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Abstract: In this paper we discuss the dynamic effects of the varying frames. The differential
of frame or basis vectors is always equivalent to a linear transformation of the frame, and the
linear transformation is not the same in different contexts. In differential geometry, the linear
transformation is the connection operator. While in quantum mechanics, the operator algebra
corresponds to the differentials of matrices. Corresponding to the variation of the metric, the
variation of the frame contains a unusual fourth-order tensor. We also derive the Lie differential
of the frame corresponding to the Lorentz transformation group. The definition of differential
of the frame is different, so the corresponding linear transformation is also different. In this
paper, the unified point of view to deal with the variation of frame or basis vectors will bring
great convenience to the research and application of Clifford algebras.
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1. Introduction

Professor W. K. Clifford defined his geometric algebra [1] by combining and
extending the Grassmann’s exterior algebra [2] and Hamilton’s quaternions [3] into
a more general algebraic framework, which is a direct and intuitive generalization of
vector algebra, with an explicit geometric interpretation [4] and clear relations with
linear algebra [5, 6]. Geometric algebra has developed steadily over the past century
and has gained popularity by discoveringmany applications in different scientific fields.
It brings new perspectives to multiple mathematical disciplines, and many properties
have been derived in new forms [7–9]. An attractive feature of Clifford algebras is that
they unify various branches of mathematics. Clifford geometric algebra has gradually
become a unified language and effective tool for modern science and is widely used in
different fields of mathematics, physics and engineering [10–13]. Geometric algebra
is visualized and easily accessible. Some of its recent applications in high-tech are
introduced in [14]. The great practical value of standardized geometric algebra in
current mathematics and physics courses is evident.

Clifford algebra has many applications in differential geometry [15–17]. In [18]
the authors reviewed and discussed a generalization of the Einstein theory of gravity,
where the spin of matter and its mass play a dynamical role. The spin of matter in
space-time is coupled to a non-Riemannian structure, the Cartan’s torsion tensor. Nester
made the Clifford algebraic decomposition of the spinor connection [19]. The Cartan’s
differential forms and Dirac-γ matrices are simultaneously employed to concentrate
the relations in differential geometry, resulting in very neat forms [20]. This formalism
of “double frames” is used to derive a class of spin curvature identities existing in the
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Riemann or Riemannian-Cartan geometry in the study of Nester [21]. Each identity
involves a quadratic expression of the covariant derivatives of the spinor field, which
is a linear combination of the curvature and an exact differential form.

In differential geometry, the basis and coframe of a manifold vary from point to
point. In this paper, we focus on the dynamic effects of the basis vector or generator
of the Clifford algebras, which reflects the differentials of basis vector. This problem
arises from the discussion on the relations between the variations of basis vector and
metric with Professor J. M. Nester, and this issue seems to be neglected by the academic
community. A detailed calculation for the case of 1+ 3 dimensional space-time was
made in paper [22], and some unusual formulas were derived. The following analysis
shows that these formulas, such as Equations (21) and (25), may hold for all space-times.
There are many different dynamic effects of the basis vector, such as the change of
coordinate or coordinate system, moving frames, operator action, etc., which lead to
different differential of the basis. Therefore, this paper makes a special survey on this
topic, aimed to attract the attention of colleagues in the field.

2. Clifford representation of Riemann Geometry

We consider the n-dimensional pseudo-Riemannian manifold equipped with
metric

(gµν)' (ηab) = diag(Ip,−Iq), (n = p+q). (1)

In what follows, unless the dimension is specified, we discuss the manifold Rn with
arbitrary (p,q). The element of the space-time is described by

dx = γµdxµ = γµdxµ = γaδXa = γaδXa, (2)

in which {γµ} is a covariant basis vector or frame, and {γa} is a set of orthonormal basis
vectors in the tangent space-time at any fixed point, and {γa = ηabγb, γµ = gµνγν} are
the coframes. dxµ and δXa are variables that represent the coordinate increments in
the tangent space-time, and δXa can be determined only to a Lorentz transformation.
We use the Latin characters a,b, · · · for the Minkowski indices, and Greek characters
(µ,ν) for the curvilinear indices. We have transformation

γµ = f a
µ γa, γµ = f µ

aγa, (3)

where f a
µ ∈ R and f µ

a ∈ R are the frame coefficients. The frame and basis satisfy the
following Clifford relations

1
2
(γaγb + γbγa) = γa · γbI = ηabI,

1
2
(γµγν + γνγµ) = γµ · γν I = gµν I, (4)

where γaγb and γµγν are Clifford products of vectors, and I is the identity element of
Clifford algebra. In the case without confusion, we can directly use 1 to replace I. By
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Equations (3) and (4) we have the relations between ( f µ
a, f a

µ ) and metric as

f a
µ f µ

b = δ a
b , f a

µ f ν
a = δ ν

µ , f µ
a f ν

bηab = gµν , f a
µ f b

ν ηab = gµν . (5)

The space-time Rp+q defined with Clifford product of vectors form a Clifford
algebra Cℓ(Rp+q). By Clifford algebra we know that {γa} is isomorphic to a set of
special matrices constructed by Pauli matrices [15]. Thus, in the case without confusion,
we no longer distinguish between the basis γa and its matrix representation.

