
Journal of AppliedMath 2024, 2(5), 1771. 

https://doi.org/10.59400/jam1771 

1 

Article 

On the relation between perfect powers and tetration frozen digits 

Marco Ripà 

Independent Researcher, Rome, Italy; marcokrt1984@yahoo.it 

Abstract: This paper provides a link between integer exponentiation and integer tetration since 

it is devoted to introducing some peculiar sets of perfect powers characterized by any given 

value of their constant congruence speed, revealing a fascinating relation between the degree 

of every perfect power belonging to any congruence class modulo 20 and the number of digits 

frozen by these special tetration bases, in radix-10, for any unit increment of the hyperexponent. 

In particular, given any positive integer c, we constructively prove the existence of infinitely 

many c-th perfect powers having a constant congruence speed of c. 
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1. Introduction 

We explore a tool in modular arithmetic that predicts patterns among the right-

hand digits of terms in rapidly growing sequences arising from power towers, thereby 

reducing computational overhead. One primary application of this approach is in 

cryptography, particularly within modular exponentiation algorithms. With the 

possible advent of quantum computers, this method could potentially improve the 

performance and security of encryption algorithms. Additionally, the results discussed 

here have implications for enhancing the efficiency of pseudorandom number 

generators (PRNGs) that rely on modular arithmetic. 

For clarity, we will denote ℕ0 as the set of nonnegative integers (including zero) 

and ℕ as the set of positive integers {1, 2, 3, … }. 

In recent years, by assuming the standard decimal numeral system (radix-10), we 

have shown that the integer tetration 𝑎 ≔ {
𝑎 if 𝑏 = 1

𝑎( 𝑎⬚
𝑏−1 ) if 𝑏 ≥ 2⬚

𝑏  has a unique property 

[1] involving the number of new frozen rightmost digits for any unit increment of its 

hyperexponent, 𝑏 ∈ ℕ  [2,3]. Indeed, this value no longer depends on 𝑏  as 𝑏 

becomes sufficiently large (see the sequence A372490 in the On-Line Encyclopedia 

of Integer Sequences [4]) and the tetration base, 𝑎 ∈ ℕ, is not a multiple of 10. 

We refer to the mentioned property as the constancy of the congruence speed of 

tetration (see Definition 1 and also the comments of the OEIS sequence A317905). 

From [2], we know that each positive integer 𝑎 ≥ 2, which is not a multiple of 

10 , is characterized by a finite, strictly positive, integer value of its constant 

congruence speed (the map of the constant congruence speed of every 𝑎 as above is 

provided by [2,3]). 

Then, the present paper aims to constructively prove the existence of infinitely 

many perfect powers having any given positive constant congruence speed. 

A pleasant result, that follows from Theorem 3 as a corollary, is the existence, 

for any given positive integer 𝑐 , of infinitely many 𝑐-th perfect powers (i.e., an 

integer 𝑎 > 1 is a 𝑐-th perfect power if there exist some integers 𝑎̃ and 𝑐 such that 
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𝑎 = 𝑎̃𝑐, so we have perfect squares if 𝑐 = 2, perfect cubes if 𝑐 = 3, and so forth) 

having a constant congruence speed of 𝑐. 

2. Preliminary investigations with the automorphic numbers 

In order to present the results compactly, let us properly define the constant 

congruence speed of tetration as already done in [3, p. 442], Definitions 1.1 and 1.2. 

Definition 1. Let 𝑛 ∈ ℕ0  and assume that 𝑎 ∈ ℕ − {1} is not a multiple of 10. 

Then, given 𝑎 ≡ 𝑎 (𝑚𝑜𝑑 10𝑛)  ∧  𝑎 ≢ 𝑎 (𝑚𝑜𝑑 10𝑛+1)⬚
𝑏

⬚
𝑏−1

⬚
𝑏

⬚
𝑏−1 , for all 𝑏 ∈ ℕ , 

𝑉(𝑎, 𝑏)  returns the nonnegative integer such that 

𝑎 ≡ 𝑎 (𝑚𝑜𝑑 10𝑛+𝑉(𝑎,𝑏)) ∧  𝑎 ≢ 𝑎 (𝑚𝑜𝑑 10𝑛+𝑉(𝑎,𝑏)+1)⬚
𝑏+1

⬚
𝑏

⬚
𝑏+1

⬚
𝑏 , and we define 

𝑉(𝑎, 𝑏) as the congruence speed of the base 𝑎  at the given height of its 

hyperexponent 𝑏. 

