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Abstract: In this paper we discuss the dynamic effects of the varying frames. The dif-
ferential of frame or basis vectors is always equivalent to a linear transformation of the
frame, and the linear transformation is not the same in different contexts. In differen-
tial geometry, the linear transformation is the connection operator. While in quantum
mechanics, the operator algebra corresponds to the differentials of matrices. Corre-
sponding to the variation of the metric, the variation of the frame contains a unusual
fourth-order tensor. We also derive the Lie differential of the frame corresponding to
the Lorentz transformation group. The definition of differential of the frame is dif-
ferent, so the corresponding linear transformation is also different. In this paper, the
unified point of view to deal with the variation of frame or basis vectors will bring great
convenience to the research and application of Clifford algebras.
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1. Introduction
ProfessorW.K. Clifford defined his geometric algebra [1] by combining and extending the

Grassmann’s exterior algebra [2] and Hamilton’s quaternions [3] into a more general algebraic
framework, which is a direct and intuitive generalization of vector algebra, with an explicit
geometric interpretation [4] and clear relations with linear algebra [5, 6]. Geometric algebra
has developed steadily over the past century and has gained popularity by discovering many
applications in different scientific fields. It brings new perspectives to multiple mathematical
disciplines, and many properties have been derived in new forms [7–9]. An attractive feature of
Clifford algebras is that they unify various branches of mathematics. Clifford geometric algebra
has gradually become a unified language and effective tool for modern science and is widely
used in different fields of mathematics, physics and engineering [10–13]. Geometric algebra is
visualized and easily accessible. Some of its recent applications in high-tech are introduced in
[14]. The great practical value of standardized geometric algebra in current mathematics and
physics courses is evident.

Clifford algebra has many applications in differential geometry [15–17]. In [18] the au-
thors reviewed and discussed a generalization of the Einstein theory of gravity, where the spin
of matter and its mass play a dynamical role. The spin of matter in space-time is coupled to a
non-Riemannian structure, the Cartan’s torsion tensor. Nester made the Clifford algebraic de-
composition of the spinor connection [19]. The Cartan’s differential forms and Dirac-γ matrices
are simultaneously employed to concentrate the relations in differential geometry, resulting in
very neat forms [20]. This formalism of “double frames” is used to derive a class of spin curva-
ture identities existing in the Riemann or Riemannian-Cartan geometry in the study of Nester
[21]. Each identity involves a quadratic expression of the covariant derivatives of the spinor
field, which is a linear combination of the curvature and an exact differential form.

In differential geometry, the basis and coframe of a manifold vary from point to point.
1
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In this paper, we focus on the dynamic effects of the basis vector or generator of the Clifford
algebras, which reflects the differentials of basis vector. This problem arises from the discussion
on the relations between the variations of basis vector and metric with Professor J. M. Nester,
and this issue seems to be neglected by the academic community. A detailed calculation for the
case of 1+3 dimensional space-time was made in paper [22], and some unusual formulas were
derived. The following analysis shows that these formulas, such as Equations (21) and (25),
may hold for all space-times. There are many different dynamic effects of the basis vector, such
as the change of coordinate or coordinate system, moving frames, operator action, etc., which
lead to different differential of the basis. Therefore, this paper makes a special survey on this
topic, aimed to attract the attention of colleagues in the field.

2. Clifford representation of Riemann Geometry
We consider the n-dimensional pseudo-Riemannian manifold equipped with metric

(gµν) ' (ηab) = diag(Ip,−Iq), (n = p+ q). (1)

In what follows, unless the dimension is specified, we discuss the manifold Rn with arbitrary
(p, q). The element of the space-time is described by

dx = γµdx
µ = γµdxµ = γaδX

a = γaδXa, (2)

in which {γµ} is a covariant basis vector or frame, and {γa} is a set of orthonormal basis
vectors in the tangent space-time at any fixed point, and {γa = ηabγb, γ

µ = gµνγν} are the
coframes. dxµ and δXa are variables that represent the coordinate increments in the tangent
space-time, and δXa can be determined only to a Lorentz transformation. We use the Latin
characters a, b, · · · for the Minkowski indices, and Greek characters (µ, ν) for the curvilinear
indices. We have transformation

γµ = f a
µ γa, γµ = fµaγ

a, (3)

where f a
µ ∈ R and fµa ∈ R are the frame coefficients. The frame and basis satisfy the

following Clifford relations

1

2
(γaγb + γbγa) = γa · γbI = ηabI,

1

2
(γµγν + γνγµ) = γµ · γνI = gµνI, (4)

where γaγb and γµγν areClifford products of vectors, and I is the identity element of Clifford
algebra. In the case without confusion, we can directly use 1 to replace I . By Equations (3) and
(4) we have the relations between (fµa, f a

µ ) and metric as

f a
µ f

µ
b = δab , f a

µ f
ν
a = δνµ, fµaf

ν
bη

ab = gµν , f a
µ f

b
ν ηab = gµν . (5)

The space-time Rp+q defined with Clifford product of vectors form a Clifford algebra
Cℓ(Rp+q). By Clifford algebra we know that {γa} is isomorphic to a set of special matrices
constructed by Pauli matrices [15]. Thus, in the case without confusion, we no longer distin-
guish between the basis γa and its matrix representation.