There are several definitions of Clifford algebra [13]. However, it is best to treat
it as a hypercomplex system with addition, subtraction, multiplication and division
operations [23–25]. Geometric algebra brings great convenience to study geometry
and physics [16,17]. By Equation (2) we have

dx2 =
1
2
(γµγν + γνγµ)dxµdxν = gµνdxµdxν I = ηabδXaδXbI,

dVk = dx1 ∧dx2 ∧·· ·∧dxk = γµν ···ωdxµ
1 dxν

2 · · ·dxω
k , (1 ≤ k ≤ n),

in which ds = |dx| is the distance element and dVk is the oriented volume, γµν ···ω =

γµ ∧ γν ∧ ·· ·∧ γω ∈ Λk(Rp,q) is the unit of oriented volume, and ∧ is the Grassmann’s
exterior product, which is defined by

γa1 ∧ γa2 · · ·∧ γak ≡
1
k! ∑

σ
σb1b2···bk

a1a2···ak
γb1γb2 · · ·γbk , (1 ≤ k ≤ n)

where a j 6= al if j 6= l, σb1b2···bk
a1a2···ak is permutation tensor, and if b1b2 · · ·bk is an even

permutation of a1a2 · · ·ak, it is equal to 1, for odd permutation it is equal to −1,
otherwise equal to 0. The above formula is a sum over all permutations; that is, it
is anti-symmetric for all indices. Then the following Clifford-Grassmann numbers

C=C0I +Cµγµ +Cµνγµν + · · ·+C12···nγ12···n (6)

form a 2n-dimensional hypercomplex system over R according to matrix algebra, in
which C0,Cµ , · · · ,C12···n ∈ R. The Calvet’s norm is defined by ||C|| = m

√
|det(C)|,

where m is the order of matrix C. The Calvet’s norm is a scalar under similarity
transformations, and satisfies ||AB||= ||A|| · ||B|| for any Clifford-Grassmann numbers
A,B. The transformation law of || · || is studied in details in the study of Calvet [26].

For the 1+ 3 dimensional realistic space-time, the lowest-order complex matrix
representation of the generators of Clifford algebra Cℓ(R1,3) is Dirac-γ matrices

γ0 = γ0 =

(
0 I2

I2 0

)
, γa =−γa =

(
0 −σa

σa 0

)
,

which generate the Grassmann basis elements of Cℓ(R1,3) as

I4, γa, γab = γa ∧ γb, γabc =−εabcdγdγ0123, γ0123 =−iγ5, (7)
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where σa stand for Pauli matrices, γ5 = diag(I2,−I2) and ε0123 = 1. We have the
Clifford-Grassmann number as follows,

K= sI4 +Aaγa +Habγab +Qaγaγ0123 + pγ0123, (8)

where (s, p,Aa, · · · ∈ R). sI4 ∈ Λ0 is a scalar, Aaγa ∈ Λ1 is a true vector, Habγab ↔
(E⃗, B⃗)∈Λ2 is a 2-vector, Qaγaγ0123 ∈Λ3 is a pseudo vector and pγ0123 ∈Λ4 is a pseudo
scalar. In general, any Clifford algebraCℓ(Rp,q) is a system of hypercomplex numbers.

3. Various differentials of basis

3.1. Directional differential of frame
In differential geometry, for a vector field A = γµAµ we define its absolute

differential as

dA ≡ lim
∆x→dx

[A(x+∆x)−A(x)]

= (∂αAµγµ +Aµdαγµ)dxα = (∂αAµγµ +Aµdαγµ)dxα , (9)

where ∆x→ dxmeans the linearization of ∆x in the above equation [27, Ch.1]. We call
dα the connection operator. According to its geometric significance, the connection
operator should meet the following axioms [15]:

1) It is a real linear transformation in the tangent space dα : TV → TV , so we have

dαγβ = Kµ
αβ γµ , (Kµ

αβ ∈ R). (10)

2) For any differentiable function ϕ(x) we have

dα(ϕγβ ) = (∂αϕ)γβ +ϕ(dαγβ ). (11)

3) For any bilinear product of the vectors or Clifford-Grassmann numbers A ◦B, it
satisfies the Leibniz formula

dα(A◦B) = (dαA)◦B+A◦ (dαB), (12)

or in the form of basis elements

dα(γµ··· ◦ γν ···) = (dαγµ···)◦ γν ···+ γµ··· ◦ (dαγν ···). (13)

Here the bilinear product means for arbitrary a,b ∈ R we have

(aA+bB)◦C= aA◦C+bB◦C,

C◦ (aA+bB) = aC◦A+bC◦B.