Furthermore, let 𝑏̅ ≔ min{𝑏 ∈ ℕ ∶ 𝑉(𝑎, 𝑏) = 𝑉(𝑎, 𝑏 + 𝑘) for all 𝑘 ∈ ℕ}  so 

that we define, as constant congruence speed of 𝑎 , the positive integer 𝑉(𝑎) ∶=

𝑉(𝑎, 𝑏̅). 

In general, we know that a sufficient but not necessary condition for having 

𝑉(𝑎) = 𝑉(𝑎, 𝑏̅) is to set 𝑏̅ ≔ 𝑎 + 1, and for a tighter bound on 𝑏̅ ≔ 𝑏̅(𝑎), holding 

for any 𝑎 ≢ 0 (mod 10), see [3, p. 450]. 

As a clarifying example, let us consider the case 𝑎 = 807 . Then, we have 

𝑉(807, 1) = 0 , 𝑉(807, 2) = 4 , 𝑉(807, 3) = 4 , 𝑉(807, 4) = 4 , 𝑉(807, 5) = 4 , 

and finally𝑉(807, 6) = 𝑉(807, 7) = ⋯ = 𝑉(807) = 3  since 𝜈5(8072 + 1) + 2 =

4 + 2 = 6 (by [3, Definition 2.1]) and 

807⬚
1 = 807; 

807 ≡ 549620396283318273888501737943 (mod 1030)⬚
2 ; 

807 ≡ 601692651466822940525632857943 (mod 1030)⬚
3 ; 

807 ≡ 146336906474874632626032857943 (mod 1030)⬚
4 ; 

807 ≡ 355034907448973150626032857943 (mod 1030)⬚
5 ; 

807 ≡ 478635689812283150626032857943 (mod 1030)⬚
6 ; 

807 ≡ 027048888762283150626032857943 (mod 1030)⬚
7 ; 

⋮ 

807 ≡ 803001638762283150626032857943 (mod 1030)
⬚

(1 googleplex)
. 

Lemma 1. Let 𝑎 ∈ ℕ be such that 𝑎 ≢ 0 (𝑚𝑜𝑑 10). Then, for all 𝑡 ∈ ℕ0 , there 

exist infinitely many 𝑐 ∈ ℕ such that 𝑉(𝑎𝑐) = 𝑡. 

Proof of Lemma 1. Disregarding the special case t = 0, this proof immediately 

follows from Definition 1. □ 

For any integer a > 1 which is not a multiple of 10, the constant congruence 

speed of the tetration a⬚
b  is well-defined and it is the same for any b ∈

{a + 1, a + 2, a + 3, … }. Thus, by the last line of Equation (2) in [2], it is sufficient to 

consider â ≔ 10t − 1 so that V(â) = t is true for any given positive integer t, and 
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then we can easily complete the proof by observing that V(1) = 0 as stated in [3, 

Definition 1.3]. 

Trivially, 𝑉(𝑎̂, 𝑏) = 𝑉(𝑎̂, 𝑏 + 1) = 𝑉(𝑎̂, 𝑏 + 2) = ⋯ is certainly true for every 

integer 𝑏 ≥ 𝑎̂ + 1 and, by assuming that 𝑡 ∈ ℕ, for all the aforementioned values of 

𝑏, we have that 𝑎̂ = 10𝑡 − 1 implies 𝑉(𝑎̂, 𝑏) = 𝑡 (while from 𝑎 = 1 ⇒ 𝑡 = 0 it 

follows that 𝑉(1𝑐) = 0 for any nonnegative integer 𝑐). 

Consequently, let 𝑡 ∈ ℕ , assume 𝑏 ∈ {10𝑡,  10𝑡 + 1,  10𝑡 + 2, … } , and then 

𝑉((10𝑡 − 1)𝑐 , 𝑏) = 𝑉((10𝑡 − 1)𝑐) = 𝑡  is true for any 𝑐 ∈

{ (10𝑡 − 1)⬚
𝑏−1 , (10𝑡 − 1)⬚

𝑏 , (10𝑡 − 1),⬚
𝑏+1 … }  so that the proof of Lemma 1 is 

complete. 

Thus, Lemma 1 shows the existence of infinitely many 𝑐 -th powers of the 

tetration base 𝑎 ∶ 𝑎 ≡ 1, 2, 3, 4, 5, 6, 7, 8, 9 (mod 10) that are characterized by any 

given (arbitrarily large) nonnegative constant congruence speed. 

