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Abstract: In this paper we discuss the dynamic effects of the varying frames. The dif-
ferential of frame or basis vectors is always equivalent to a linear transformation of the
frame, and the linear transformation is not the same in different contexts. In differen-
tial geometry, the linear transformation is the connection operator. While in quantum
mechanics, the operator algebra corresponds to the differentials of matrices. Corre-
sponding to the variation of the metric, the variation of the frame contains a unusual
fourth-order tensor. We also derive the Lie differential of the frame corresponding to
the Lorentz transformation group. The definition of differential of the frame is dif-
ferent, so the corresponding linear transformation is also different. In this paper, the
unified point of view to deal with the variation of frame or basis vectors will bring great

convenience to the research and application of Clifford algebras.
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1. Introduction

Professor W. K. Clifford defined his geometric algebra [1] by combining and extending the
Grassmann’s exterior algebra [2] and Hamilton’s quaternions [3] into a more general algebraic
framework, which is a direct and intuitive generalization of vector algebra, with an explicit
geometric interpretation [4] and clear relations with linear algebra [5,6]. Geometric algebra
has developed steadily over the past century and has gained popularity by discovering many
applications in different scientific fields. It brings new perspectives to multiple mathematical
disciplines, and many properties have been derived in new forms [7-9]. An attractive feature of
Clifford algebras is that they unify various branches of mathematics. Clifford geometric algebra
has gradually become a unified language and effective tool for modern science and is widely
used in different fields of mathematics, physics and engineering [10—13]. Geometric algebra is
visualized and easily accessible. Some of its recent applications in high-tech are introduced in
[14]. The great practical value of standardized geometric algebra in current mathematics and
physics courses is evident.

Clifford algebra has many applications in differential geometry [15-17]. In [18] the au-
thors reviewed and discussed a generalization of the Einstein theory of gravity, where the spin
of matter and its mass play a dynamical role. The spin of matter in space-time is coupled to a
non-Riemannian structure, the Cartan’s torsion tensor. Nester made the Clifford algebraic de-
composition of the spinor connection [19]. The Cartan’s differential forms and Dirac-y matrices
are simultaneously employed to concentrate the relations in differential geometry, resulting in
very neat forms [20]. This formalism of “double frames” is used to derive a class of spin curva-
ture identities existing in the Riemann or Riemannian-Cartan geometry in the study of Nester
[21]. Each identity involves a quadratic expression of the covariant derivatives of the spinor
field, which is a linear combination of the curvature and an exact differential form.

In differential geometry, the basis and coframe of a manifold vary from point to point.
1
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In this paper, we focus on the dynamic effects of the basis vector or generator of the Clifford
algebras, which reflects the differentials of basis vector. This problem arises from the discussion
on the relations between the variations of basis vector and metric with Professor J. M. Nester,
and this issue seems to be neglected by the academic community. A detailed calculation for the
case of 1+ 3 dimensional space-time was made in paper [22], and some unusual formulas were
derived. The following analysis shows that these formulas, such as Equations (21) and (25),
may hold for all space-times. There are many different dynamic effects of the basis vector, such
as the change of coordinate or coordinate system, moving frames, operator action, etc., which
lead to different differential of the basis. Therefore, this paper makes a special survey on this
topic, aimed to attract the attention of colleagues in the field.

2. Clifford representation of Riemann Geometry

We consider the n-dimensional pseudo-Riemannian manifold equipped with metric

(Gu) = (ap) = diag(I,, —1,), (n=p+q). (1)

In what follows, unless the dimension is specified, we discuss the manifold R™ with arbitrary
(p, q). The element of the space-time is described by

dx = yuda" = y'dz, = 7,0 X" =v*6X,, (2)

in which {~,} is a covariant basis vector or frame, and {7} is a set of orthonormal basis
vectors in the tangent space-time at any fixed point, and {y¢ = n%~,, v* = g"¥~,} are the
coframes. dx* and 6.X“ are variables that represent the coordinate increments in the tangent
space-time, and X can be determined only to a Lorentz transformation. We use the Latin
characters a, b, - - - for the Minkowski indices, and Greek characters (u, ) for the curvilinear
indices. We have transformation

T = fﬂa7av 7” = ;Z,ya, (3)

where f,* € R and ff € R are the frame coefficients. The frame and basis satisfy the
following Clifford relations

1
VYo + 71/7#) =Y Wl = gud, 4

1
YaVo + W Ya) = Yo - I = Nap1, 5(

5
where 7,73 and 7,7, are Clifford products of vectors, and I is the identity element of Clifford
algebra. In the case without confusion, we can directly use 1 to replace I. By Equations (3) and
(4) we have the relations between (f%, f,*) and metric as

LAy =00 fAfa=0 fafm™=g"" [f, b= G- ®)

The space-time RP*¢ defined with Clifford product of vectors form a Clifford algebra
C((RPT2), By Clifford algebra we know that {~y,} is isomorphic to a set of special matrices
constructed by Pauli matrices [15]. Thus, in the case without confusion, we no longer distin-
guish between the basis 7, and its matrix representation.