In the study of Cartan [27, Ch.1], the differential dA is directly defined as

dA= ω iγi, dγi = ω j
i γ j, (ω i = Γi

adxa, ω j
i = Γ j

iadxa). (14)
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Clearly, both Equations (14) and (9) are logically equivalent. The difference
between them is that the geometric and physical meanings of Equation (9) is more
intuitive and easier for operation. We can define different connection operators for
different applications, which will be illustrated by the several application examples.
We have the following conclusions [15].
Theorem 1. For metric g= gµνγµ ⊗ γν = γµ ⊗ γµ , where ⊗ is the tensor product, we
have the metric consistent condition dg= 0, as well as

dαγµ =−Kµ
αβ γβ , ∂αgµν = gνβ Kβ

αµ +gµβ Kβ
αν . (15)

For the connection coefficients

Kα
µν = Πα

µν +Tα
µν , Πµ

αβ = Πµ
βα , Tµ

αβ =−Tµ
βα

we have solutions Πα
µν = Γα

µν +πα
µν , in which Γα

µν is the Christoffel symbol. For the
contortion πµ

αβ = πµ
βα and torsion Tµ

αβ =−Tµ
βα , denoting

πµ|να = gµβ πβ
να , Tµ|να = gµβT

β
να ,

we have the following relations

πµ|να = Tν |αµ +Tα|νµ ,

Tµ|να =
1
3
(πα|µν −πν |µα)+ T̃µνα ,

as well as the consistent condition

πµ|να +πα|µν +πν |αµ = 0.

T̃= T̃µνωγµνω ∈ Λ3 is an arbitrary skew-symmetric tensor.
By the above theorem we obtain the absolute differential (9) of vector A. In the

case πα
µν ≡ 0, the absolute differential of vector A is given by

dA= ∇αAµγµdxα = ∇αAµγµdxα , (16)

where ∇α denotes the absolute derivatives of vector defined as follows

∇αAµ = Aµ
;α +Tµ

αβ Aβ , Aµ
;α = ∂αAµ +Γµ

ανAν ,

∇αAµ = Aµ;α −Tβ
αµAβ , Aµ;α = ∂αAµ −Γν

αµAν ,

where Aµ
;α and Aµ;α are usual covariant derivatives of vector without torsion. Torsion

Tµνω ∈ Λ3 is an antisymmetrical tensor of C3
n independent components.

By Equation (15) and Equation (11), we have the second order differential of γµ

as

dωdαγµ =−(∂ωKµ
αβ −Kµ

αγKγ
ωβ )γ

β .
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Thus we have

(dωdα −dαdω)γµ = Rµ
βαωγβ ,

in which

Rµ
βαω = ∂αKµ

ωβ −∂ωKµ
αβ +Kµ

αγKγ
ωβ −Kµ

ωγKγ
αβ .

In the case of Kµ
αβ = Γµ

αβ , Rµ
βαω is just Riemann curvature tensor. Similarly, we

can calculate the absolute differential for any tensor. It is easy to check the following
results.
Theorem 2. For the basis (7) of the Clifford algebra Cℓ(R1,3), we have connection
calculus

dαγ0123 = dαγ5 = 0.{
dαγ123 = (dαγ0)γ0123, dαγ023 =−(dαγ1)γ0123,

dαγ013 = (dαγ2)γ0123, dαγ012 =−(dαγ3)γ0123.

For the skew-symmetric tensor S= Sµνωγµνω = Sαγαγ0123, we have

∇αS= (∇αSµ)γµγ0123, ∇αSµ = ∂αSβ − (Γµ
αβ +Tµ

αβ )Sµ .

For the torsion S= T we have ∇αTµ = ∂αTβ −Γµ
αβTµ .

For k-vector

F=
1
k!

Fµ1µ2···µk γ
µ1µ2···µk ,

the exterior differential d and co-differential δ are defined as

dF=
1
k!

γαµ1µ2···µk ∂αFµ1µ2···µk , δF=
1

(k−1)!
γν1ν2···νk−1∂αFα

ν1ν2···νk−1
.