Remark 1. We note that, in radix-10, there exist only three positive 1-automorphic 

numbers and they are congruent modulo 100 to 1, 25, and 76 (respectively). Thus, 

the corresponding three integers found by considering the two rightmost digits of the 

analogous solutions of the fundamental 10-adic (decadic) equation 𝑦5 = 𝑦, by [2, 

Equation (2)] (see also the OEIS sequences A018247 and A018248), describe 1-

automorphic numbers [5] (e.g., 𝛼76 ↦ 𝑎76 ≔ 76 since 762 ≡ 76 (𝑚𝑜𝑑 102) and 

we know that [6], in radix-10 , there are only four 10-adic solutions, including 

𝛼00 ≔. . .000000, to the equation 𝑦2 = 𝑦). Consequently, by looking at lines 4, 5, 

and 7 of Equation (16) in [3], we can see that the recurrences described by Equations 

(1)–(3) hold for every 𝑐 ∈ ℕ. 

𝑎̃ ≡ 6 (mod 10) ⇒ 𝑉(𝑎̃) {
= 𝑉(𝑎̃𝑐) iff 𝑐 ≡ 1, 2, 3, 4 (mod 5)

≤ 𝑉(𝑎̃𝑐) iff 𝑐 ≡ 0 (mod 5)
 (1) 

𝑎̃ ≡ 5 (mod 20) ⇒ 𝑉(𝑎̃) {
= 𝑉(𝑎̃𝑐) iff 𝑐 ≡ 1 (mod 2)

≤ 𝑉(𝑎̃𝑐) iff 𝑐 ≡ 0 (mod 2)
 (2) 

𝑎̃ ≡ 1 (mod 20) ⇒ 𝑉(𝑎̃) {
= 𝑉(𝑎̃𝑐) iff 𝑐 ≡ 1, 2, 3, 4 (mod 5)

≤ 𝑉(𝑎̃𝑐) iff 𝑐 ≡ 0 (mod 5)
 (3) 

The investigation of this observation (with specific reference to Equation (2)) 

leads us to the following theorem. 

Theorem 1. For each 𝑐 ∈ ℕ, there exist infinitely many 𝑎 ∶ 𝑎 ≡ 5 (𝑚𝑜𝑑 20) such 

that √𝑎
𝑐

∈ ℕ ∧  𝑉(√𝑎
𝑐

) = 𝑡 ∧  𝑉(𝑎) ≥ 𝑡 holds for all 𝑡 ∈ ℕ − {1}. Symmetrically, 

for each 𝑡 ∈ ℕ − {1} , there exist infinitely many 𝑎 ∶ 𝑎 ≡ 5 (𝑚𝑜𝑑 20)  such that 

√𝑎
𝑐

∈ ℕ ∧  𝑉(√𝑎
𝑐

) = 𝑡 ∧  𝑉(𝑎) ≥ 𝑡 holds for all 𝑐 ∈ ℕ. 

Proof of Theorem 1. Let us (constructively) prove first the last statement of Theorem 

1 since it simply follows from the constancy of the congruence speed as it has been 

shown in [2, Section 2.1]. □ 

Let the symbol “_” indicate the juxtaposition of consecutive digits (e.g., 3_6_1 =

36_1 = 3_61 = 361). Consider the rightmost 𝑡 ∈ ℕ − {1}  digits of the 10 -adic 

integer 𝛼25 ≔ {52𝑛
}

∞
, say 𝑥𝑡_𝑥𝑡−1_ … _2_5, and then juxtapose to the left the (𝑡 +

1)-th digit plus 1 if 𝑥𝑡+1 ≤ 8 or the (𝑡 + 1)-th digit minus 1 if 𝑥𝑡+1 = 9. 
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So, let 𝑥̃𝑡+1 ≔ {
 𝑥𝑡+1 + 1 if 𝑥𝑡+1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}

𝑥𝑡+1 − 1 if 𝑥𝑡+1 ∈ {9}
 

Thus, the base 𝑎̃ ≔ 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5  is characterized by a constant 

congruence speed of 𝑡 (i.e., 𝑉(𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5) = 𝑉(𝑎̃) = 𝑡 for any 𝑡 ∈ ℕ −

{1}). This property follows from [3, Equation (16)] (i.e., 2𝑡  | 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5 ∧

 2𝑡+1 ∤ 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5 , for any 𝑡 ≥ 2). Since (as discussed in Remark 1) 

𝛼25 ↦ 𝑎25 ≔ 25  and 252 ≡ 25 (mod 102) , from Hensel’s lemma [7] (see also 

[8,9]), we have that if 𝑎̃ ≡ 𝛼25 (mod 10𝑡)  ∧  𝑎̃ ≢ 𝛼25 (mod 10𝑡+1) , then 𝑎̃𝑐 ≡

𝛼25 (mod 10𝑡)  for any given 𝑐 ∈ ℕ  (in general, we cannot assert that (𝑎̃  ≡

𝛼25 (mod 10𝑡)  ∧  𝑎̃ ≢ 𝛼25 (mod 10𝑡+1))  implies 𝑎̃𝑐 ≢ 𝛼25 (mod 10𝑡+1)  for the 

given pair (𝑡, 𝑐)). 

