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Abstract: In the work, the unity of the model in both directions of the change of the power
of two of the conjecture of natural numbers structured in the form of a set parametrized by
a set of odd θ sequences θ × 2n is justified for the first time. It is shown that the graphs of
the direct n(tst) → ∞ and reverse n → 0 conjecture of numbers are correctly displayed by
the branching diagram of the sequences oriented along the time axis of the full stop of Terrase.
The distance between neighbouring nodes is shown to correlate with the Collatz function. The
distance δm(p),κ = ακCκq±1 between adjacent nodes is shown to be correlated with the Collatz
function. The obtained formula for calculating the period Tκ = ln2(1 + ακκ) according to the
degree of formation of powers n. Based on the analysis of regularities of recurrent Jacobsthal
numbers and Terras complete stop time, it is shown that the Collatz problem is a partial case of
the general Jacobsthal-Collattz-Terrase model of the conjecture of numbersN in both directions
of the change of the power of two. Based on this model, the formation of tst{q} sequences was
established for numbers with the same lengths as the Collatz sequence CSq .

Keywords: recurrence Jacobsthal number; Terrase total stopping time; Collatz conjecture;
natural numbers
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1. Introduction

The Collatz conjecture is an arithmetic problem that involves the transformation
of the set of natural numbers q ∈ N by the following algorithm:

C3q+1 = if q ≡ 0 mod2 then
q

2
else C3q+1 = 3q + 1 (1)

In Equation (1), the set of even numbers qeven(qe) ∈ Neven(Ne) is conjectured by
the function Cq/2 = qe

2 and the set odd numbers qodd(qo) ∈ Nodd(No) is conjectured
by the function C3q+1 = 3q + 1. According to the Collatz hypothesis [1], conjectures
(1) of natural numbers terminate at one [2].

Not many problems in arithmetic have undergone such intensive research as the
Collatz problem. Their list of works is a huge information array, the analysis of the
results of which was first done by Lagaria [1], and the results obtained relatively
recently were professionally done by the authors [3–6]. Awide range of others, incluing
probabilitistic stuies of the Collatz problem, have been made in articles [7–14].

In works [15–17], studies of the role of recurrent Jacobsthal numbers in the Collatz
problem have been started. It was shown [18] that their incorrect application can lead
to a false conclusion. For the first time, the author [19] drew attention to Jacobsthal
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numbers in the Collatz problem, and recently the partial results of the work [15] were
repeated by the author [20].

Jacobsthal numbers are numbers Jn = 1
3(2

n − (−1)n) (n ∈ N = No ∪Ne ∪ {0})
with initial conditions, J0κ = 0, J1 = 1 [19] as Jacobsthal numbers, and with initial
conditions J0 = 2, J1 = 1, known as Jacobsthal-Luke numbers [21]. Jacobsthal
numbers include Mersenne numbers of the type M−,n = 2n − 1 and also numbers
of the typeM+,n = 2k+1. The numbers include the Fermat numbers 2k+1 at k = 2n.
The role of Mersenne numbers in the Collatz problem was studied in works [22,23].

Despite its simplicity, Collatz’s problem is still relevant today for many
branches of mathematics, such as number theory, dynamical systems, ergodic theory,
mathematical logic and algorithm theory, random processes and probability theory. In
this paper, based on the regularities of Jacobsthal recurrence numbers and the Terrass
complete stop time (tst) [24], a general graph-analytic model of the conjecture of
numbers q ∈ N is developed:

Cκq±1 = if q ≡ 0 mod2 then
q

2
else

Cκq±1 = κq ± 1, κ = 1, 3, 5, . . . ∈ N
(2)

in the forward n → +∞ and reverse n → 0 directions of the change in powers of two
2n.

2. Basic results and discussion

We formulate the necessary definitions for the rest of the paper.
Definition 1. Nodes are points θ × 2n in sequences {θ × 2n}n=∞

n=0 of Jacobsthal
numbers:

m(p)κ,θ,n =
1

κ

[
θ × 2n ∓ 1

]
, θ, κ = 1, 3, 5, . . . ∈ No (3)

where equalities hold:

θ × 2n = κm(p)κ,θ,n ± 1 (4)

Definition 2. Nodes from which sequences {θ × 2n}n=∞
n=0 with branching points are

generated are active; otherwise, they are inactive.
Definition 3. The Tκ period is the distance in powers n of two 2n between two adjacent
nodes mκ,θ,n of the same type for the Cκq+1 = κq + 1 conjecture and pκ,θ,n+Tκ for
Cκq−1 = κq − 1.

