreated would lead to major health implica-
tions [1].

According to the CDC (CDC, 2018), the rate of new cases of syphilis plummeted in the
1990s. In 2000, it reached an all-time low since reporting began in 1941. But the disease has
been on the increase ever since. The rate of syphilis in the United States increased 71 from 2014
to 2018 [2].

If a woman becomes infected while she is pregnant, or becomes pregnant when she already
has syphilis, it can be very dangerous for her baby if not treated. Infection in pregnancy can
cause miscarriage, stillbirth or a serious infection in the baby (congenital syphilis). Screening
for syphilis during pregnancy is offered to all pregnant women so the infection can be detected
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and treated before it causes any serious problems [3].
Due to the resurgent of infectious diseases owing to drug resistance and other factors in

these days, mathematical models have become imperative as they assist in providing better
insight of how the transmission dynamics and identify various intervention strategies that could
be adopted to minimize or eradicate infections [4].

Integrating mathematical models in the fight of infectious diseases have yielded a positive
impact as several works have been able to estimate the most important threshold parameter: the
basic reproduction number from the existing data of the considered disease [5–9].

In addition, most models have been able to predict the final size of the disease and the
expected duration of which the disease would be abated. Infectious diseases have been one of
man’s enemy, as they have contributed to more deaths in the society than civil war. It is the
main source of poverty, as it deprives a Nation of its human resource base [10–13].

Lajmanovich and Yorke [14] analyzed the spread of STIs in a population is highly non
uniform. The mathematical model discussed takes this into account, splitting the population
into n groups and stability properties were studied.

Authors in [15–17] investigated mathematically many models for the spread of infectious
diseases in populations and applied to specific disease. Theorems involving the basic reproduc-
tion number R0, the contact number, and the replacement number R are reviewed for the SIR
epidemic and endemic models. Same concepts were applied to SEIR model.

Researchers in [18] examined two systematic methods presented to guide the construction
of Lyapunov functions for general infectious disease models and was applicable to establishing
their global dynamics.

A study conduct by authors in [19] findings reveal that mathematical modeling contributes
to public health by planning to allow users to estimate future outcomes of events. Models
can be used to mobilize support, strategically plan, and monitor key programmatic elements,
but they can also help inform policy environments in which programs are conceptualized and
implemented to achieve results.

Authors in [20] provided a mathematical model incorporate a dynamic risk of infection
figure prominently in the study of infectious diseases epidemiology as a tool to inform public
health policy. A study focused on the applications of transmission dynamics modeling, ex-
plains different modelling methodologies and defines commonly encountered terms to provide
an introductory and conceptual understanding of the vocabulary and frameworks used in the
study.

Researchers in [21] opine that many infectious diseases lead to re-infection. A study ex-
amined the relationship between the prevalence of repeat infection and the basic reproductive
number R0. A generic deterministic compartmental model of reinfection is solved to derive an
analytic solution.

Authors in [22], a mathematical model that explores various modelling techniques to ad-
dress debated or unanswered questions about the transmission dynamics of infectious diseases,
in particular sexually transmitted ones was developed. A compartmental model that show that
infection of uncoupled individuals is usually the predominant route, while transmission within
discordant couples is also important, but to a lesser extent.

In a study by authors [23] developed mathematical model to depict the epidemiology of
sexually transmitted infections which involved the incremental addition of various forms of
biological and behavioral structures to simple mathematical terms. Progress was made by inter-
disciplinary work between clinician, epidemiologist, and mathematician. Aiming at improving
the knowledge of how infection and diseases can best be controlled.

Garnett and Anderson [24] also examined a mathematical model which observes hetero-
geneity in sexual behavior and determine how individual variation influences epidemiological
pattern within a population. In the model, different behaviors were treated separately.
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The epidemiological role of migrants in the propagation of syphilis was studied. The
syphilis incidence rate per 100,000 of people among legal migrants was 5 to 30 times higher
than the population. The authors revealed the risk factors affecting the growth in the syphilis
incidence rate among female migrants in labor [25].

2. Model description and formulation
The subsection formulates a compartmental model for Syphilis in a a population that is

categorised into Susceptible, Sm, Exposed, Em, Asymptomatic infectious, Am, Symptomatic
infectious, Im and Recovered Rm compartments.

The total population N at any tie is denoted by N = Sm + Em + Am + Im + Rm

The model assumes that individuals are recruited into the susceptible compartment at rate Λ.
Susceptible individuals joins the exposed compartment as a result of their interaction with the
asymptomatic and symptomatic infectious at rates γλτλ and αλ.

The exposed, leaves the compartment and joins the asymptomatic infectious at rate θ,
a fraction ψm enters the asymptomatic infectious compartment, while the remaining fraction
joins the symptomatic compartment. The asymptomatic and symptomatic infectious individuals
recover by natural immunity at rates τ1 and η1 to the recovery compartment.