Then we have the following beautiful results [16, Ch7.1].
Theorem 3. In the case of torsion-free, we have

d2F= δ 2F= 0,

∇F= (d+δ )F, ∇2F= (dδ +δd)F,

where ∇ = γα∇α .

3.2. Algebraic derivatives of Basis
In order to find the eigenfunctions of Dirac equation Ĥψ = Eψ in curved

space-time, we need to compute the commutative operators [24]. In this case, the γa are
only regarded as matrices of numbers rather than basis vectors, and the derivatives of
the operator-valued Clifford numbers are normal partial derivatives. Here (γµ ,γµ) have
no longer geometric meanings, and they are different from the basis vectors (γµ ,γµ) in
Equation (3).
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We introduce the following Christoffel-like connectionsCµ
αβ ≡ f µ

a∂α f a
β , then for

the matrices (γµ ,γµ), the algebraic derivatives are given by

∂αγβ = γa∂α f a
β = γµ f µ

a∂α f a
β = γµCµ

αβ ,

∂αγµ = γa∂α f µ
a = γβ f a

β ∂α f µ
a =−γβCµ

αβ .

In this case, we have dαγa = 0 and (∂ω∂α −∂α∂ω)γµ = 0.
Similarly to Equation (16), we can define the covariant algebraic derivatives ∇α

for Clifford numbers as

∂αA = ∂α(Aµγµ) = γµ∇αAµ = γµ

(
∂αAµ +Cµ

αβ Aβ
)

= ∂α(Aµγµ) = γµ∇αAµ = γµ
(

∂αAµ −Cβ
αµAβ

)
,

∂αN = γµν∇αNµν = γµν

(
∂αNµν +Cµ

αβ Nβν +Cν
αβ Nµβ

)
= γµν∇αNµν = γµν

(
∂αNµν −Cβ

αµNβν −Cβ
ανNµβ

)
,

and so on. The computing rules of ∇̄α is quite similar to that of ∇α in Equation (16),
which also satisfies conditions (10)-(13).

3.3. Variations of frame and metric
In spinor theory in curved space-time, we need the variation of frame δγα instead

of δgµν in some cases [22]. By Equation (5) or gµν = γµ · γν we know that map
(γµ ,γν) 7→ gµν is a single valued and continuous mapping. However, for gµν 7→ γα ,
equation (5) has multiple roots for γα , and γα can only be determined to an arbitrary
Lorentz transformation δX ′ = ΛδX . For a fixed Lorentz transformation, the map
gµν 7→ γα has continuous and bijective branches, and each branch is somewhat similar
to the quotient group. Thus the map gµν ↔ γα is a bijection in a connected injective
domain D for a fixed Λ, and δgµν ↔ δγα is a linear transformation. Now we determine
one of such linear transformations for a bijective branch. By Sylvester inertial theorem
(gµν)' (ηab) and Gram-Schmidt orthogonalization process, under some arrangement
of the order of coordinates, we have
Theorem 4. Let us suppose for matrix (gµν) that

(gµν) = L(ηab)LT , (gµν) =U(ηab)UT , U = L−T , (17)

where L is a real lower triangular matrix and U an upper one

L =


L 1

1 0 · · · 0
L 1

2 L 2
2 · · · 0

· · · · · · · · · · · ·
L 1

n L 2
n · · · L n

n

 , U =


U1

1 U1
2 · · · U1

n

0 U2
2 · · · U2

n

· · · · · · · · · · · ·
0 0 · · · Un

n

 , (18)

and (L,U) have positive diagonal elements L a
a > 0, Ua

a > 0. The map gµν ↔ L a
α ∈ R

7
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is a bijective and continuous map in a connected domain D. We have

δX = LT dx, (ea) = (γµ)U,

where δX and dx are column vectors, (ea) and (γµ) are raw vectors, namely

δX = (δX1,δX2, · · · ,δXn)T , (ea) = (e1,e2, · · · ,en).

We take ea = γa to avoid confusion with γµ , the corresponding metric is given by
(1).

Proof. The decomposition (17) is equivalent to transforming ds2 = gµνdxµdxν into
the sum of squares ds2 = ηabδXaδXb by completing squares. In matrix form, we have

δX = LT dx, dx2 = gµνdxµdxν = ηabδXaδXb. (19)

Eq(18) is a direct result of Equation (19), but Equation (19) manifestly shows the
geometric meanings of the frame coefficients L a

µ . By a fixed order of coordinates for
completing squares and taking L a

a > 0, we get a unique solution of L and U = L−T .
The solution L a

µ = f (gαβ ) is analytic in D, so gµν ↔ L a
α is bijective and continuous.