For example, the period between two adjacent nodes with the numbersm3,1,4 = 5

andm3,1,6 = 21 is equal to Tκ = 6− 4 = 2.
Definition 4. The point attractor (PA) is the smallest odd number in the trivial periodic
cycle of the completion of the Collatz process. According to Collatz’s hypothesis, the
conjecture (1) of an arbitrary natural number ends with a trivial cycle . . . → 4 → 2 →
1 → . . ., where the minimum odd number is equal to one, therefore PA = 1.
Definition 5. The oriented Jacobsthal-Terrase diagram (OJTD ) is a graph of {θ ×
2n}n=∞

n=0 sequences branching in the direction tst(n) → +∞.
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Problems of type Equation (2) are based on two types of arithmetic operations:
halving qe → qe/2 an even qe number to an odd value and converting qo → qe an odd
qo number into an even number. For their implementation, sequences {θ× 2n}n=∞

n=0 on
a binary basis, among which the root {1× 2n}n=∞

n=0 is used to achieve a single value by
the Collatz sequence (CSq).

The first element of the sequences {θ × 2n}n=∞
n=0 is odd, and the others are even.

Therefore, the set q ∈ N can be represented as their set. As shown in Figure 1, then the
task of this work will be reduced to establishing the rules of superposition of sequences
{q0 × 2n}n=∞

n=0 at nodes (points θ × 2n) with recurrent numbers Equation (3) [15–17].
Numbers mκ,θ,n =

1

κ
[θ × 2n − 1] form nodes at points θ × 2n of sequences

{θ × 2n}n=∞
n=0 for problems Cκq+1 = κq + 1, and numbers pκ,θ,n =

1

κ
[θ × 2n + 1],

respectively, for problems Cκq−1 = κq − 1. Combined set

{mκ,θ,n}n=∞
n=0 ∪ {pκ,θ,n}n=∞

n=0 = {J±
κ,θ,n}

n=∞
n=0 (5)

forms the set of Jacobsthal numbers J∓
κ,θ,n calculated by the Binet formula

J∓
κ,θ,n =

1

κ
[θ × 2n ∓ (−1)n]. (6)

Figure 1. Illustration of the structuring of the set q ∈ N as a set of parameterized θ
sequences {θ × 2n}n=∞

n=0 .

According to Equaion (4), in the n → +∞ direction of increasing n powers of
two 2n an arbitrary number q = θ × 2k, k = 0, 1, 2, 3, . . . , n, . . . doubles until the
branching condition is fulfilled

θ × 2n ∓ 1

κ
= m(p)κ,τ,0. (7)

This is how a directed graph branches, known as a Jacobsthal tree [15]. Therefore,
points Equation (7) of sequences {τ×2n}n=∞

n=0 with numbersm(p)κ,τ,n are nodes from
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which other sequences {m(p)κ,τ,0 × 2n}n=∞
n=0 are generated.

In the reverse n → 0 direction, in active nodes with numbers according to the rule.

κm(p)κ,τ,0 ± 1 = θ × 2n (8)

the sequences {κm(p)κ,τ,0 × 2n}n=∞
n=0 merge, forming the well-known Collatz

sequences CSq, which either go to point attractors (PA), or grow infinitely, as a
sequence of conjecture of a unit by a functionC9q+1 = 9q+1 [15] and a number q = 7

by a function C5q+1 = 5q + 1 [25], or are isolated from the root {1 × 2n}n=∞
n=0 , as a

sequences of conjectures C7q−1 = 7q − 1 [26].
Let’s investigate the regularities of the formation of numbers m(p)κ,θ,n of nodes.

Knowing the numbersm(p)1,θ,n, in addition to Equation (3), the numbersm(p)κ>1,θ,n

can also be calculated by the selection method

m(p)κ>1,θ,n =
m(p)1,θ,n

κ
(9)

as shown in Figure 2 for the interval κ = 3÷ 7.

Figure 2. Different colors represent different periods of recurrent number formation
m(p)3÷7,1,n.

The numbers m(p)3÷7,1,n that form the nodes at the points of the root sequence
{1× 2n}n=∞

n=0 according to the rules Equation (4) are highlighted in color. Empty cells
correspond to numbers with fractional values. Therefore, we substantiate the statement
for the number of nodes.
Satement 1. If the θ parameter of number m(p)κ,θ,n = 1

κ [θ × 2n ∓ 1] (θ, κ =

1, 3, 5, . . . ∈ Nodd) is a multiple κ (θκ = Integer × κ = I × κ), then the numbers
m(p)κ,θ,n are fractional.