The symptomatic infectious individuals die as a result of the disease at a rate η2. Due
to the possibility of individuals loosing their immunity at the recovered class, the recovered
individuals re-enters the susceptible class at rate ω. Natural death µ occurs at all compartments
of themodel. The schematic describing themodel is presented inFigure 1. Hence, the nonlinear
differential equation system is given by:

Figure 1. Schematic of the Syphilis model.
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

d

dt
Sm = π − µSm + ωRm − αλImSm − γλτλAmSm

d

dt
Em = αλImSm + γλτλAmSm −

(
(1− ψm)θ + ψmθ + µ

)
Em

d

dt
Am = ψmθEm − (τ1 + µ)Am

d

dt
Im = (1− ψm)θEm − (η1 + η2 + µ)Im

d

dt
Rm = η1Im + τ1Am − (ω + µ)Rm

(1)

with Sm0
≥ 0, Em0

≥ 0, Am0
≥ 0, Im0

≥ 0 and Rm0
≥ 0

3. Boundedness of solution
Theorem 1. The set {Sm(t), Em(t), Am(t), Im(t), Rm(t)} being the solution of the state sys-
tem 1 with parameters which are not negatives is positive with the initial condition given by;

{Sm0 ≥ 0, Em0 ≥ 0, Am0 ≥ 0, Im0 ≥ 0, Rm0 ≥ 0}.

Theorem 2. The deterministic model system 1 has solutions bounded within the invariant re-
gion, Θ ∈ R5 given by;

Θ = {(Sm, Em, Am, Im, Rm) ∈ R5
+| Sm + Em +Am + Im +Rm ≤ π − µN}

Proof. It can be confirmed that N(t) = Sm + Em + Am + Im + Rm. Hence, the nonlinear
equation of system 1 is given by:

d

dt
N(t) = π − η2Im − µN (2)

d

dt
N(t) ≤ π − µN (3)

Integrating inequality 3 gives;

N(t) = N(0)e−µt +
π

µ
(1− e(−µt)) (4)

Therefore, we notice from equation 4 that the possible solution set of the state variables
Sm, Em, Am, Im, Rm is bounded and the model equation 1 is positively invariant in R5

+. □

4. Disease free equilibrium
The disease free equilibrium of the Syphilis model 1 is given by;

(Sm0
, Em0

, Am0
, Im0

, Rm0
) =

(
π

µλ
, 0, 0, 0, 0

)
(5)

5. Basic reproduction number
It measures the status of the disease at any time. Thus, the basic reproduction number

determines the possibility of disease persistence or die out of the population. It is denoted by
R0. When R0 < 1, it is a clear indication that infection will be terminated. However, when
R0 > 1, the infection will remain in the population unless strategic efforts are implemented.
In view of calculating the basic reproduction number, the method of [26] would be considered.
Thus according to [26,27], R0 is determined by;

4



Journal of AppliedMath 2024, 2(3), 179.

R0 = ρ(FV −1) (6)

The ρ is considered as the largest entry in the derivation of the next generation matrix
of R0 = ρ(FV −1), where F is the coming infection into compartment i and v. Thus, the
transfer of individuals out of compartment i by death. Technically, the R0 becomes the largest
eigenvalue of the matrix resulting from the partial derivative of 6.

What happens next is the infected compartments of model 1 is given by

d

dt
Em = αλImSm + γλτλAmSm −

(
(1− ψm)θ + ψmθ + µ

)
Em

d

dt
Am = ψmθEm − (τ1 + µ)Am

d

dt
Im = (1− ψm)θEm − (η1 + η2 + µ)Im

From the infective system, F and V are derived as follows;

F =

αλImSm + γλτλAmSm

0

0

 , V =


(
(1− ψm)θ + ψmθ + µ

)
Em

−ψmθEm + (τ1 + µ)Am

−(1− ψm)θEm + (η1 + η2 + µ)Im


When F is evaluated at (Sm0 , Em0 , Am0 , Im0 , Rm0) = (

π

µλ
, 0, 0, 0, 0), we get;

F =


0

αλ

µλ
π

αλ

µλ
τλπ

0 0 0

0 0 0



In the same way, evaluating V at (Sm0 , Em0 , Am0 , Im0 , Rm0) = (
π

µλ
, 0, 0, 0, 0) gives;

V =


(
(1− ψm)θ + ψmθ + µ

)
0 0

−(1− ψm)θ (η1 + η2 + µ) 0

−ψmθ 0 (τ1 + µ)


Hence, applying the next generation method of [28], the basic reproduction number of

model system 1 is given as;

R0 =
αλ(1− ψm)θπ

µλ

(
(1− ψm)θ + ψmθ + µ

)
(η1 + η2 + µ)

+
γλτλπ

µλ

(
(1− ψm)θ + ψmθ + µ

)
(τ1 + µ)