The proof is completed. □
Theorem 5. For any solution of frame (5) in matrix form ( f a

µ ) and ( f µ
a), there exists

a local Lorentz transformation δX ′a = Λa
bδXb independent of gµν , such that

( f a
µ ) = LΛT , ( f µ

a) =UΛ−1, γµ = f ‘a
µ γa, γµ = f µ

‘aγa, (20)

where Λ = (Λa
b) is the matrix of Lorentz transformation.

Proof. For any solution (5) we have

(gµν) = L(ηab)LT = ( f a
µ )(ηab)( f a

µ )T ⇔ L−1( f a
µ )(ηab)(L−1( f a

µ ))T = (ηab).

So we have a Lorentz transformation matrix Λ = (Λa
b), such that

L−1( f a
µ ) = ΛT ⇔ ( f a

µ ) = LΛT or f a
µ = L b

µ Λa
b.

By Equation (5) we have ( f µ
a) = ( f a

µ )−T =UΛ−1. The proof is finished. □
For any variation of frame δγµ = εµνγν , by Equation (4) we have a variation of

metric

δgµν = δγµ · γν + γµ ·δγν = εµν + ενµ .

Thus in the bijective domain D, we have solution

εµν =
1
2
(δgµν +Kαβ

µν δgαβ ), Kαβ
µν = Kβα

µν =−Kαβ
νµ ,

where Kαβ
µν should be determined by frame coefficients ( f a

µ , f µ
a).
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For LU decomposition (18), we define a spinor coefficient table by

Sµν
ab ≡


0 −U{µ

1 Uν}
2 −U{µ

1 Uν}
3 · · · −U{µ

1 Uν}
n

U{µ
2 Uν}

1 0 −U{µ
2 Uν}

3 · · · −U{µ
2 Uν}

n

U{µ
3 Uν}

1 U{µ
3 Uν}

2 0 · · · −U{µ
3 Uν}

n

· · · · · · · · · · · · · · ·
U{µ

n Uν}
1 U{µ

n Uν}
2 U{µ

n Uν}
3 · · · 0

=−Sµν
ba , (21)

in which

U{µ
a Uν}

b =
1
2
(U µ

aUν
b +Uν

aU µ
b) =U{µ

b Uν}
a .

Sµν
ab = U{µ

a Uν}
b sign(a − b) = −Sµν

ba is symmetrical for Riemann indices (µ,ν) but
anti-symmetrical for Minkowski indices (a,b). For any local Lorentz transformation
δX ′ = ΛδX , if taking (21) as the proper values and setting Lorentz transformation

(S′µν
ab ) = Λ−T (Sαβ

cd )Λ−1, (22)

then Sµν
ab becomes a tensor for indices (a,b). Definition (21) fixes the Lorentz

transformation.
Theorem 6. In the 1 ≤ p+ q ≤ 4 dimensional space-time (Rp,q,gµν), for frame (20)
we have

δγα =
1
2

γβ (δgαβ +Kµν
αβ δgµν), (23)

δγλ = −1
2

gλβ γα(δgαβ +Kµν
αβ δgµν), (24)

in which

Kµν
αβ = Sµν

ab L a
α L b

β = S′µν
ab f a

α f b
β (25)

is independent of any Lorentz transformation.

Proof. By symbolic calculationwe can check Equation (25) for the cases of 1≤ p+q≤
4, so Equation (23) holds. By γλ = gλαγα and

∂gλα

∂gµν
=−1

2
(gµλ gνα +gνλ gµα),

we have

δγλ = gλαδγα + γα
∂gλα

∂gµν
δgµν = gλαδγα −gλαγβ δgαβ . (26)

Substituting Equation (23) into Equation (26) and using Kµν
αβ = −Kµν

βα we obtain
Equation (24). The proof is completed. □

In the case of p+q > 4, Theorem 6 should be also valid, but it seems difficult to
generally prove Equations (21) and (25).
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3.4. Lie differentials of frame
The most commonly used groups in physics are the continuous transformation

groups, such as the rotation transformation group SO(3) on R3, the proper Lorentz
transformation group SO(1,3) on Minkowski space-time, and so on. These groups are
Lie groups with infinite orders. We take SO(1,3) as example to show how to define the
Lie differentials of fields and frame. Let

X = (t,x,y,z)T , η = diag(1,−1,−1,−1), δε = (a,b,c,u,v,w)→ 0,

then we have infinitesimal Lorentz transformation

X ′ = ΛX , Λ+ηΛ = η +O(|δε |2),

in which

Λ =


1 a b c
a 1 w −v
b −w 1 u
c v −u 1

= I +O(|δε |), δX = X ′−X =


ax+by+ cz
at +wy− vz
bt +uz−wx
ct + vx−uy

 .