There are several definitions of Clifford algebra [13]. However, it is best to treat it as a
hypercomplex system with addition, subtraction, multiplication and division operations [23–
25]. Geometric algebra brings great convenience to study geometry and physics [16,17]. By
Equation (2) we have
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dx2 =
1

2
(γµγν + γνγµ)dx

µdxν = gµνdx
µdxνI = ηabδX

aδXbI,

dVk = dx1 ∧ dx2 ∧ · · · ∧ dxk = γµν···ωdx
µ
1dx

ν
2 · · · dxωk , (1 ≤ k ≤ n),

in which ds = |dx| is the distance element and dVk is the oriented volume, γµν···ω = γµ∧γν ∧
· · ·∧γω ∈ Λk(Rp,q) is the unit of oriented volume, and ∧ is the Grassmann’s exterior product,
which is defined by

γa1 ∧ γa2 · · · ∧ γak
≡ 1

k!

∑
σ

σb1b2···bk
a1a2···ak

γb1γb2 · · · γbk , (1 ≤ k ≤ n)

where aj 6= al if j 6= l, σb1b2···bk
a1a2···ak

is permutation tensor, and if b1b2 · · · bk is an even permutation
of a1a2 · · · ak, it is equal to 1, for odd permutation it is equal to −1, otherwise equal to 0. The
above formula is a sum over all permutations; that is, it is anti-symmetric for all indices. Then
the following Clifford-Grassmann numbers

C = C0I + Cµγ
µ + Cµνγ

µν + · · ·+ C12···nγ
12···n (6)

form a 2n-dimensional hypercomplex system over R according to matrix algebra, in which
C0, Cµ, · · · , C12···n ∈ R. The Calvet’s norm is defined by ||C|| = m

√
| det(C)|, wherem is the

order of matrix C. The Calvet’s norm is a scalar under similarity transformations, and satisfies
||AB|| = ||A|| · ||B|| for any Clifford-Grassmann numbersA,B. The transformation law of || · ||
is studied in details in the study of Calvet [26].

For the 1+3 dimensional realistic space-time, the lowest-order complex matrix represen-
tation of the generators of Clifford algebra Cℓ(R1,3) is Dirac-γ matrices

γ0 = γ0 =

(
0 I2

I2 0

)
, γa = −γa =

(
0 −σa
σa 0

)
,

which generate the Grassmann basis elements of Cℓ(R1,3) as

I4, γa, γab = γa ∧ γb, γabc = −ϵabcdγdγ0123, γ0123 = −iγ5, (7)

where σa stand for Pauli matrices, γ5 = diag(I2,−I2) and ϵ0123 = 1. We have the Clifford-
Grassmann number as follows,

K = sI4 +Aaγ
a +Habγ

ab +Qaγ
aγ0123 + pγ0123, (8)

where (s, p, Aa, · · · ∈ R). sI4 ∈ Λ0 is a scalar, Aaγ
a ∈ Λ1 is a true vector, Habγ

ab ↔
(E⃗, B⃗) ∈ Λ2 is a 2-vector, Qaγ

aγ0123 ∈ Λ3 is a pseudo vector and pγ0123 ∈ Λ4 is a pseudo
scalar. In general, any Clifford algebra Cℓ(Rp,q) is a system of hypercomplex numbers.
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3. Various differentials of basis

3.1. Directional differential of frame
In differential geometry, for a vector field A = γµA

µ we define its absolute differential
as

dA ≡ lim
∆x→dx

[A(x+∆x)− A(x)]

= (∂αA
µγµ +Aµdαγµ)dx

α = (∂αAµγ
µ +Aµdαγ

µ)dxα, (9)

where∆x → dxmeans the linearization of∆x in the above equation [27, Ch.1]. We call dα the
connection operator. According to its geometric significance, the connection operator should
meet the following axioms [15]:

1) It is a real linear transformation in the tangent space dα : TV → TV , so we have

dαγβ = Kµ
αβγµ, (Kµ

αβ ∈ R). (10)

2) For any differentiable function ϕ(x) we have

dα(ϕγβ) = (∂αϕ)γβ + ϕ(dαγβ). (11)

3) For any bilinear product of the vectors or Clifford-Grassmann numbers A ◦B, it satisfies
the Leibniz formula

dα(A ◦ B) = (dαA) ◦ B+ A ◦ (dαB), (12)

or in the form of basis elements

dα(γ
µ··· ◦ γν···) = (dαγ

µ···) ◦ γν··· + γµ··· ◦ (dαγν···). (13)

Here the bilinear product means for arbitrary a, b ∈ R we have

(aA+ bB) ◦ C = aA ◦ C+ bB ◦ C,

C ◦ (aA+ bB) = aC ◦ A+ bC ◦ B.