6. Endemic equilibrium
Consider model system 1, there exists a unique endemic equilibrium given by;

S∗
m =

π − µS∗
m + ωR∗

m

αλI∗m + γλτλA∗
m

E∗
m =

αλI
∗
mS

∗
m + γλτλA

∗
mS

∗
m(

(1− ψm)θ + ψmθ + µ
)

A∗
m =

ψmθE
∗
m

(τ1 + µ)
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I∗m =
(1− ψm)θE∗

m

(η1 + η2 + µ)

R∗
m =

η1Im + τ1Am

(ω + µ)

7. Disease free equilibrium stability analysis
Using the Hartman-Grobmann theorem as discussed in [29], we linearise the nonlinear

system of model system 1 as:

Jdf =


A 0 −αλSm −γλτλSm ω

αλIm + γλτλAm B αλSm γλτλSm 0

0 (1− ψm)θ −(η1 + η2 + µ) 0 0

0 ψmθ 0 −(τ1 + µ) 0

0 0 η1 τ1 −(ω + µ)


where A = −µλ − αλIm − γλτλAm and B = −

(
(1− ψm)θ + ψmθ + µ

)
When Jdf is evaluated at (Sm0, Em0, Im0, Am0, Rm0) = (

π

µλ
, 0, 0, 0, 0), we get

JD0
=



−µλ 0 −αλ
π

µλ
−γλτλ

π

µλ
ω

0 −
(
(1− ψm)θ + ψmθ + µ

)
αλ

π

µλ
γλτλ

π

µλ
0

0 (1− ψm)θ −(η1 + η2 + µ) 0 0

0 ψmθ 0 −(τ1 + µ) 0

0 0 η1 τ1 −(ω + µ)


Clearly, λ1 = −µλ and λ2 = −(ω + µ). It follows that the remaining matrix becomes;

−
(
(1− ψm)θ + ψmθ + µ

)
αλ

π

µλ
γλτλ

π

µλ

(1− ψm)θ −(η1 + η2 + µ) 0

ψmθ 0 −(τ1 + µ)



Let a = −
(
(1− ψm)θ + ψmθ + µ

)
, b = αλ

π

µλ
, c = γλτλ

π

µλ
, d = (1− psim)θ

e = −(η1 + η2 + µ), f = ψmθ, g = −(τ1 + µ)

The characteristic equation is given by;

Y 3
1 + a0Y

2
2 + a1Y1 + a2 (7)

where
a0 = (a+ e+ g)

a1 = (ae− bd+ ag − cf + eg)

a2 = (aeg − bdg − cef)
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8. Global stability analysis of the disease-free equilibrium
The present subsection gives a discussion of the method of global asymptotic stability

analysis of Castillo-Chavez’s et al. [30,31] for model 1 as follows;

dh1
dt

= A(h1, h2),

dh2
dt

= B(h1, h2),

where h1 and h2 represents respectively the number of uninfected and infected individuals. It
follows that h1 =

(
Sm, Rm

)
∈ R2 and h2 =

(
Em, Im, Am

)
∈ R3. Then, the disease-free

equilibrium E0 for the model system 1 is denoted by E0 = (h01, 0). Hence, the global stability
at E0 would be satisfied on below conditions;

• Given
dh1
dt

= A(h1, 0), h
0
1 is globally asymptotically stable.

• B(h1, h2) = Dh2−B̂(h1, h2), where B̂(h1, h2) ≥ 0 for (h1, h2) ∈ τ1

where D = Ph2B(h01, 0) is an M-matrix, with a positive off-diagonal entries and τ1 is the
feasible biological region of model 1. When the above conditions are satisfied by model system
1, then the underlying theorem holds.

Theorem 3. When R0 < 1 and th two conditions above are satisfied, then, the equilibrium
point E0 = (h01, 0) is globally asymptotically stable.

Proof. With model 1, we deduces;
dh1
dt

= B(h1, h2)

dh1
dt

=

(
π − µλSm − αλImSm − γλτλAmSm + ωRm

η1Im + τ1Am − µRm − ωRm

)
,

HenceB(h1, 0) becomes,H(h1, 0) =

(
π − µλSm0

0

)
, andB(h1, h2) = Dh2−B̂(h1, h2)

is given by Dh2−B̂(h1, h2), where Dh2−B̂(h1, h2) = is;−
(
(1− ψm)θ + ψmθ + µ

)
αλSm0

γλτλSm0

(1− ψm)θ −(η1 + η2 + µ) 0

ψmθ 0 −(τ1 + µ)