The infinitesimal generator of SO(1,3) is defined by

J = δxk∂k = Kxa+Kyb+Kzc+ Jxu+ Jyv+ Jzw,

Kx = (x∂t − t∂x), Ky = (y∂t − t∂y), Kz = (z∂t − t∂z),

Jx = (z∂y − y∂z), Jy = (x∂z − z∂x), Jz = (y∂x − x∂y).

In the flat Minkowski space-time, we have the corresponding Lie algebra satisfying

[K j,Kk] = [J j,Jk] = ε jklJl, Jl = δlkJk,

[K j,Jk] = ε jklKl, [K j,J j] = 0.

In which the subalgebra {Jk} corresponds to the rotation group SO(3).
For a scalar field ϕ(x), its Lie differential is defined as

δ̃ ϕ(x)≡ lim
δε→0

(ϕ(x′)−ϕ(x)) = (δxk∂k)ϕ(x) = Jϕ(x).

For a vector field A(x)↔ A = (A0,A1,A2,A3)T , its Lie differential is defined as

δ̃A(x) ≡ γa lim
δε→0

(A′a(x′)−Aa(x))↔ lim
δε→0

(A′(x′)−A(x))

= lim
δε→0

(
(A′(x′)−A′(x))+(A′(x)−A(x))

)
= (δxk∂k)A(x)+(Λ− I)A = (J+Λ− I)A(x). (27)

10
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On the other hand, by

lim
δε→0

(
A′(x)−A(x)

)
↔ (aA1 +bA2 + cA3)γ0 +(aA0 +wA2 − vA3)γ1 +

(bA0 +uA3 −wA1)γ2 +(cA0 + vA1 −uA2)γ3,

we can take it as Aaδ̃ γa, thus we have the Lie differentials of frame as

(δ̃ γa) = (aγ1 +bγ2 + cγ3,aγ0 + vγ3 −wγ2,bγ0 +wγ1 −uγ3,cγ0 +uγ2 − vγ1). (28)

Substituting (28) into (27) we obtain the universal form

δ̃A(x) = (JAa)γa +Aaδ̃ γa. (29)

3.5. Differentials of moving frame
The Frenet-Serret frame in an n-dimensional Euclidean space is derived in the

study of Snygg [17, Ch7.1] and in the study of Hestenes and Sobczyk [28, pp.27-28]. In
pseudo-Euclidean spaces or in spaces embedded in pseudo-Euclidean spaces, there are
vectors with length zero. If any such vectors occur in the original basis, then the method
outlined will not work. In the next we generalize the results to the pseudo-Euclidean
space-time.

In the tangent space with a fixed point x0, there is a set of orthonormal basis vectors
ea constructed by Theorem 4. In the neighborhood U(x0) = {x; |x−x0|< ε}, there is
a null hypersurface ηabδXaδXb = 0, Separating U into the time-like region {U t ⊂
U |ηabδXaδXb > 0} and space-like region {U s ⊂U |ηabδXaδXb < 0}. In the time-like
regionU t ,C is a smooth curve segment cross x0. For all points onC, if gµνdxµdxν > 0
hold, then the curve segment is called a time-like curve. The length element of the arc
C is given by ds =

√
gµνdxµdxν . For a parameter t with x(t = 0) = x0, the arc length

is calculated by

s(t) =
∫ t

0

√
gµν ẋµ ẋνdt, ẋµ =

dxµ

dt
.

Now we examine the moving frame attached on C. For convenience we take the
arc length s as parameter, then we have n vectors constructed by derivatives of C

{τk =
dkx
dsk ;k = 1,2, · · · ,n}.

If τ1∧τ2∧·· ·∧τn 6= 0 at x0, then τk’s are linearly independent, and they are equivalent
to the basis vectors {ea}. Thus we can constructed a natural or intrinsic frame {Ea}
from {τk} by means of the Gram-Schmidt process.
Theorem 7. If pq 6= 0 and τ1∧τ2∧·· ·∧τn 6= 0, then the following sequence of vectors

E1 =
τ1

||τ1||
,E2 =

τ2 ∧ τ1

||τ2 ∧ τ1||
E1, · · · ,En =

τn ∧·· ·∧ τ2 ∧ τ1

||τn ∧·· ·∧ τ2 ∧ τ1||
E1E2 · · ·En−1, (30)

forms the orthonormal basis vectors of the tangent space-time at x0. In which the metric

11
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is given by

hab ≡ Ea ·Eb = diag(1,±1, · · · ,±1) = hab, Ea = habEb.

|| · || is the Calvet’s norm of Clifford-Grassmann number.