In the study of Cartan [27, Ch.1], the differential dA is directly defined as

dA = ωiγi, dγi = ωj
i γj , (ωi = Γi

adx
a, ωj

i = Γj
iadx

a). (14)

Clearly, both Equations (14) and (9) are logically equivalent. The difference between them
is that the geometric and physical meanings of Equation (9) is more intuitive and easier for
operation. We can define different connection operators for different applications, which will
be illustrated by the several application examples. We have the following conclusions [15].
Theorem 1. For metric g = gµνγ

µ ⊗ γν = γµ ⊗ γµ, where ⊗ is the tensor product, we have
the metric consistent condition dg = 0, as well as

dαγ
µ = −Kµ

αβγ
β , ∂αgµν = gνβK

β
αµ + gµβK

β
αν . (15)

For the connection coefficients

Kα
µν = Πα

µν + Tα
µν , Πµ

αβ = Πµ
βα, Tµ

αβ = −Tµ
βα

4



Journal of AppliedMath 2024, 2(4), 1700.

we have solutionsΠα
µν = Γα

µν+π
α
µν , in whichΓα

µν is the Christoffel symbol. For the contortion
πµ
αβ = πµ

βα and torsion Tµ
αβ = −Tµ

βα, denoting

πµ|να = gµβπ
β
να, Tµ|να = gµβTβ

να,

we have the following relations

πµ|να = Tν|αµ + Tα|νµ,

Tµ|να =
1

3
(πα|µν − πν|µα) + T̃µνα,

as well as the consistent condition

πµ|να + πα|µν + πν|αµ = 0.

T̃ = T̃µνωγ
µνω ∈ Λ3 is an arbitrary skew-symmetric tensor.

By the above theorem we obtain the absolute differential (9) of vector A. In the case
πα
µν ≡ 0, the absolute differential of vector A is given by

dA = ∇αA
µγµdx

α = ∇αAµγ
µdxα, (16)

where∇α denotes the absolute derivatives of vector defined as follows

∇αA
µ = Aµ

;α + Tµ
αβA

β , Aµ
;α = ∂αA

µ + Γµ
ανA

ν ,

∇αAµ = Aµ;α − Tβ
αµAβ , Aµ;α = ∂αAµ − Γν

αµAν ,

where Aµ
;α and Aµ;α are usual covariant derivatives of vector without torsion. Torsion Tµνω ∈

Λ3 is an antisymmetrical tensor of C3
n independent components.

By Equation (15) and Equation (11), we have the second order differential of γµ as

dωdαγ
µ = −(∂ωK

µ
αβ −Kµ

αγK
γ
ωβ)γ

β .

Thus we have

(dωdα − dαdω)γ
µ = Rµ

βαωγ
β ,

in which

Rµ
βαω = ∂αK

µ
ωβ − ∂ωK

µ
αβ +Kµ

αγK
γ
ωβ −Kµ

ωγK
γ
αβ .

In the case of Kµ
αβ = Γµ

αβ , R
µ
βαω is just Riemann curvature tensor. Similarly, we can

calculate the absolute differential for any tensor. It is easy to check the following results.
Theorem 2. For the basis (7) of the Clifford algebra Cℓ(R1,3), we have connection calculus

dαγ
0123 = dαγ

5 = 0.{
dαγ

123 = (dαγ0)γ
0123, dαγ

023 = −(dαγ1)γ
0123,

dαγ
013 = (dαγ2)γ

0123, dαγ
012 = −(dαγ3)γ

0123.

For the skew-symmetric tensor S = Sµνωγµνω = Sαγαγ0123, we have

∇αS = (∇αSµ)γµγ0123, ∇αSµ = ∂αSβ − (Γµ
αβ + Tµ

αβ)Sµ.

5
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For the torsion S = T we have ∇αTµ = ∂αTβ − Γµ
αβTµ.

For k-vector

F =
1

k!
Fµ1µ2···µk

γµ1µ2···µk ,

the exterior differential d and co-differential δ are defined as

dF =
1

k!
γαµ1µ2···µk∂αFµ1µ2···µk

, δF =
1

(k − 1)!
γν1ν2···νk−1∂αF

α
ν1ν2···νk−1

.