Consequently, by simply taking 𝑎 ≔ (𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5)𝑐 (as 𝑐 is free to 

run over the positive integers), we have proven the existence, for any given 𝑡 ∈ ℕ −

{1}, of infinitely many tetration bases 𝑎 ≡ 5 (mod 20) such that 𝑉(𝑎) ≥ 𝑡 holds 

for all the elements of the aforementioned set, a set that contains infinitely many 

distinct perfect powers originated from the string 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5 (since 𝑎̃ is 

a positive integer by definition, then 𝑎 = 𝑎̃𝑐 implies that √𝑎
𝑐

∈ ℕ ). Hence, 

𝑉(𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5) = 𝑡  implies 𝑉((𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5)𝑐) ≥ 𝑡  by 

observing that 𝑉((𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5)𝑐) = 𝑉(… _𝑥𝑡_𝑥𝑡−1_ … _2_5), and trivially 

√(𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5)𝑐𝑐
∈ ℕ for all 𝑐 ∈ ℕ (we point out that, for any 𝑡 ≥ 2 and 

as long as 𝑐  is a positive integer, (𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5)𝑐 ≡

𝑥𝑡_𝑥𝑡−1_ … _2_5 (mod 10𝑡) holds by construction [5]). 

Now, let us prove the first statement of Theorem 1 and complete the proof. 

For this purpose, it is sufficient to note that 

𝑉(𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5) = 𝑉(10𝑘+𝑡 + 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5) 

is true for any positive integer 𝑘. So, we can take the 𝑐-th power of every integer 

of the form 10𝑘+𝑡 + 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5 to get 𝑘 distinct sets of cardinality ℵ0 

each, whose elements, by construction, always satisfy the first statement of the 

theorem (we have already shown that, for any given 𝑐 ∈ ℕ , if 𝑉(10𝑘+𝑡 +

𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5) = 𝑡 , then 𝑉((10𝑘+𝑡 + 𝑥̃𝑡+1_𝑥𝑡_𝑥𝑡−1_ … _2_5)
𝑐
) ≥ 𝑡  holds 

for every 𝑡 ∈ ℕ − {1}). 

Therefore, both statements of Theorem 1 have been shown to be true, and this 

concludes the proof. 

3. Main result 

From here on, let us indicate the 𝑝-adic valuation [10] of any tetration base 𝑎 

as 𝜈𝑝(𝑎), for any prime number 𝑝. 

Then, we need the following lemma to prove the existence, for any 𝑎̃ ∈ ℕ − {1} 

such that 𝑎̃ ≢ 0 (mod 10), of infinitely many 𝑐-th powers of 𝑎̃ having a constant 

congruence speed of 𝑉(𝑎̃) , 𝑉(𝑎̃) + 1 , 𝑉(𝑎̃) + 2 , 𝑉(𝑎̃) + 3 , and so forth. 

Furthermore, for any given positive integer 𝑐, Lemma 2 (thanks to [3], Equation 

(2), line 2) implies the existence of infinitely many tetration bases of the form 
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(10𝑘+𝑡 + 10𝑡 + 1)
𝑐
 (where 𝑘 ∈ ℕ and 𝑡 ∈ ℕ − {1}) characterized by any constant 

congruence speed greater than 1 + min{𝜈5(𝑐), 𝜈2(𝑐)}. 

Lemma 2. For every 𝑐, 𝑘 ∈ ℕ and 𝑡 ∈ ℕ − {1}, 𝜈5((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) =

𝑡 + 𝜈5(𝑐) and 𝜈2((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) = 𝑡 + 𝜈2(𝑐). 

Proof of Lemma 2. First of all, we prove that, for every positive integer c , 

ν5((10k+t + 10t + 1)
c

− 1) = t + ν5(c), where t, k ∈ ℕ. □ 

This can be achieved by using the lifting-the-exponent lemma (LTE lemma). 

For this purpose, let 𝑐 be a positive integer, we note that 

𝜈5((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) = 𝜈5((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1𝑐), 

so we can invoke the LTE lemma (see [11] and [12, Lemma 2.6]) for odd primes, 

stating that for any integers 𝑥, 𝑦, a positive integer 𝑐, and a prime number 𝑝 such 

that 𝑝 ∤ 𝑥 ∧  𝑝 ∤ 𝑦, if 𝑝 divides 𝑥 − 𝑦, then 𝜈𝑝(𝑥𝑐 − 𝑦𝑐) = 𝜈𝑝(𝑥 − 𝑦) + 𝜈𝑝(𝑐). 