Proof. We prove it by induction. For E1, by the definition (30) we have

h11 = E1 ·E1 = 1, h11 = 1, E1 = E1.

For E2, by

E2 =
τ2 ∧ τ1

||τ2 ∧ τ1||
E1 =

1
||τ2 ∧ τ1||

(τ2||τ1||− (τ2 ·E1)τ1) ∈ Λ1,

we have ||E2||= 1 and

h22 = E2 ·E2 =±1, h12 = h21 = E2 ·E1 = 0,

where h22 =±1 means h22 = 1 or h22 =−1, which is determined by the values of τa.
Assuming for given k < n the conclusions hold. For expression of Ek, by Ea ·Eb =

δ b
a and Clifford calculus we have

τk ∧·· ·∧ τ2 ∧ τ1 ∝ EkEk−1 · · ·E1 = Ek ∧·· ·∧E2 ∧E1. (31)

For the case Ek+1, according to Gram-Schmidt process, let

X= τk+1 −
k

∑
a=1

haa(τk+1 ·Ea)Ea ∈ Λ1,

then for a ≤ k we have X ·Ea = 0. By using Equation (31) we have

τk+1 ∧ (τk ∧·· ·∧ τ2 ∧ τ1) ∝ τk+1 ∧ (Ek ∧·· ·∧E2 ∧E1) = XEk · · ·E2E1. (32)

Solving Equation (32) for X, we obtain

X ∝ (τk+1 ∧ τk ∧·· ·∧ τ2 ∧ τ1)E1E2 · · ·Ek,

Ek+1 ≡ X
||X||

=
τk+1 ∧ τk ∧·· ·∧ τ2 ∧ τ1

||τk+1 ∧ τk ∧·· ·∧ τ2 ∧ τ1||
E1E2 · · ·Ek,

and hk+1,k+1 =±1, ha,k+1 = Ek+1 ·Ea = 0, (a ≤ k). The proof is completed. □
Theorem 8. The Frenet-Serret frame satisfies

d
ds


E1

E2
...
En

=



0 κ1 0 · · · 0 0
−κ1 0 κ2 · · · 0 0

0 −κ2 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 κn−1

0 0 0 · · · −κn−1 0




E1

E2

...
En

 , (33)
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where κa(s) ∈ R are the characteristic quantities of the curve C. By selecting the sign
of ±Ek, we can set all κa > 0. The hypercomplex formalism of Equation (33) becomes

dEk

ds
= EkM−MEk, M≡ 1

2

n−1

∑
a=1

κaEaEa+1. (34)

Proof. Since {Ea} are orthonormal basis vectors, we have

dEa

ds
= ωabEb, ωab =−ωba.

For 1 ≤ k ≤ n denoting

Vk ≡ span(E1,E2, · · · ,Ek) = span
(

dx
ds

,
d2x
ds2 , · · · ,

dkx
dsk

)
.

By the definition of Ea we find d
dsEa ∈Va+1 for a < n, thus we have

dEa

ds
=

a+1

∑
b=1

ωabEb,
dEn

ds
=

n

∑
b=1

ωabEb.

Noticing ωab =−ωba we obtain Equation (33) by taking ωk,k+1 = κk.
For 1 < k < n, by Clifford calculus we have{
EkEaEa+1 = Ek(Ea ∧Ea+1) = hkaEa+1 −hk,a+1Ea +Ek ∧Ea ∧Ea+1,

EaEa+1Ek = (Ea ∧Ea+1)Ek = hk,a+1Ea −hkaEa+1 +Ek ∧Ea ∧Ea+1.
(35)

Substituting Equation (35) into Equation (34), we find Equation (34) holds for
1 < k < n. In the case k = 1, we should have a > 0 in Equation (35), thus Equation
(34) holds for k = 1. In the case k = n, we should have a < n in Equation (35), thus
Equation (34) holds for k = n. The proof is completed. □

If the space-time is flat, then the moving frame {Ea} and the fixed frame {ea}
can be transformed each other. At this time, the change of the moving frame can
be regarded as the change of the Lorentz transformation matrix Λ with the parameter
s. Thus, the evolution equations of Λ(s) can be established from Equation (33), so
that the equations of motion (33) can be simplified. This method can be extended to
the cases of high-dimensional surfaces, associated with the equivariant moving frame,
computing the symmetry groups of partial differential equations and solving the group
classification problem [29]. The new equivariant formulation of moving frames has led
to a wide variety of novel and unexpected applications in pure and applied mathematics
[30,31].