Em

Im

Am



−

αλIm(Sm0 − Sm) γλτλAm(S0 − Sm) 0

0 0 0

0 0 0,


with

D =

−
(
(1− ψm)θ + ψmθ + µ

)
αλSm0

γλτλSm0

(1− ψm)θ −(η1 + η2 + µ) 0

ψmθ 0 −(τ1 + µ)


and

B(y1, y2) =

αλIm(Sm0 − Sm) γλτλAm(S0 − Sm) 0

0 0 0

0 0 0


As can be seen, the total population ofmodel 1 is bounded bySm0 . ThusSm, Em, Im, Am,

Rm ≤ Sm0 , and αλSm ≤ αλSm0 , γλτλSm ≤ γλτλSm0 which implies B̂(h1, h2) is positive
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definite. Additionally, matrix D is an M-matrix, with the off-diagonal entries positive. Hence,
the requirement of the two conditions are met, which is a proof of the globally asymptotically
stability of E0. □

9. Stability analysis of endemic equilibrium
This section studies systematically the local and global stability of the Syphilis model 1 at

theEDE. Lyapunov stability theorem is therefore applied to study the global stability [32–34].

Theorem 4. The Syphilis endemic equilibriumEDE = (S∗
m, E

∗
m, I

∗
m, A

∗
m, R

∗
m) for the model

system (1) is locally asymptomatically stable when R0 > 1.

Proof. The Jacobian JEDE at the endemic equilibrium (S∗
m, E

∗
m, I

∗
m, A

∗
m, R

∗
m) is analyzed as

follows:

JEDE =


A 0 −αλSm −γλτλSm ω

αλIm + γλτλAm B αλSm γλτλSm 0

0 (1− ψm)θ −(η1 + η2 + µ) 0 0

0 ψmθ 0 −(τ1 + µ) 0

0 0 η1 τ1 −(ω + µ)


where A = −µλ − αλIm − γλτλAm and B = −

(
(1− ψm)θ + ψmθ + µ

)
.

When the Jacobian is evaluated at (S∗
m, E

∗
m, I

∗
m, A

∗
m, R

∗
m);

JEDE =


A1 0 −αλS

∗
m −γλτλS∗

m ω

αλI
∗
m + γλτλA

∗
m B1 αλS

∗
m γλτλS

∗
m 0

0 (1− ψm)θ −(η1 + η2 + µ) 0 0

0 ψmθ 0 −(τ1 + µ) 0

0 0 η1 τ1 −(ω + µ)


where A1 = −µλ − αλI

∗
m − γλτλA

∗
m and B1 = −

(
(1− ψm)θ + ψmθ + µ

)
. □

We choose
k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15 such that
k1 = −µλ−αλI

∗
m−γλτλA∗

m, k2 = −αλS
∗
m, k3 = −γλτλS∗

m, k4 = ω, k5 = αλI
∗
m+γλτλA

∗
m,

k6 = −
(
(1 − ψm)θ + ψmθ + µ

)
, k7 = αλS

∗
m, k8 = γλτλS

∗
m, k9 = (1 − d)θ, k10 =

−(η1 + η2 + µ), k11 = ψmθ, k12 = −(τ1 + µ), k13 = η1, k14 = τ1, k15 = −(ω + µ).

then, the characteristic equation of model 1 at the endemic equilibrium becomes;

T 5 + p0T
4 + p1T

3 + p2T
2 + p3T1 + p4 = 0 (8)

where

p0 = k1 + k6 + k10 + k12 + k15

P1 = k1k6 + k1k10 + k1k12 + k6k10 − k7k9 + k1k15 + k6k9 − k8k12 + k6k15 + k10k12

+ k10k15 + k12k15

p2 = k2k5k9 + k1k6k10 − k1k7k9 + k1k6k12 + k3k5k11 − k1k8k11 + k1k6k15 + k1k10k12

+ k1k10k15 + k6k10k12 − k7k9k12 + k1k12k15 − k8k10k11 + k6k10k15 − k7k9k15

+ k6k12k15 − k8k11k15 + k10k12k15

8
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p3 = k1k6k10k15 − k1k7k9k15 − k4k5k11k14 + k1k6k12k15 + k3k5k11k15 − k1k8k11k15

+ k1k10k12k15 + k6k10k12k15 − k7k9k12k15 − k8k10k11k15 + k2k5k9k12 + k1k6k10k12

− k1k7k9k12 + k3k5k10k11 − k1k8k10k11 − k4k5k9k13 + k2k5k9k15

p4 = −k4k5k9k12k13 + k2k5k9k12k15 − k4k5k10k11k14 + k1k6k10k12k15 − k1k7k12k9k15

+ k3k5k10k11k15 − k1k8k10k11k15

Based on Routh-Hurwitz stability criterion [35], for the characteristics equation 8, is given
by;

T =



T1 T3 T5

T0 T2 T4

0 T1 T3

0 T0 T2

0 0 T1

0 0 T0

0 0 0



> 0

The condition requires that the characteristics equation 8 have all positive coefficients,
indicating that the eigenvalues are negatives. The fulfilment of this condition implies that the
EDE is stable. Otherwise, it is unstable.