Then we have the following beautiful results [16, Ch7.1].
Theorem 3. In the case of torsion-free, we have

d2F = δ2F = 0,

∇F = (d+ δ)F, ∇2F = (dδ + δd)F,

where ∇ = γα∇α.

3.2. Algebraic derivatives of Basis
In order to find the eigenfunctions of Dirac equation Ĥψ = Eψ in curved space-time,

we need to compute the commutative operators [24]. In this case, the γa are only regarded as
matrices of numbers rather than basis vectors, and the derivatives of the operator-valued Clifford
numbers are normal partial derivatives. Here (γµ, γµ) have no longer geometric meanings, and
they are different from the basis vectors (γµ, γµ) in Equation (3).

We introduce the following Christoffel-like connections Cµ
αβ ≡ fµa∂αf

a
β , then for the

matrices (γµ, γµ), the algebraic derivatives are given by

∂αγβ = γa∂αf
a

β = γµf
µ
a∂αf

a
β = γµC

µ
αβ ,

∂αγ
µ = γa∂αf

µ
a = γβf a

β ∂αf
µ
a = −γβCµ

αβ .

In this case, we have dαγa = 0 and (∂ω∂α − ∂α∂ω)γ
µ = 0.

Similarly to Equation (16), we can define the covariant algebraic derivatives∇α for Clif-
ford numbers as

∂αA = ∂α(A
µγµ) = γµ∇αA

µ = γµ

(
∂αA

µ + Cµ
αβA

β
)

= ∂α(Aµγ
µ) = γµ∇αAµ = γµ

(
∂αAµ − Cβ

αµAβ

)
,

∂αN = γµν∇αN
µν = γµν

(
∂αN

µν + Cµ
αβN

βν + Cν
αβN

µβ
)

= γµν∇αNµν = γµν
(
∂αNµν − Cβ

αµNβν − Cβ
ανNµβ

)
,

and so on. The computing rules of ∇̄α is quite similar to that of ∇α in Equation (16), which
also satisfies conditions (10)-(13).

3.3. Variations of frame and metric
In spinor theory in curved space-time, we need the variation of frame δγα instead of δgµν

in some cases [22]. By Equation (5) or gµν = γµ · γν we know that map (γµ, γν) 7→ gµν is a
single valued and continuous mapping. However, for gµν 7→ γα, equation (5) has multiple roots
for γα, and γα can only be determined to an arbitrary Lorentz transformation δX ′ = ΛδX . For
a fixed Lorentz transformation, the map gµν 7→ γα has continuous and bijective branches, and
each branch is somewhat similar to the quotient group. Thus the map gµν ↔ γα is a bijection in

6
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a connected injective domainD for a fixed Λ, and δgµν ↔ δγα is a linear transformation. Now
we determine one of such linear transformations for a bijective branch. By Sylvester inertial
theorem (gµν) ' (ηab) and Gram-Schmidt orthogonalization process, under some arrangement
of the order of coordinates, we have
Theorem 4. Let us suppose for matrix (gµν) that

(gµν) = L(ηab)L
T , (gµν) = U(ηab)U

T , U = L−T , (17)

where L is a real lower triangular matrix and U an upper one

L =


L 1
1 0 · · · 0

L 1
2 L 2

2 · · · 0

· · · · · · · · · · · ·
L 1
n L 2

n · · · L n
n

 , U =


U1

1 U1
2 · · · U1

n

0 U2
2 · · · U2

n

· · · · · · · · · · · ·
0 0 · · · Un

n

 , (18)

and (L,U) have positive diagonal elements L a
a > 0, Ua

a > 0. The map gµν ↔ L a
α ∈ R is a

bijective and continuous map in a connected domain D. We have

δX = LT dx, (ea) = (γµ)U,

where δX and dx are column vectors, (ea) and (γµ) are raw vectors, namely

δX = (δX1, δX2, · · · , δXn)T , (ea) = (e1, e2, · · · , en).

We take ea = γa to avoid confusion with γµ, the corresponding metric is given by (1).

Proof. The decomposition (17) is equivalent to transforming ds2 = gµνdx
µdxν into the sum

of squares ds2 = ηabδX
aδXb by completing squares. In matrix form, we have

δX = LT dx, dx2 = gµνdx
µdxν = ηabδX

aδXb. (19)

Eq(18) is a direct result of Equation (19), but Equation (19) manifestly shows the geometric
meanings of the frame coefficients L a

µ . By a fixed order of coordinates for completing squares
and taking L a

a > 0, we get a unique solution of L and U = L−T . The solution L a
µ = f(gαβ)

is analytic in D, so gµν ↔ L a
α is bijective and continuous. The proof is completed. □

Theorem 5. For any solution of frame (5) in matrix form (f a
µ ) and (fµa), there exists a local

Lorentz transformation δX ′a = Λa
bδX

b independent of gµν , such that

(f a
µ ) = LΛT , (fµa) = UΛ−1, γµ = f ‘aµ γa, γµ = fµ‘aγ

a, (20)

where Λ = (Λa
b) is the matrix of Lorentz transformation.