4. Covariant differentials of quaternion

The connection operators can be also defined for general hypercomplex numbers.
In this section we take quaternion as example to show the covariant differentials. If
taking the quaternions H as Clifford algebra Cℓ(R0,2) and (i, j) as the generators,
by the above procedure we can get a 2-dimensional differential geometry. But this
treatment is obviously unnatural, because the intrinsically symmetric coordinates will

13
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be artificially graded. Therefore, we should introduce the coordinate transformation
and the connection coefficients in a new way [23].

Let (ea = I2, i, j,k), we should have transformation rules of basis and coordinate
as

dx= dxµeµ = δxaea, eµ = f a
µ ea, ea = f µ

aeµ , xµ = f µ
aδxa.

Denoting the multiplication rules of basis vectors as

eaeb =Cc
abec, eµeν =Cω

µνeω , Cω
µν = f a

µ f b
ν f ω

cCc
ab, (36)

we get the multiplication matrix and the matrix form of the structure coefficients as

M= (e jek) =


e0 e1 e2 e3

e1 −e0 e3 −e2

e2 −e3 −e0 e1

e3 e2 −e1 −e0

 , Cm = (Cm
jk) =

∂M
∂em

.

The structure coefficients matrices read C0 = diag(1,−1,−1,−1) and

C1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , C2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , C3 =


0 0 0 1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

For given m we have (Cm
jk = 0,±1) and |det(Cm)| = 1. The matrix form of

Equation (36) is given by

Cω = F ( f ω
aCa)FT , F = ( f a

µ ), ( f ω
a) = (FT )−1.

The determinant of the quaternion is a scalar, so we have

||dx||2 = det(dx) = δabδxaδxb = gµνdxµdxν , gµν = δab f a
µ f b

ν .

The above equations clarify the geometric meaning and the computing method of f a
µ .

For an arbitrary quaternionic function q = qµ(x)eµ , the absolute derivative is defined
as

dq= (∂αqβ +qµKβ
αµ)eβ dxα , dαeµ = Kβ

αµeβ .

Substituting dαeµ = Kβ
αµeβ into Equation (36), We obtain the consistent condition

for the connection coefficients Kβ
αµ as

Cγ
µβ Kβ

αν +Cγ
βνKβ

αµ −Cβ
µνKγ

αβ = ∂αCγ
µν .

We have the following solution.
Theorem 9. Suppose a = 0,1,2,3 and k = 1,2,3, p k

a ∈ R are any given smooth

14
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functions. Let

Pa =


0 0 0 0
0 0 p 3

a −p 2
a

0 −p 3
a 0 p 1

a

0 p 2
a −p 1

a 0

 , (37)

then we have

Kµ
αβ = f µ

c∂α f c
β + f µ

c f a
α f b

β (Pa)
c

b . (38)

Proof. By the properties of connection operator (10)-(13), we have

Kµ
αβ eµ = dαeβ = dα( f b

β eb) = (∂α f b
β )eb + f a

α f b
β daeb. (39)

Denoting daeb = (Pa)
c

b ec, by multiplication relation (36) we have

(Pd)
e

a Cc
eb +(Pd)

e
b Cc

ae =Ce
ab(Pd)

c
e ,

or in the form of matrix

PdCc +CcPT
d = Ce(Pd)

c
e . (40)

The solution of Equation (40) can be easily found. By straightforward calculation we
obtain (37). Substituting the solution Pa into daeb = (Pa)

c
b ec, and then into Equation

(39), we obtain Equation (38). Pa is similar to the torsion in a space-time. The proof is
completed. □

5. Discussion and conclusion

In recent years, it has been strongly suggested that theoretical physicists should
be all familiar with the differential forms. However, in the context of the Clifford
algebra, the differential forms and the co-forms can be greatly simplified. In differential
geometry, dxµ and ∂µ are presented as coordinate basis vectors of dual spaces in
abstract significance. Indeed, dxµ and γµ have the same coordinate transformation laws,
because (2) is independent of coordinate system. Thus taking dxµ as a basis vector
usually does not lead to contradictory conclusions. But the true geometric meaning
of dxµ is the coordinate increment, which is just a real variable rather than a vector.
The double roles of dxµ in differential geometry leads to unnecessary complexity and
confusion. A manifold is essentially a generalization of the vector space in curved
space-time, so the direct introduction of the basis {γµ} at each point will greatly
simplify the description.

The differentials of frame are always equivalent to a linear transformation of the
frame, and the linear transformation is distinct in different contexts. In Riemannian
geometry, the linear transformation is the connection operator (10). Corresponding to
the variation of metric, the variation of the frame is given by Equation (23) or Equation
(24). In a different context, the definitions of differential of the frame are different, so
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the corresponding linear transformation is also different. This unified view of the frame
or basis vectors will bring great convenience to the research and application of Clifford
algebra.
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