Theorem 5. When R0 ≥ 1, the endemic equilibrium (S∗
m, E

∗
m, I

∗
m, A

∗
m, R

∗
m) of model 1 is

globally stable when Sm = S∗
m, Em = E∗

m, Im = I∗m, Am = A∗
m, and Rm = R∗

m, otherwise
unstable.

Proof. We consider a Lyapunov function of the form

Lya =

(
Sm − S∗

m − S∗
mln

(
Sm

S∗
m

))
+

(
Em − E∗

m − E∗
mln

(
Em

E∗
m

))
+(

Im− I∗m− I∗mln
(
Im
I∗m

))
+

(
Am−A∗

m−A∗
mln

(
Am

A∗
m

))
+

(
Rm−R∗

m−R∗
mln

(
Rm

R∗
m

))
.

When Lya is differentiated with respect to time;

dLya

dt
=

(
Sm − S∗

m

Sm

)
dSm

dt
+

(
Em − E∗

Hh

Em

)
dEm

dt
+

(
Im − I∗m
Im

)
dIm
dt

+

(
Am −A∗

m

Am

)
dAm

dt
+

(
Rm −R∗

m

Rm

)
dRm

dt
(9)

9
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dLya

dt
=

(
Sm − S∗

m

Sm

)(
π − µ(Sm − S∗

m) + ω(Rm −R∗
m)− αλ(Im − I∗m)(Sm − S∗

m)− γλτλ(Am −A∗
m)(Sm − S∗

m)

)

+

(
Em − E∗

Hh

Em

)(
αλ(Im − I∗m)(Sm − S∗

m) + γλτλ(Am −A∗
m)(Sm − S∗

m)−
(
(1− ψm)θ + ψmθ + µ

)
(Em − E∗

m)

)

+

(
Im − I∗m
Im

)(
(1− ψm)θ(Em − E∗

m)− (η1 + η2 + µ)(Im − Im∗)
)

+

(
Am −A∗

m

Am

)(
ψmθ(Em − E∗

m)− (τ1 + µ)(Am −A∗
m)

)
+

(
Rm −R∗

m

Rm

)(
η1(Im − I∗m) + τ1(Am −A∗

m)− (ω + µ)(Rm −R∗
m)

)
(10)

dLya

dt
=

(
π

(
Sm − S∗

m

Sm

)
− µ

(
(Sm − S∗

m)2

Sm

)
+ ω(Rm −R∗

m)

(
Sm − S∗

m

Sm

)
− αλ(Im − I∗m)

(
(Sm − S∗

m)2

Sm

)

− γλτλ(Am −A∗
m)

(
(Sm − S∗

m)2

Sm

))

+

(
αλ(Im − I∗m)(Sm − S∗

m)

(
Em − E∗

Hh

Em

)
+ γλτλ(Am −A∗

m)(Sm − S∗
m)

(
Em − E∗

Hh

Em

)
−
(
(1− ψm)θ + ψmθ + µ

)( (Em − E∗
Hh)

2

Em

))

+

(
(1− ψm)θ(Em − E∗

m)

(
Im − I∗m
Im

)
− (η1 + η2 + µ)

(
(Im − I∗m)2

Im

))
+

(
ψmθ(Em − E∗

m)

(
Am −A∗

m

Am

)
− (τ1 + µ)

(
(Am −A∗

m)2

Am

))
+

(
η1(Im − I∗m)

(
Rm −R∗

m

Rm

)
+ τ1(Am −A∗

m)

(
Rm −R∗

m

Rm

)
− (ω + µ)

(
(Rm −R∗

m)2

Rm

))

(11)

10
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dLya

dt
=

(
π − π

(
S∗
m

Sm

)
− µ

(
(Sm − S∗

m)2

Sm

)
+ ω(Rm −R∗

m)

(
Sm − S∗

m

Sm

)
− αλ(Im − I∗m)

(
(Sm − S∗

m)2

Sm

)

− γλτλ(Am −A∗
m)

(
(Sm − S∗

m)2

Sm

))
+

(
αλ(Im − I∗m)(Sm − S∗

m)

(
Em − E∗

Hh

Em

)

+ γλτλ(Am −A∗
m)(Sm − S∗

m)

(
Em − E∗

Hh

Em

)
−
(
(1− ψm)θ + ψmθ + µ

)( (Em − E∗
Hh)

2

Em

))

+

(
(1− ψm)θ(Em − E∗

m)

(
Im − I∗m
Im

)
− (η1 + η2 + µ)

(
(Im − I∗m)2

Im

))
+

(
ψmθ(Em − E∗

m)

(
Am −A∗

m

Am

)
− (τ1 + µ)

(
(Am −A∗

m)2

Am

))
+

(
η1(Im − I∗m)