Proof. For any solution (5) we have

(gµν) = L(ηab)L
T = (f a

µ )(ηab)(f
a

µ )T ⇔ L−1(f a
µ )(ηab)(L

−1(f a
µ ))T = (ηab).

So we have a Lorentz transformation matrix Λ = (Λa
b), such that

L−1(f a
µ ) = ΛT ⇔ (f a

µ ) = LΛT or f a
µ = L b

µΛ
a
b.

By Equation (5) we have (fµa) = (f a
µ )−T = UΛ−1. The proof is finished. □

7
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For any variation of frame δγµ = εµνγ
ν , by Equation (4) we have a variation of metric

δgµν = δγµ · γν + γµ · δγν = εµν + ενµ.

Thus in the bijective domain D, we have solution

εµν =
1

2
(δgµν +Kαβ

µν δgαβ), Kαβ
µν = Kβα

µν = −Kαβ
νµ ,

whereKαβ
µν should be determined by frame coefficients (f a

µ , f
µ
a).

For LU decomposition (18), we define a spinor coefficient table by

Sµν
ab ≡


0 −U{µ

1 U
ν}
2 −U{µ

1 U
ν}
3 · · · −U{µ

1 U
ν}
n

U
{µ
2 U

ν}
1 0 −U{µ

2 U
ν}
3 · · · −U{µ

2 U
ν}
n

U
{µ
3 U

ν}
1 U

{µ
3 U

ν}
2 0 · · · −U{µ

3 U
ν}
n

· · · · · · · · · · · · · · ·
U

{µ
n U

ν}
1 U

{µ
n U

ν}
2 U

{µ
n U

ν}
3 · · · 0

 = −Sµν
ba , (21)

in which

U{µ
a U

ν}
b =

1

2
(Uµ

aU
ν
b + Uν

aU
µ
b) = U

{µ
b U

ν}
a .

Sµν
ab = U

{µ
a U

ν}
b sign(a − b) = −Sµν

ba is symmetrical for Riemann indices (µ, ν) but anti-
symmetrical for Minkowski indices (a, b). For any local Lorentz transformation δX ′ = ΛδX ,
if taking (21) as the proper values and setting Lorentz transformation

(S′µν
ab ) = Λ−T (Sαβ

cd )Λ−1, (22)

then Sµν
ab becomes a tensor for indices (a, b). Definition (21) fixes the Lorentz transformation.

Theorem 6. In the 1 ≤ p+ q ≤ 4 dimensional space-time (Rp,q, gµν), for frame (20) we have

δγα =
1

2
γβ(δgαβ +Kµν

αβδgµν), (23)

δγλ = −1

2
gλβγα(δgαβ +Kµν

αβδgµν), (24)

in which

Kµν
αβ = Sµν

ab L
a
α L

b
β = S′µν

ab f
a

α f
b

β (25)

is independent of any Lorentz transformation.

Proof. By symbolic calculation we can check Equation (25) for the cases of 1 ≤ p+ q ≤ 4, so
Equation (23) holds. By γλ = gλαγα and

∂gλα

∂gµν
= −1

2
(gµλgνα + gνλgµα),

we have

δγλ = gλαδγα + γα
∂gλα

∂gµν
δgµν = gλαδγα − gλαγβδgαβ . (26)

Substituting Equation (23) into Equation (26) and using Kµν
αβ = −Kµν

βα we obtain Equation

8
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(24). The proof is completed. □
In the case of p+q > 4, Theorem 6 should be also valid, but it seems difficult to generally

prove Equations (21) and (25).

3.4. Lie differentials of frame
The most commonly used groups in physics are the continuous transformation groups,

such as the rotation transformation group SO(3) on R3, the proper Lorentz transformation
group SO(1, 3) onMinkowski space-time, and so on. These groups are Lie groups with infinite
orders. We take SO(1, 3) as example to show how to define the Lie differentials of fields and
frame. Let

X = (t, x, y, z)T , η = diag(1,−1,−1,−1), δε = (a, b, c, u, v, w) → 0,

then we have infinitesimal Lorentz transformation

X ′ = ΛX, Λ+ηΛ = η + O(|δε|2),

in which

Λ =


1 a b c

a 1 w −v
b −w 1 u

c v −u 1

 = I + O(|δε|), δX = X ′ −X =


ax+ by + cz

at+ wy − vz

bt+ uz − wx

ct+ vx− uy

 .