Proof. If θκ = I × κ then

m(p)κ,θκ,n =
1

κ
[κ× 2n ∓ 1] = 2n ∓ 1

κ
̸= I. (10)

The statement is well-founded. This statement is relevant for the cases κ > 1,
since if κ = 1, then the numbersm(p)1,1κ,n = 2n ∓ 1 = M∓,n are integers. □

The numbers mκ,θ,n and pκ,θ,n are the numbers of nodes at the points θ × 2n of
the sequences {θ × 2n}n=∞

n=0 for the transformations Cκq+1 = κq + 1 and Cκq−1 =

κq− 1. From nodes with multiples κ of the parameter θ, other sequences are branched
(merged) on a binary basic. Therefore, such nodes can be considered active. If the
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number m(p)κ,θ,n of nodes is a multiple of κ, then there are no points with active
nodes in the sequences {m(p)κ,θ,0 × 2n}n=∞

n=0 . For example, at the points of the
sequence {5 × 2n}n=∞

n=0 , for the model κ = 3, the numbers m(p)κ,θ,n are equal to:
m(p)3,5,n : 2(3), 7(13), 27(53), 107(213), 427(853), . . . . Therefore, the nodes in the
sequence {5×2n}n=∞

n=0 points with numbers p3,5,n : 7, 27, 107, 427, . . . are active for
the conjecture C3q−1, and the nodes with numbers m3,5,n : 3, 13, 53, 213, 853, . . .

are active for the conjecture C3q+1.
It is known [24] that Terras developed a theoretical model of the so-called complete

stopping time (tst), which determines the length of the sequence CSq and the number
of iterationsN during which it reaches the point attractor PA. Therefore, let’s analyze
the patterns of direct and reverse number conversion problems, for which we will build
an oriented diagram OJTD branching in the direction of tst.

Equality is fulfilled in the nodes of the root sequence {1× 2n}n=∞
n=0 .

tst = n (11)

that is, time tst coincides with the power of two 2n. Therefore, we will construct
OJTD for one of the two pairs C3q±1 = 3q± 1 or C5q∓1 = 5q∓ 1 conjectures with a
point attractor PA = 1. For a pair C3q±1 = 3q± 1, the fragment OJTD has the form
shown on Figure 3. m(p)3,1,n are also highlighted in yellow, from which sequences
{θ × 2n}n=∞

n=0 are generated, one of which is shown in blue for the number q = 11.

Figure 3. OJTD model in the branching direction n → +∞.

As we can see from Figure 3, the diagram OJTD structures the set q ∈ N by the
parameter tst. In each column, parametrized by tst sequences CSq of the same length
are formed, one of which for q = 104 over time tst = 12 is shown in red. We see that
sequences CSq of numbers {17, 96, 104, 106, 113, 640, 672, 680, 682, 4096}tst=∞

tst=1

have the same length. In general, the established regularities OJTD appear for C3q−1
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with other point attractors PA = 5 and PA = 17, as well as with C5q+1 with P =

1, 13, 17. Recall that the sequence CSq with PA ̸= 1 is isolated from the root {1 ×
2n}n=∞

n=0 sequence [15,17,25,26]. For isolated sequences CSq, the starting point is the
value of the corresponding attractor PA.

So, in the direction n → +∞ of the diagramOJTD, they form a set of trajectories
for sequences CSq an illustration of which is given in Figure 4 for a set of numbers
tst=7{3, 29, 21, 128}. We see that during the same time tst = 7, they all reach a single
point attractor PA = 1 in a trivial cycle

cycle3q+1
1→4→1 = {. . . → 1 → 4 → 2 → 1 → . . .}. (12)

A similar regularity is true for other models of number transformation, including
with other completion attractors. In other words, typeOJTD diagrams reflect patterns
of structuring of the set q ∈ N according to the parameter. The number of numbers in
the columns increases according to the power law, therefore, the construction of a graph
of the type in Figure 4 [27] requires correction q → ⟨q⟩ by the average ⟨q⟩ values of
the numbers q within each sequence tst{q}.

Figure 4. Illustration of the formation of a set of sequences CSq of the same length for
a set of numbers tst=7{3, 29, 21, 128} over time tst = 7.