(
Rm −R∗

m

Rm

)
+ τ1(Am −A∗

m)

(
Rm −R∗

m

Rm

)
− (ω + µ)

(
(Rm −R∗

m)2

Rm

))

With careful manipulation of the above algebraic expression;

dLya

dt
= P1 − P2

where

P1 = π + ω(Rm −R∗
m)

(
Sm − S∗

m

Sm

)
+ αλ(Im − I∗m)(Sm − S∗

m)

(
Em − E∗

Hh

Em

)
+ γλτλ(Am −A∗

m)(Sm − S∗
m)

(
Em − E∗

Hh

Em

)
+ (1− ψm)θ(Em − E∗

m)

(
Im − I∗m
Im

)
+ ψmθ(Em − E∗

m)

(
Am −A∗

m

Am

)
+ η1(Im − I∗m)

(
Rm −R∗

m

Rm

)
+ τ1(Am −A∗

m)

(
Rm −R∗

m

Rm

)

and

P2 = π

(
S∗
m

Sm

)
+ µ

(
(Sm − S∗

m)2

Sm

)
+ αλ(Im − I∗m)

(
(Sm − S∗

m)2

Sm

)
+ γλτλ(Am −A∗

m)

(
(Sm − S∗

m)2

Sm

)
+ ((1− ψm)θ + ψmθ + µ

)( (Em − E∗
Hh)

2

Em

)
+ (η1 + η2 + µ)

(
(Im − I∗m)2

Im

)
+ (τ1 + µ)

(
(Am −A∗

m)2

Am

)
+ (ω + µ)

(
(Rm −R∗

m)2

Rm

)

Evidently, the inequality P1 ≤ P2 can be affirmed. It can therefore be verified that
dLya

dt
≤ 0 when P1 ≤ P2. Hence

dLya

dt
= 0, when Sm = S∗

m, Em = E∗
m, Am = A∗

m,Im =

I∗m and Rm = R∗
m. Hence the largest compact invariant set {(Sm, Em, Am, Im, Rm) ∈ Υ :

dLyadt} = 0 is the singleton endemic equilibrium. Hence, from [36–38], EE is globally asymp-
totically stable. □

10. Optimal control model formulation
Identifying strategies that will help to mitigate the Syphilis infection, we introduced two

controls that are time dependent by modifying model system 1. These are personal protection,
u1 and treatment, u2 controls to examine their impact on the disease. Hence, the control system

11
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becomes:

d

dt
Sm = π − µSm + ωRm − (1− u1)αλImSm − (1− u1)γλτλAmSm

d

dt
Em = (1− u1)αλImSm + (1− u1)γλτλAmSm +

(
(1− ψm)θ + ψmθ + µ

)
Em

d

dt
Am = ψmθEm − (τ1 + µ)Am

d

dt
Im = (1− ψm)θEm − (η1 + η2 + u2 + µ)Im

d

dt
R = η1Im + τ1Am + u2Im − (ω + µ)Rm

(12)

The objective functional J that minimizes the exposed and infectious individuals and
maximizes the recovered through treatment control of u2 is denoted by J is given by:

J(u1, u2) =

∫ tf

0

[
B1Em +B2Im +B3Am +

1

2
(b1u

2
1 + b2u

2
2)

]
.dt (13)

The quantitiesB1, B2 andB3 are the coefficients of the exposed, symptomatic and asymp-

tomatic individuals. The terms
b1u

2
1

2
and

b2u
2
2

2
are the cost related to minimizing the exposed,

symptomatic and asymptomatic individuals. It follows that, we seek an optimal u∗1, u∗2 such
that:

J (u∗1, u
∗
2) = min{J(u1, u2) : (u1, u2) ∈ U} (14)

with

U = {(u1, u2)| where 0 ≤ u1, u2 ≤ 1, is Lebesgue measurable} (15)

The Pontryagin’s maximum principle [39] converts 21 and 13 into a minimization of the
Hamiltonian (H), where

H =

[
B1Em +B2Im +B3Am +

1

2
(b1u

2
1 + b2u

2
2)

]
+ λ1{π − µSm + ωRm − (1− u1)αλImSm

− (1− u1)γλτλAmSm}+ λ2{(1− u1)αλImSm + (1− u1)γλτλAmSm +
(
(1− ψm)θ+

ψmθ + µ
)
Em}+ λ3{ψmθEm − (τ1 + µ)Am}+ λ4{(1− ψm)θEm − (η1 + η2 + u2 + µ)Im}

+ λ5{η1Im + τ1Am + u2Im − (ω + µ)Rm} (16)

Theorem 6. There exists an optimal control U∗ = (u∗1, u
∗
2) ∈ U such that

J (u∗1, u
∗
2) = min

U
J (u1, u2), (17)

subject to the control system 21 with the initial conditions.