The infinitesimal generator of SO(1, 3) is defined by

J = δxk∂k = Kxa+Kyb+Kzc+ Jxu+ Jyv + Jzw,

Kx = (x∂t − t∂x), Ky = (y∂t − t∂y), Kz = (z∂t − t∂z),

Jx = (z∂y − y∂z), Jy = (x∂z − z∂x), Jz = (y∂x − x∂y).

In the flat Minkowski space-time, we have the corresponding Lie algebra satisfying

[Kj ,Kk] = [Jj , Jk] = ϵjklJl, Jl = δlkJ
k,

[Kj , Jk] = ϵjklKl, [Kj , Jj ] = 0.

In which the subalgebra {Jk} corresponds to the rotation group SO(3).
For a scalar field ϕ(x), its Lie differential is defined as

δ̃ϕ(x) ≡ lim
δε→0

(ϕ(x′)− ϕ(x)) = (δxk∂k)ϕ(x) = Jϕ(x).

For a vector field A(x) ↔ A = (A0, A1, A2, A3)T , its Lie differential is defined as

δ̃A(x) ≡ γa lim
δε→0

(A′a(x′)−Aa(x)) ↔ lim
δε→0

(A′(x′)−A(x))

= lim
δε→0

((A′(x′)−A′(x)) + (A′(x)−A(x)))

= (δxk∂k)A(x) + (Λ− I)A = (J + Λ− I)A(x). (27)

9
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On the other hand, by

lim
δε→0

(A′(x)−A(x)) ↔ (aA1 + bA2 + cA3)γ0 + (aA0 + wA2 − vA3)γ1 +

(bA0 + uA3 − wA1)γ2 + (cA0 + vA1 − uA2)γ3,

we can take it as Aaδ̃γa, thus we have the Lie differentials of frame as

(δ̃γa) = (aγ1 + bγ2 + cγ3, aγ0 + vγ3 − wγ2, bγ0 + wγ1 − uγ3, cγ0 + uγ2 − vγ1). (28)

Substituting (28) into (27) we obtain the universal form

δ̃A(x) = (JAa)γa +Aaδ̃γa. (29)

3.5. Differentials of moving frame
The Frenet-Serret frame in an n-dimensional Euclidean space is derived in the study

of Snygg [17, Ch7.1] and in the study of Hestenes and Sobczyk [28, pp.27-28]. In pseudo-
Euclidean spaces or in spaces embedded in pseudo-Euclidean spaces, there are vectors with
length zero. If any such vectors occur in the original basis, then the method outlined will not
work. In the next we generalize the results to the pseudo-Euclidean space-time.

In the tangent space with a fixed point x0, there is a set of orthonormal basis vectors
ea constructed by Theorem 4. In the neighborhood U(x0) = {x; |x − x0| < ε}, there is a null
hypersurface ηabδXaδXb = 0, SeparatingU into the time-like region {U t ⊂ U |ηabδXaδXb >

0} and space-like region {Us ⊂ U |ηabδXaδXb < 0}. In the time-like regionU t,C is a smooth
curve segment cross x0. For all points on C, if gµνdxµdxν > 0 hold, then the curve segment is
called a time-like curve. The length element of the arc C is given by ds =

√
gµνdxµdxν . For

a parameter t with x(t = 0) = x0, the arc length is calculated by

s(t) =

∫ t

0

√
gµν ẋµẋνdt, ẋµ =

dxµ

dt
.

Nowwe examine the moving frame attached onC. For convenience we take the arc length
s as parameter, then we have n vectors constructed by derivatives of C

{τk =
dkx
dsk

; k = 1, 2, · · · , n}.

If τ1 ∧ τ2 ∧ · · · ∧ τn 6= 0 at x0, then τk’s are linearly independent, and they are equivalent to
the basis vectors {ea}. Thus we can constructed a natural or intrinsic frame {Ea} from {τk} by
means of the Gram-Schmidt process.
Theorem 7. If pq 6= 0 and τ1 ∧ τ2 ∧ · · · ∧ τn 6= 0, then the following sequence of vectors

E1 =
τ1

||τ1||
,E2 =

τ2 ∧ τ1
||τ2 ∧ τ1||

E1, · · · ,En =
τn ∧ · · · ∧ τ2 ∧ τ1

||τn ∧ · · · ∧ τ2 ∧ τ1||
E1E2 · · ·En−1, (30)

forms the orthonormal basis vectors of the tangent space-time at x0. In which the metric is
given by

hab ≡ Ea · Eb = diag(1,±1, · · · ,±1) = hab, Ea = habEb.

|| · || is the Calvet’s norm of Clifford-Grassmann number.