Thus, by observing that 𝑝 ≔ 5 is an odd prime satisfying all the conditions 

above for 𝑥 ≔ 10𝑘+𝑡 + 10𝑡 + 1 ∧  𝑦 ≔ 1 (since 10𝑘+𝑡 + 10𝑡 is a multiple of 5), 

𝜈5((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1𝑐) = 𝜈5(10𝑘+𝑡 + 10𝑡) + 𝜈5(𝑐) = 𝑡 + 𝜈5(𝑐). 

Similarly, we can use the LTE lemma to show that 2|𝑐 ⇒ 𝜈2((10𝑘+𝑡 + 10𝑡 +

1)
𝑐

− 1) = 𝑡 + 𝜈2(𝑐) and also 2 ∤ 𝑐 ⇒ 𝜈2((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) = 𝑡 + 𝜈2(𝑐). 

In detail (see [13]), both 𝑥 ≔ 10𝑘+𝑡 + 10𝑡 + 1 and 𝑦 ≔ 1 are odd numbers so 

that we can invoke the LTE lemma for 𝑝 = 2 since 2 ∤ 𝑥, 2 ∤ 𝑦, and 2|(𝑥 − 𝑦). 

Thus, the LTE lemma for 𝑝 = 2 states that if 𝑐  is odd, then 𝜈2((10𝑘+𝑡 +

10𝑡 + 1)
𝑐

− 1𝑐) = 𝜈2(10𝑘+𝑡 + 10𝑡 + 1 − 1) = 𝜈2(10𝑡) = 𝑡 . Since 2 ∤ 𝑐 ⇒

𝜈2(𝑐) = 0, we can safely rewrite the above as 𝜈2((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) = 𝑡 +

𝜈2(𝑐). 

On the other hand, if 𝑐 is even, from the LTE lemma it follows that 

𝜈2((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1𝑐) 

= 𝜈2(10𝑘+𝑡 + 10𝑡 + 1 − 1) + 𝜈2(10𝑘+𝑡 + 10𝑡 + 1 + 1) + 𝜈2(𝑐) − 1 

= 𝜈2(10𝑘+𝑡 + 10𝑡) + 𝜈2(10𝑘+𝑡 + 10𝑡 + 2) + 𝜈2(𝑐) − 1. 

Now, for any given pair of positive integers (𝑟, 𝑠) and a prime 𝑝, we know that 

𝜈𝑝(𝑟 + 𝑠) = min{𝜈𝑝(𝑟), 𝜈𝑝(𝑠)}  as long as 𝜈𝑝(𝑟) ≠ 𝜈𝑝(𝑠) . Accordingly, 𝑡 ≥ 2 

implies 𝜈2(10𝑡) ≥ 2 > 𝜈2(2)  so that 𝜈2(10𝑘+𝑡 + 10𝑡 + 2) =

min{𝜈2(10𝑘+𝑡), 𝜈2(10𝑡), 𝜈2(2)} = 1. 

Hence, 2|𝑐 ⇒ 𝜈2((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) = 𝑡 + 1 − 1 + 𝜈2(𝑐) = 𝑡 + 𝜈2(𝑐). 

Therefore, for every triad (𝑡, 𝑐, 𝑘)  of positive integers, 𝜈5((10𝑘+𝑡 + 10𝑡 +

1)
𝑐

− 1) = 𝑡 + 𝜈5(𝑐)  and, symmetrically, 𝜈2((10𝑘+𝑡 + 10𝑡 + 1)
𝑐

− 1) = 𝑡 +

𝜈2(𝑐). This completes the proof. 
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Theorem 2. For any given triad 𝑐, 𝑘 ∈ ℕ and 𝑡 ∈ ℕ − {1}, 

𝑉((10𝑘+𝑡 + 10𝑡 + 1)
𝑐
) = 𝑡 + 𝑚𝑖𝑛{𝜈5(𝑐), 𝜈2(𝑐)}. 