Pairs of conjectures Cκq±1 = κq ± 1 have the peculiarity that the union of sets
of numbers {m(p)κ,θ,n}n=∞

n=0 forms a single set Equation (5) of recurring Jacobsthal
numbers Equation (6). Therefore, we systematize recurrence relations for numbers
m(p)κ,θ,n expressing the correlation between conjectures of the type Cκq±1 = κq ± 1:

The Equation (12) agree with data on Figure 2. If the formula m3,θ,n+T3 =

4m3,θ,n + 1 is known [28], then the rest of the formulas are obtained for the first time.
Ratio Equation (Table 1) can be summarized as:

m(p)κ,θ,n+Tκ = βκm(p)κ,θ,n ± ακ. (13)
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Table 1. Formulasm(p)κ,θ,n+Tm for the first κ = 1÷ 23 transformation models

κ = 1 : m(p)1,θ,n+T1 = 2m(p)1,θ,n ± 1
⇒ δm(p),1 = m(p)1,θ,n ± 1

⇒ α1 = 1

κ = 3 : m(p)3,θ,n+T3 = 22m(p)3,θ,n ± 1
⇒ δm(p),3 = 3m(p)3,θ,n ± 1

⇒ α3 = 1

κ = 5 : m(p)5,θ,n+T5 = 24m(p)5,θ,n ± 3
⇒ δm(p),5 = 3(5m(p)5,θ,n ± 1)

⇒ α5 = 3

κ = 7 : m7,θ,n+T7 = 23m7,θ,n + 1
⇒ δm,7 = 9(7m7,θ,n + 1)

⇒ α7 = 9

κ = 9 : m(p)9,θ,n+T9 = 26m(p)9,θ,n ± 7
⇒ δm(p),9 = 7(9m(p)9,θ,n ± 1)

⇒ α9 = 7

κ = 11 : m(p)11,θ,n+T11 = 210m(p)11,θ,n ± 93
⇒ δm(p),11 = 93(11m(p)11,θ,n ± 1)

⇒ α11 = 93

κ = 13 : m(p)13,θ,n+T13 = 212m(p)13,θ,n ± 315
⇒ δm(p),13 = 315(13m(p)13,θ,n ± 1)

⇒ α13 = 315

κ = 15 : m15,θ,n+T15 = 24m15,θ,n + 1
⇒ δm,15 = 15m15,θ,n + 1

⇒ α15 = 1

κ = 17 : m(p)17,θ,n+T17 = 28m(p)17,θ,n ± 15
⇒ δm(p),17 = 15(17m(p)17,θ,n ± 1)

⇒ α17 = 15

κ = 19 : m(p)19,θ,n+T19 = 218m(p)19,θ,n ± 13797
⇒ δm(p),19 = 13797(19m(p)19,θ,n ± 1)

⇒ α19 = 13797

κ = 21 : m21,θ,n+T21 = 26m21,θ,n + 3
⇒ δm,21 = 3(21m21,θ,n + 1)

⇒ α21 = 3

κ = 23 : m23,θ,n+T23 = 211m23,θ,n + 89
⇒ δm,23 = 89(23m23,θ,n + 1)

⇒ α23 = 89

In Equation (13), the facto βκ is even, and the term ακ is odd (see Table 1) and
equality holds for them

βκ = κακ + 1 (14)

which is confirmed by calculations:
Then, substituting Equation (14) into Equation (13), we obtain

ακ =
m(p)κ,θ,n+Tκ −m(p)κ,θ,n

κm(p)κ,θ,n ± 1
=

δm(p),κ

κm(p)κ,θ,n ± 1
, (15)

where the calculated δm(p),κ are given in the Table 2. For example, for θ = 1, κ =

9 : α9 =
m9,1,12−m9,1,6

9m9,1,6+1 = 455−7
7×9+1 = 448

64 = 7, which is consistent with the formula
m(p)9,θ,n+6 = 64m(p)9,θ,n ± 7 in Equation (Table 1).

Nodes m(p)κ,θ,n of conjectures Cκq±1 are formed with a period Tκ to the power
of two. Therefore, we justify the following statement for the period Tκ:
Satement 2. The period Tκ to the power n of two 2n between nodesm(p)κ,θ,n+Tκ and
m(p)κ,θ,n.

Tκ = ln2(1 + ακκ) = ln2

(
1 +

κm(p)κ,θ,n+Tκ

κm(p)κ,θ,n ± 1
.