10
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Proof. We prove it by induction. For E1, by the definition (30) we have

h11 = E1 · E1 = 1, h11 = 1, E1 = E1.

For E2, by

E2 =
τ2 ∧ τ1

||τ2 ∧ τ1||
E1 =

1

||τ2 ∧ τ1||
(τ2||τ1|| − (τ2 · E1)τ1) ∈ Λ1,

we have ||E2|| = 1 and

h22 = E2 · E2 = ±1, h12 = h21 = E2 · E1 = 0,

where h22 = ±1 means h22 = 1 or h22 = −1, which is determined by the values of τa.
Assuming for given k < n the conclusions hold. For expression of Ek, by Ea · Eb = δba

and Clifford calculus we have

τk ∧ · · · ∧ τ2 ∧ τ1 ∝ EkEk−1 · · ·E1 = Ek ∧ · · · ∧ E2 ∧ E1. (31)

For the case Ek+1, according to Gram-Schmidt process, let

X = τk+1 −
k∑

a=1

haa(τk+1 · Ea)Ea ∈ Λ1,

then for a ≤ k we have X · Ea = 0. By using Equation (31) we have

τk+1 ∧ (τk ∧ · · · ∧ τ2 ∧ τ1) ∝ τk+1 ∧ (Ek ∧ · · · ∧ E2 ∧ E1) = XEk · · ·E2E1. (32)

Solving Equation (32) for X, we obtain

X ∝ (τk+1 ∧ τk ∧ · · · ∧ τ2 ∧ τ1)E1E2 · · ·Ek,

Ek+1 ≡ X
||X||

=
τk+1 ∧ τk ∧ · · · ∧ τ2 ∧ τ1

||τk+1 ∧ τk ∧ · · · ∧ τ2 ∧ τ1||
E1E2 · · ·Ek,

and hk+1,k+1 = ±1, ha,k+1 = Ek+1 · Ea = 0, (a ≤ k). The proof is completed. □
Theorem 8. The Frenet-Serret frame satisfies

d

ds


E1

E2

...
En

 =



0 κ1 0 · · · 0 0

−κ1 0 κ2 · · · 0 0

0 −κ2 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 κn−1

0 0 0 · · · −κn−1 0




E1

E2

...
En

 , (33)

where κa(s) ∈ R are the characteristic quantities of the curve C. By selecting the sign of±Ek,
we can set all κa > 0. The hypercomplex formalism of Equation (33) becomes

dEk

ds
= EkM−MEk, M ≡ 1

2

n−1∑
a=1

κaEaEa+1. (34)
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Proof. Since {Ea} are orthonormal basis vectors, we have

dEa

ds
= ωabEb, ωab = −ωba.

For 1 ≤ k ≤ n denoting

Vk ≡ span(E1,E2, · · · ,Ek) = span
(
dx
ds
,
d2x
ds2

, · · · , d
kx
dsk

)
.

By the definition of Ea we find d
dsEa ∈ Va+1 for a < n, thus we have

dEa

ds
=

a+1∑
b=1

ωabEb,
dEn

ds
=

n∑
b=1

ωabEb.

Noticing ωab = −ωba we obtain Equation (33) by taking ωk,k+1 = κk.
For 1 < k < n, by Clifford calculus we have{
EkEaEa+1 = Ek(Ea ∧ Ea+1) = hkaEa+1 − hk,a+1Ea + Ek ∧ Ea ∧ Ea+1,

EaEa+1Ek = (Ea ∧ Ea+1)Ek = hk,a+1Ea − hkaEa+1 + Ek ∧ Ea ∧ Ea+1.
(35)

Substituting Equation (35) into Equation (34), we find Equation (34) holds for 1 < k < n.
In the case k = 1, we should have a > 0 in Equation (35), thus Equation (34) holds for k = 1.
In the case k = n, we should have a < n in Equation (35), thus Equation (34) holds for k = n.
The proof is completed. □

If the space-time is flat, then the moving frame {Ea} and the fixed frame {ea} can be
transformed each other. At this time, the change of the moving frame can be regarded as the
change of the Lorentz transformation matrix Λ with the parameter s. Thus, the evolution equa-
tions of Λ(s) can be established from Equation (33), so that the equations of motion (33) can
be simplified. This method can be extended to the cases of high-dimensional surfaces, associ-
ated with the equivariant moving frame, computing the symmetry groups of partial differential
equations and solving the group classification problem [29]. The new equivariant formulation
of moving frames has led to a wide variety of novel and unexpected applications in pure and
applied mathematics [30,31].