Proof of Theorem 2. Theorem 2 easily follows from Lemma 2. Since t ≥ 2 , 

10k+t + 10t + 1 ≡ 1 (mod 102) (the congruence modulo 100 does not depend on 

k as k + t > t), and then also (10k+t + 10t + 1)
c

≡ 1 (mod 100) holds for each 

positive integer c. By Theorem 2.1 of [3] (see Equation (2), line 2), we have that 

V((10k+t + 10t + 1)
c
) = min {ν5((10k+t + 10t + 1)

c
− 1), ν2((10k+t + 10t +

1)
c

− 1)}. Since Lemma 2 asserts that ν5((10k+t + 10t + 1)
c

− 1) = t + ν5(c) 

and ν2((10k+t + 10t + 1)
c

− 1) = t +  ν2(c) , it follows that V((10k+t + 10t +

1)
c
) = min{t + ν5(c), t + ν2(c)} = t + min{ν5(c), ν2(c)} for any positive integers 

c, k, and t − 1. □ 

Remark 2. Let the tetration base 𝑎 ∶ 𝑎 ≡ 6 (𝑚𝑜𝑑 10) be given. Then, by looking at 

the two rightmost digits of the corresponding 10-adic solution, 𝛼76 = . . .7109376 

(see Remark 1), and applying the usual strategy (already described in the proof of 

Theorem 1), we find the sequence 𝑎𝑛 ≔ 10𝑛+1 + 86, 𝑛 ∈ ℕ (defining also the set 

{186, 1086, 10086, 100086, . . . }). Now, we can create an infinite set consisting of the 

𝑐-th powers of each aforementioned term, a set whose elements are all characterized 

by a unit constant congruence speed as long as 𝑐 is not a multiple of 5. Thus, 5 ∤ 𝑐 

implies 𝑉(186𝑐) = 𝑉(1086𝑐) = 𝑉(10086𝑐) = 𝑉(100086𝑐) = ⋯ = 1. 

The above is just another example of the 𝑥̃𝑡+1 idea, introduced in the proof of 

Theorem 1, shown by taking into account 𝑡 = 1  and the solution 𝛼76 ∶= 1 −

{52𝑛
}

∞
 of the equation 𝑦2 = 𝑦 in the commutative ring of 10-adic integers (as we 

know [2], the other three solutions are 𝛼00 ∶= 0, 𝛼01 ∶= 1, and 𝛼25 ∶= {52𝑛
}

∞
). 

Corollary 1. Let 𝑡 ∈ ℕ  and assume that 𝑉(𝑎̃) = 𝑡 . Then, for any nonnegative 

integer ℎ, there exist infinitely many 𝑐 ∈ ℕ such that 𝑉(𝑎̃𝑐) = 𝑡 + ℎ. 

Proof of Corollary 1. Let k ∈ ℕ . If t > 1 , it is sufficient to observe that, by 

Theorem 2, 

𝜈2(𝑐) ≥ 𝜈5(𝑐) ⇒ 𝑉((10𝑘+𝑡 + 10𝑡 + 1)
𝑐
) = 𝑡 + 𝜈5(𝑐). 

Accordingly, let ã ≔ 10k+t + 10t + 1 , c ≔ 2k+h · 5h  (so that ν5(2k+h) ≤

ν2(2k+h)), and then, for any h ∈ ℕ0, ãc identifies an infinite set of valid tetration 

bases (since ν5(2k+h · 5h) = h is true for any positive integer k and, consequently, 

the constant congruence speed of ã2k+h·5h
 does not depend on k). □ 

For the remaining case, 𝑡 = 1, Remark 2 gives us a valid set of solutions (i.e., 

any tetration base of the form (10𝑘+1 + 86)
2𝑘−1·5ℎ

 does the job since 𝑉(10𝑘+1 +

86) = 1 for every positive integer 𝑘), so just let 𝑎̃ ≔ 10𝑘+1 + 86 and 𝑐 ≔ 2𝑘−1 ·

5ℎ  in order to get 𝑉 ((10𝑘+1 + 86)
2𝑘−1·5ℎ

) = 𝜈5 ((10𝑘+1 + 86)
2𝑘−1·5ℎ

− 1) =

1 + 𝜈5(5ℎ) = 1 + ℎ (by [3], Equation (16), line 4). 
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Theorem 3. Let the integer 𝑎 > 1 not be a multiple of 10. Then, for all 𝑐 ∈ ℕ, there 

exist infinitely many 𝑎  such that √𝑎
𝑐

∈ ℕ ∧ 𝑉(𝑎) = 𝑉(√𝑎
𝑐

) = 𝑡  holds for every 

integer 𝑡 greater than 1 + 𝑚𝑖𝑛{𝜈5(𝑐), 𝜈2(𝑐)}. 