Proof. As evidence in [40], the existence of the optimal control can be be proved. The state
and control variables are positive values. It follows that in minimizing the control problem, the
necessary and convexity of the objective functional in u1 and u2 are satisfied. The control space
U = {u|u1, u2 are measurable, 0 ≤ u1, u2 ≤ umax < ∞, t ∈ [0, tf ]} is also convex and
closed by definition. The optimal system is bounded which confirms the compactness needed

for the existence of the optimal control. Further, the integrand in the functional 13,
[
B1Em +

B2Im +B3Am +
1

2
(b1u

2
1 + b2u

2
2)

]
is convex on the control u. Also, we see that there exist a

12
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constant p > 1, positive numbers u1 and u2 such that, J(u1, u2) ≥ u1
(
|u1|2 + |u2|2

)p
2 − u2.

□
Therefore we conclude that there exist an optimal control.
Hence, the derivation of optimal solution is done by applying the Pontyagins’s maximum

principle [39] to the Hamiltonian 16 such that given (x, u) is an optimal solution of the optimal
control problem, then there exist a non-trivial vector function λ = (λ1 . . . λ5) satisfying the
below equation;

dx

dt
=
∂H(t, x, u, λ)

∂λ

0 =
∂H(t, x, u, λ)

∂u
dλ

dt
=
∂H(t, x, u, λ)

∂x

(18)

Hence, the necessary condition is applied to the Hamiltonian 16.

Theorem 7. Given that Sm, Em, Am, Im and Rm are optimal state solutions with associated
control variables (u∗1, u∗2) for the optimal control problem 21 and 13, then there exist adjoint
variables λi for i = 1, . . . , 5, satisfying;

d

dt
λ1 = µλλ1 + (λ1 − λ2)(1− u1)αλIm + (λ1 − λ2)(1− u1)γλτλAm

d

dt
λ2 = −B1 + (1− ψm)θ(λ2 − λ3) + (λ2 − λ4)ψmθ + µλ

d

dt
λ3 = −B2 + (λ1 − λ2)(1− u1)αλSm + (λ3 − λ5)n1 + (λ3 − λ5)u2 + (n2 + µλ)λ3

d

dt
λ4 = −B3 + (λ1 − λ2)(1− u2)γλτλSm + (λ4 − λ5)τ1 + µλλ4

d

dt
λ5 = µλλ5 + (λ5 − λ4)ω

with boundary condition;
λi(tf ) = 0, i = 1, 2, . . . , 5 (19)

In addition, the optimal control u∗1 and u∗2 are given by

u′1 = min

{
1,max

{
0,

(
λ2 − λ1)

αλImSm

d1
+ (λ2 − λ1)

γλτλAmSm

d1

)}}

u′2 = min

{
1,max

{
0, (λ3 − λ5)

αλIm
d2

}} (20)

Proof. The adjoint and transversality conditions are derived by utilizing the Hamiltonian 16.
Thuswe equateSm = S∗

m,Em = E∗
m,Am = A∗

m, Im = I∗m andRm = R∗
m and differentiating

the Hamiltonian with respect to Sm, Em, Am, Im and Rm to obtain ??. Further, the equations
∂H

∂u1
= 0 and

∂H

∂u2
= 0 are determined on the interior of control set and using the optimality

conditions and the property of the control space u1 and u2, we can determine. From 20, we
can characterize the control which is found by solving the optimality system. In solving the
optimality system, the transversality and the characterization of the optimal control (u1, u2)
are use. □

When the control u∗1 and u∗2 are substituted into the controls system 21, it gives;

13
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

d

dt
Sm = π + ωRm −

(
1−min

{
1,max

{
0,

(
λ2 − λ1)

αλImSm

d1
+ (λ2 − λ1)

γλτλAmSm

d1

)}})
αλImSm

−(1− u1)γλτλAmSm − µSm

d

dt
Em =

(
1−min

{
1,max

{
0,

(
λ2 − λ1)

αλImSm

d1
+ (λ2 − λ1)

γλτλAmSm

d1

)}})
αλImSm

+(1− u1)γλτλAmSm +
(
(1− ψm)θ + ψmθ + µ

)
Em

d

dt
Am = ψmθEm − (τ1 + µ)Am

d

dt
Im = (1− ψm)θEm − (η1 + η2 +min

{
1,max

{
0, (λ3 − λ5)

αλIm
d2

}}
+ µ)Im

d

dt
R = η1Im + τ1Am +min

{
1,max

{
0, (λ3 − λ5)

αλIm
d2

}}
Im − (ω + µ)Rm

(21)

11. Numerical simulations
We examined the retrospective impact of the underlying control strategies on the model

by considering the controls such as personal protection, u1 and treatment, u2 to assessed for
their effectiveness. Table 1 shows the parameter values used in the numerical simulations.

Table 1. Typhoid fever model Parameters.