4. Covariant differentials of quaternion
The connection operators can be also defined for general hypercomplex numbers. In this

section we take quaternion as example to show the covariant differentials. If taking the quater-
nions H as Clifford algebra Cℓ(R0,2) and (i, j) as the generators, by the above procedure we
can get a 2-dimensional differential geometry. But this treatment is obviously unnatural, be-
cause the intrinsically symmetric coordinates will be artificially graded. Therefore, we should
introduce the coordinate transformation and the connection coefficients in a new way [23].

Let (ea = I2, i, j, k), we should have transformation rules of basis and coordinate as

dx = dxµeµ = δxaea, eµ = f a
µ ea, ea = fµaeµ, xµ = fµaδx

a.

Denoting the multiplication rules of basis vectors as

eaeb = Cc
abec, eµeν = Cω

µνeω, Cω
µν = f a

µ f
b

ν f
ω
cC

c
ab, (36)
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we get the multiplication matrix and the matrix form of the structure coefficients as

M = (ejek) =


e0 e1 e2 e3
e1 −e0 e3 −e2
e2 −e3 −e0 e1
e3 e2 −e1 −e0

 , Cm = (Cm
jk) =

∂M
∂em

.

The structure coefficients matrices read C0 = diag(1,−1,−1,−1) and

C1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 , C2 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 , C3 =


0 0 0 1

0 0 1 0

0 −1 0 0

1 0 0 0

 .

For given m we have (Cm
jk = 0,±1) and | det(Cm)| = 1. The matrix form of Equation

(36) is given by

Cω = F (fωaC
a)FT , F = (f a

µ ), (fωa) = (FT )−1.

The determinant of the quaternion is a scalar, so we have

||dx||2 = det(dx) = δabδx
aδxb = gµνdx

µdxν , gµν = δabf
a

µ f
b

ν .

The above equations clarify the geometric meaning and the computing method of f a
µ . For an

arbitrary quaternionic function q = qµ(x)eµ, the absolute derivative is defined as

dq = (∂αq
β + qµKβ

αµ)eβdxα, dαeµ = Kβ
αµeβ .

Substituting dαeµ = Kβ
αµeβ into Equation (36), We obtain the consistent condition for

the connection coefficientsKβ
αµ as

Cγ
µβK

β
αν + Cγ

βνK
β
αµ − Cβ

µνK
γ
αβ = ∂αC

γ
µν .

We have the following solution.
Theorem 9. Suppose a = 0, 1, 2, 3 and k = 1, 2, 3, p k

a ∈ R are any given smooth functions.
Let

Pa =


0 0 0 0

0 0 p 3
a −p 2

a

0 −p 3
a 0 p 1

a

0 p 2
a −p 1

a 0

 , (37)

then we have

Kµ
αβ = fµc∂αf

c
β + fµcf

a
α f

b
β (Pa)

c
b . (38)

Proof. By the properties of connection operator (10)-(13), we have

Kµ
αβeµ = dαeβ = dα(f

b
β eb) = (∂αf

b
β )eb + f a

α f
b

β daeb. (39)
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Denoting daeb = (Pa)
c
b ec, by multiplication relation (36) we have

(Pd)
e
a C

c
eb + (Pd)

e
b C

c
ae = Ce

ab(Pd)
c
e ,

or in the form of matrix

PdCc + CcPT
d = Ce(Pd)

c
e . (40)

The solution of Equation (40) can be easily found. By straightforward calculation we obtain
(37). Substituting the solution Pa into daeb = (Pa)

c
b ec, and then into Equation (39), we obtain

Equation (38). Pa is similar to the torsion in a space-time. The proof is completed. □

5. Discussion and conclusion
In recent years, it has been strongly suggested that theoretical physicists should be all

familiar with the differential forms. However, in the context of the Clifford algebra, the differ-
ential forms and the co-forms can be greatly simplified. In differential geometry, dxµ and ∂µ
are presented as coordinate basis vectors of dual spaces in abstract significance. Indeed, dxµ

and γµ have the same coordinate transformation laws, because (2) is independent of coordinate
system. Thus taking dxµ as a basis vector usually does not lead to contradictory conclusions.
But the true geometric meaning of dxµ is the coordinate increment, which is just a real variable
rather than a vector. The double roles of dxµ in differential geometry leads to unnecessary com-
plexity and confusion. A manifold is essentially a generalization of the vector space in curved
space-time, so the direct introduction of the basis {γµ} at each point will greatly simplify the
description.

The differentials of frame are always equivalent to a linear transformation of the frame,
and the linear transformation is distinct in different contexts. In Riemannian geometry, the
linear transformation is the connection operator (10). Corresponding to the variation of metric,
the variation of the frame is given by Equation (23) or Equation (24). In a different context, the
definitions of differential of the frame are different, so the corresponding linear transformation
is also different. This unified view of the frame or basis vectors will bring great convenience
to the research and application of Clifford algebra.
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