Proof of Theorem 3. Since Theorem 2 states that, given t ∈ ℕ − {1}, V((10k+t +

10t + 1)
c
) = t + min{ν5(c), ν2(c)} for each c, k ∈ ℕ, it follows that, for any given 

triad (t, k, c) such that t ≥ 2 + min{ν5(c), ν2(c)}, at least one of the two tetration 

bases (10k+t−ν5(c) + 10t−ν5(c) + 1)
c

 and (10k+t−ν2(c) + 10t−ν2(c) + 1)
c

 is 

guaranteed to have a constant congruence speed of t. □ 

Although this is enough to prove the theorem, we are free to simplify the generic 

form of the above by observing that (see [13]), as we call 𝑗 ≔ 𝑗(𝑐) the last nonzero 

digit of 𝑐, only the following two cases matter: 𝑗 ≠ 5 and 𝑗 = 5. 

Hence, 

𝑗 ≠ 5 ⇒ 𝜈5(𝑐) ≤ 𝜈2(𝑐) 

⇒ 𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈5(𝑐) + 1)
𝑐
) = 𝜈5 ((10𝑘+𝑡 + 10𝑡−𝜈5(𝑐) + 1)

𝑐
− 1𝑐) 

= 𝜈5(10𝑘+𝑡 + 10𝑡−𝜈5(𝑐)) + 𝜈5(𝑐) 

= min{𝜈5(10𝑘+𝑡), 𝜈5(10𝑡−𝜈5(𝑐))} + 𝜈5(𝑐) 

(since 𝑘 > −𝜈5(𝑐)  implies that 𝜈5(10𝑘+𝑡) > 𝜈5(10𝑡−𝜈5(𝑐)) ), and then it 

follows that 

𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈5(𝑐) + 1)
𝑐
) = 𝜈5(10𝑡−𝜈5(𝑐)) + 𝜈5(𝑐) = 𝑡 − 𝜈5(𝑐) + 𝜈5(𝑐) = 𝑡. 

Conversely (given the fact that 𝜈2(10𝑘+𝑡) > 𝜈2(10𝑘+𝑡−𝜈2(𝑐)) > 𝜈2(10𝑡−𝜈2(𝑐)), 

𝑗 = 5 ⇒ 𝜈5(𝑐) > 𝜈2(𝑐) 

⇒ 𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈2(𝑐) + 1)
𝑐
) = 𝜈2 ((10𝑘+𝑡 + 10𝑡−𝜈2(𝑐) + 1)

𝑐
− 1𝑐) 

= 𝜈2 ((10𝑘+𝑡−𝜈2(𝑐) + 10𝑡−𝜈2(𝑐) + 1)
𝑐

− 1) 

and, by Lemma 2, 𝜈2 ((10𝑘+𝑡−𝜈2(𝑐) + 10𝑡−𝜈2(𝑐) + 1)
𝑐

− 1) = 𝑡 follows. 

Thus, 𝑐 ∶ 𝑗 ≠ 5 guarantees that 𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈5(𝑐) + 1)
𝑐
) = 𝑡 is true for 

any 𝑐, 𝑘 ∈ ℕ, and 𝑡 > 𝜈5(𝑐), while 𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈2(𝑐) + 1)
𝑐
) = 𝑡 as 𝑐 ∶ 𝑗 =

5 and 𝑡 > 𝜈2(𝑐). 

Therefore, we have shown that, for any given positive integer 𝑐, at least one of 

𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈5(𝑐) + 1)
𝑐
) = 𝑡  ( 𝑡 > 𝜈5(𝑐) + 1 ) and 𝑉 ((10𝑘+𝑡 + 10𝑡−𝜈2(𝑐) +

1)
𝑐
) = 𝑡 (𝑡 > 𝜈2(𝑐) + 1) is true, so the proof is complete. 

Now, let 𝑡 = 𝑐 and observe that 𝑐 − 𝜈5(𝑐) < 2 ⇒ 𝑐 = 1, while 𝑐 − 𝜈2(𝑐) <

2 ⇒ 𝑐 ≤ 2. 

Then, the proof of Theorem 3 shows the existence of a very special set of 

tetration bases that are 𝑐-th powers of an integer and whose constant congruence 

speed is 𝑐 ∈ ℕ − {1, 2} , a set including all the bases of the form (10𝑐+𝑘 +
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10𝑐−min{𝜈5(𝑐), 𝜈2(𝑐)} + 1)
𝑐

, 𝑘 ∈ ℕ  (e.g., ( 𝑐 = 1000 ∧  𝑘 = 314 ) implies 

𝑉((101314 + 10997 + 1)1000) = 1000). 

Therefore, for each 𝑐 > 2, we have already proved Corollary 2 as a particular 

case of Theorem 3. 

Corollary 2. Let 𝑎 ∈ ℕ − {1} not be a multiple of 10. Then, for every 𝑐 ∈ ℕ, there 

exist infinitely many 𝑎 such that √𝑎
𝑐

∈ ℕ ∧  𝑉(𝑎) = 𝑉(√𝑎
𝑐

) = 𝑐. 