Parameter Description Value Reference

π Recruitment rate 100 Assumed
αλ Transmission rate 0.8 Assumed
γλ Modifying parameter accounting for infec-

tiousness of Syphilis infected individuals in
the exposed class

0.02 Assumed

τλ Transmission rate 0.5 [41]
ψmθ Proportion of individuals who leave the ex-

posed
0.006 Assumed

τ1 rate at which individuals leave the Asymp-
tomatic to the recovered class

0.06 Assumed

µ Rate at which individuals naturally leaves the
compartment

0.03 [42]

η1 Rate at which individual leave the infected to
recovered class

0.3 Assumed

η2 Disease induced death 0.068 [43]
ω Re-infection rate 0.6 [43]

11.1. Strategy A
Strategy A sets u1 = 0 and uses u2 ̸= for the simulation. Figures 2 of 2(a) and 2(b) are

the simulated graphs of the exposed and asymptomatic infectious populations.
The control has a positive effects on the expose population and that of the asymptomatic

populations as shown in the diagram.
Figures 3 of 3(a) and 3(b) are the simulated graphs of the symptomatic infectious popula-

tions and the control plot. The control has a positive effects on the symptomatic population as

14
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shown in the diagram.
Figure 3 of b(b) is the control profile plot of strategy A. We noticed that the treatment

control remained at the upper bound till about 190 days when it dropped to the lower bound
and stayed there for the remaining time. The control profile graph means that treatment of
individuals could be relaxed after 190 days.
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Figure 2. (a) Expose population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0 and (b) Asymptotic
population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0.
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Figure 3. (a) Symptomatic population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0 and (b) Control
plots with u1 ≠ 0,u2 ̸= 0 and u3 ̸= 0.

11.2. Strategy B
Strategy B sets u1 ̸= 0 and uses u2 = 0 for the simulation. Figures 4 of 4(a) and 4(b)

are the simulated graphs of the exposed and asymptomatic infectious populations.
The control has a huge impact on the expose population and that of the asymptomatic

populations as shown in the diagram. Strategy B is seen to be a better option as compared to
strategy A but takes longer days to be implemented as well.

Figures 5 of 5(a) and 5(b) are the simulated graphs of the symptomatic infectious pop-
ulations and the control plot. Control has a positive effects on the symptomatic population as
shown in the diagram. Figure 5 of 5(b) is the control profile plot of strategy A.

We noticed that the treatment control remained at the upper bound till about 200 days
when it dropped to the lower bound and stayed there for the remaining time. The control profile
graph means that treatment of individuals could be relaxed after 200 days.
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Figure 4. (a) Expose population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0 and (b) Asymptomatic
population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0.
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Figure 5. (a) Symptomatic population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0 and (b) Control
plots with u1 ≠ 0,u2 ̸= 0 and u3 ̸= 0.

11.3. Strategy C
In strategy C, we set u1 ̸= 0 and uses u2 ̸= 0 for the simulation. Figures 6 of 6(a) and

6(b) are the simulated graphs of the exposed and asymptomatic infectious populations.
The control has a huge impact on the expose population and that of the asymptomatic

populations as shown in the diagram. Strategy C seem to have a better impact as compared to
strategy A but takes longer days to be implemented as well.

Figures 7 of 7(a) and 7(b) are the simulated graphs of the symptomatic infectious popu-
lations and the control plot.

The control has a positive effects on the symptomatic population as shown in the diagram.
Figure 7 of 7(b) is the control profile plot of strategy A. The treatment control remained

at the upper bound till about 200 days when it dropped to the lower bound and stayed there for
the remaining time. This means that treatment of individuals could be relaxed after 200 days.
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Figure 6. (a) Expose population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0 and (b) Asymptomatic
population with u1 ̸= 0,u2 ̸= 0 and u3 ̸= 0.
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Figure 7. (a) Symptomatic population with u1 ̸= 0,u2 ̸= 0, u3 ̸= 0 and (b) Control
plots with u1 ≠ 0,u2 ̸= 0 and u3 ̸= 0.

11.4. Conclusions
In this paper, a nonlinear deterministic model of Syphilis disease was constructed to de-

termine the dynamics of Syphilis infections. The study deduced the model’s equilibria and
analyzed the local and global stability of these equilibria.

The model was extended to optimal control problem by adding time-dependent controls
that helped characterize a range of possible controls that minimized the disease.

The control system was solved qualitatively and numerically to evaluate the effectiveness
of the considered controls using Pontryagin’s Maximum Principle. The analysis indicated that
strategies B and C are considered most effective as they substantially minimized the exposed,
asymptomatic and symptomatic infectious.

We recommend that stakeholders should consider strategy B and C in their effort to miti-
gate the disease from the population as they all have the same effect of substantially minimizing
the exposed, symptomatic and asymptomatic populations.
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