)
(16)

Proof. For the points θ × 2n and θ × 2n+Tκ the relations θ × 2n = κm(p)κ,θ,n and
θ × 2n+Tκ = κm(p)κ,θ,n+Tκ ± 1 , therefore θ × 2n(2Tκ − 1) = κ(m(p)κ,θ,n+Tκ −
m(p)κ,θ,n) = κδm(p),κ = κακ(κm(p)κ,θ,n ± 1), from where 2Tκ = 1 + κακ. The
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statement is proved.
Let’s calculate the period using Equation (16) T1÷25.
Data (from Table 3 ) are consistent with Figure 2, so Equation (13) can also be

written as:

m(p)κ,θ,n+Tκ = 2Tκm(p)κ,θ,n ± ακ. (17)

Table 2. Values ofακ, βκ = κακ+1 and formulas for calculating δm(p),κ in the interval
κ = 1÷ 25.

κ ακ βκ = κ × ακ + 1 δm(p),κ

1 ±1 2 = 1× 1 + 1 1m(p)1,θ,n ± 1

3 ±1 4 = 3× 1 + 1 3m(p)3,θ,n ± 1

5 ±3 16 = 5× 1 + 1 3(5m(p)5,θ,n ± 1)

7 +9 64 = 7× 9 + 1 9(7m7,θ,n + 1)

9 ±7 64 = 9× 7 + 1 7(9m(p)9,θ,n ± 1)

11 ±93 1024 = 11× 93 + 1 93(11m(p)11,θ,n ± 1)

13 ±315 4096 = 13× 315 + 1 315(13m(p)13,θ,n ± 1)

15 +17 256 = 15× 17 + 1 17(15m15,θ,n + 1)

17 ±15 256 = 17× 15 + 1 15(17m(p)17,θ,n ± 1)

19 ±13797 262144 = 19× 13797 + 1 13797(19m(p)19,θ,n ± 1)

21 +3 64 = 21× 3 + 1 3(21m21,θ,n + 1)

23 +89 2048 = 23× 89 + 1 89(23m23,θ,n + 1)

25 ±41943 1048576 = 25× 41943 + 1 41943(25m(p)25,θ,n ± 1)

Table 3. The value of the period in the interval κ = 1÷ 25.

κ 1 3 5 7 9 11 13 15 17 19 21 23 25

ακ 1 1 3 1 7 93 315 1 15 13797 3 89 41943
Tκ 1 2 4 3 6 10 12 4 8 18 6 11 20

The period Tκ is also a parameter of the time tst periodicity of numbersm(p)κ,θ,n.
For example, as can be seen from Table 4, tst for numbers m5,1,n, changes with the
period Tκ = 4:

Table 4. The value of tst for Jacobsthal numbersm5,1,n.

m5,1,n 0 3 51 819 13,107 209,715

tst 0 5 9 13 17 21

For a given θ, the sequence of numbers m(p)κ,θ,n ends with the same attractor.
However, as shown on the left in Figure 5, for the number qo = 7 conjectured by the
function C5q+1 = 5q + 1, the point attractor of the increasing sequence CSq is clearly
defined, i.e., it does not have a trivial cycle. On the right in Figure 5 is a diagram
OJTD for the number qo = 7.
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Figure 5. Directions of formation of the Collatz sequence CSq = 7 by the function
C5q+1 and branching of the sequence OJTD of the number q = 7.

In the model C5q+1, in addition to the growing sequence CSq, three more
sequences CSq with point attractors PA = 1, 13, 17. From the point of view
of Equation (2), all given types of sequences are equivalent to each other and the
corresponding transformations divide the set of numbers N in the same proportions
[15].

3. Conclusion

In the paper, for the first time, the unity of the model of the conjecture of natural
numbers structured in the form of a set of parametrized by a set of odd θ sequences
θ × 2n in both directions of the change of powers of two is substantiated. It is shown
that the graphs of direct n(tst) → +∞ and reverse n → 0 conjecture of numbers are
correctly reflected by the branching diagram of sequences oriented along the time axis
of the full stop tst of Terrase. It is shown that the distance δm(p),κ between neighboring
nodes m(p)κ,θ,n correlates with the Collatz function Cκq±1. The obtained formula
Tκ = ln2(1 + ακκ) for calculating the period by the powers n of formation of knots.
On the basis of the analysis of regularities of recurrent Jacobsthal numbers and Terras
complete stop time, it is shown that the Collatz problem is a partial case of the general
Jacobsthal-Collatz-Terrase model of the conjecture of numbers q ∈ N in both directions
of the change of the power of two.
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