Indeed, setting 𝑆 as the sum of digits function to base 10 and assuming 𝑐 > 2, 

we have 𝑆(10𝑐+𝑘 + 10𝑐−min{𝜈5(𝑐), 𝜈2(𝑐)} + 1) = 3, 3|10𝑐+𝑘+10𝑐−min{𝜈5(𝑐), 𝜈2(𝑐)} +

1 and 32 ∤ 10𝑐+𝑘+10𝑐−min{𝜈5(𝑐), 𝜈2(𝑐)} + 1 (implying that none of these numbers 

can be a perfect power of degree greater than 1), so there exist infinitely many perfect 

powers of degree 𝑐 =  3, 4, 5, 6, … having a constant congruence speed of 𝑐, and it is 

sufficient to consider all the tetration bases of the form (10𝑐+𝑘 +

10𝑐−min{𝜈5(𝑐), 𝜈2(𝑐)} + 1)
𝑐
. 

On the other hand, if 𝑐 ∈ {1, 2} , then the second last nonzero digit of any 

tetration base of the form (10𝑐+𝑘 + 10𝑐− 𝜈5(𝑐) + 1)
𝑐
 will not be equal to 5 (we note 

that the second last nonzero digit of each 𝑐-th perfect power of 10𝑘+𝑡 + 10𝑡 + 1 is 

always equal to the last nonzero digit of 𝑐), and thus we can cover the remaining cases 

𝑐 = 1  and 𝑐 = 2  by taking 101+𝑘 + 101 + 1  (since 𝑉 ((101+𝑘 + 11)
1

) = 1 

holds for each positive integer 𝑘 by [3], Equation (16), line 9) and (102+𝑘 + 102 +

1)
2
 (respectively). 

Since √101+𝑘 + 11
𝑐

∈ ℕ ⇒ 𝑐 = 1  and √(102+𝑘 + 101)2𝑐
∈ ℕ ⇒ 𝑐 ∈ {1, 2} , 

we have finally proved for any given positive integer 𝑐 the existence of infinitely 

many tetration bases 𝑎̃𝑐 which are perfect powers of degree 𝑐 (exactly) and such 

that 𝑉(𝑎̃𝑐) = 𝑉(𝑎̃) = 𝑐. 

Remark 3. Let 𝑐, 𝑘 ∈ ℕ, 𝑡 be greater than 1 + 𝑚𝑖𝑛{𝜈5(𝑐),  𝜈2(𝑐)}, and call 𝑗 the 

last nonzero digit of 𝑐 (e.g., if 𝑐 =  940030 is given, it follows that 𝑗(940030) =

3 ). Then, 𝑉 ((10𝑘+𝑡 + 10𝑡− 𝜈5(𝑐) + 1)
𝑐
) = 𝑡  if 𝑐 ∶ 𝑗 ∤ 5  (by [3], Equation (16), 

line 7) and 𝑉 ((10𝑘+𝑡 + 10𝑡− 𝜈2(𝑐) + 1)
𝑐
) = 𝑡 otherwise (by [3], Equation (16), line 

8). In particular, if 2 ∤ 𝑐  or 5 ∤ 𝑐 , then 𝑉((10𝑘+𝑐 + 10𝑐 + 1)
𝑐
) = 𝑐  (since 

𝑚𝑖𝑛{𝜈5(𝑐),  𝜈2(𝑐)} = 0 ⇔ 2 ∤ 𝑐 ∨  5 ∤ 𝑐). 

4. Conclusion 

In the previous section, for each 𝑐 ∈ ℕ, we have provided the general equation 

𝑉 ((10𝑘+𝑡 + 10𝑡−min{𝜈5(𝑐), 𝜈2(𝑐)} + 1)
𝑐
) = 𝑡  ( 𝑘, 𝑡 ∈ ℕ ∶ 𝑡 > min{𝜈5(𝑐), 𝜈2(𝑐)} +

1) which shows the existence of infinitely many perfect powers of degree 𝑐 with a 

constant congruence speed of min{𝜈5(𝑐), 𝜈2(𝑐)} + 2 , min{𝜈5(𝑐), 𝜈2(𝑐)} + 3 , 

min{𝜈5(𝑐), 𝜈2(𝑐)} + 4, min{𝜈5(𝑐), 𝜈2(𝑐)} + 5, and so forth. 

In conclusion, for any given positive integer 𝑐, we have constructed an infinite 

set of 𝑐-th perfect powers that are also characterized by a constant congruence speed 

of 𝑐. 
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