There are several definitions of Clifford algebra [13]. However, it is best to treat it as a
hypercomplex system with addition, subtraction, multiplication and division operations [23—
25]. Geometric algebra brings great convenience to study geometry and physics [16,17]. By
Equation (2) we have
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1
dx* = i(ywy + V) datde” = g, datda?' T = npd XX T,
AV, = dxi ANdxg A+ NdX = Yppepdatidey - dei, (1 <k <n),

in which ds = |dx| is the distance element and dV}, is the oriented volume, V..o = Y AYw A
<Ay € AF (RP-7) is the unit of oriented volume, and A is the Grassmann’s exterior product,
which is defined by

1
,Y(ll /\’yag SERNA ’Yak = E 20211222...22’7!717172 o "me (]- S k é n)
: g

where a; # a;if j # [, 0211222'4'],%’; is permutation tensor, and if by b - - - by, is an even permutation
of ajas - - - ag, it is equal to 1, for odd permutation it is equal to —1, otherwise equal to 0. The
above formula is a sum over all permutations; that is, it is anti-symmetric for all indices. Then

the following Clifford-Grassmann numbers
C=Col + C,A" + Cpy"™ + -+ + Cro gy ™ ©)

form a 2"-dimensional hypercomplex system over R according to matrix algebra, in which
Co,C, - ,C12..., € R. The Calvet’s norm is defined by ||C|| = %/| det(C)]|, where m is the
order of matrix C. The Calvet’s norm is a scalar under similarity transformations, and satisfies
[|AB|| = ||A||-||B|| for any Clifford-Grassmann numbers A, B. The transformation law of || - ||
is studied in details in the study of Calvet [26].

For the 1 + 3 dimensional realistic space-time, the lowest-order complex matrix represen-
tation of the generators of Clifford algebra C/(IR'+?) is Dirac-y matrices

0 __ o 0 IQ a_ - 0 —0gq
Y =% = 12 0 ) Y=Y = o, 0 )

which generate the Grassmann basis elements of C/(R'?) as

abc _ _eabcd 0123 0123 _ _ .5 (7)

I, 7% Y% =9"Ab, o a2,y —iy®,

where o, stand for Pauli matrices, 7° = diag(I3, —I2) and €*1?® = 1. We have the Clifford-
Grassmann number as follows,

K = sly + Ay + Hap ™ + Quy™ "3 + py12, (®

where (s,p, Aq,--- € R). sI; € A®is ascalar, A,7v* € Al is a true vector, H,;y <
(E,B) € A2 is a 2-vector, Qu7*7"123 € A3 is a pseudo vector and py?123 € A% is a pseudo
scalar. In general, any Clifford algebra C'¢(RP-7) is a system of hypercomplex numbers.
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3. Various differentials of basis

3.1. Directional differential of frame

In differential geometry, for a vector field A = v, A* we define its absolute differential

as

dA

A1(iir1dx[A(x + Ax) — A(x)]

(Do A" + A*0o ) da® = (Ba Ay + Apdary™)dz®, ©)

where Ax — dx means the linearization of Ax in the above equation [27, Ch.1]. We call 0, the
connection operator. According to its geometric significance, the connection operator should

meet the following axioms [15]:

1) It is a real linear transformation in the tangent space 0, : TV — TV, so we have
0078 :K(’jﬁ'yﬂ, (Kgﬁ eR). (10)
2)  For any differentiable function ¢(x) we have

0. (¢78) = (0a9)75 + ¢(0a78)- 11

3) For any bilinear product of the vectors or Clifford-Grassmann numbers A o B, it satisfies

the Leibniz formula
0,(AoB) = (0,A) 0B+ Ao (0,B), (12)
or in the form of basis elements
0 (V7 0y") = (0a7") 09" M 0 (007T). (13)
Here the bilinear product means for arbitrary a,b € R we have

(aA+bB)oC=aAoC+bBoC,
Co(aA +bB) =aCoA+bCoB.

In the study of Cartan [27, Ch.1], the differential dA is directly defined as
dA = w'y;, dy; =wlyy, (W =Tide®, w! =T7,dz"). (14)

Clearly, both Equations (14) and (9) are logically equivalent. The difference between them
is that the geometric and physical meanings of Equation (9) is more intuitive and easier for
operation. We can define different connection operators for different applications, which will
be illustrated by the several application examples. We have the following conclusions [15].

Theorem 1. For metric g = g, Y" @ v = v, @ ¥H, where  is the tensor product, we have

the metric consistent condition dg = 0, as well as
%’Y“ = 7K55753 aozg;w = gVﬂKgl,L + g,uBKgu' (15)
For the connection coefficients

K&, =15, + 15, I, =11

b
par  Tap= T,
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we have solutions IT';,, = I'Y/, +77;,, inwhich I'}},, is the Christoffel symbol. For the contortion

nuv Nz pvo
Ths = T, and torsion T/, ; = —T/; , denoting
Tulva = g/ABﬂ'Eou Tu\ua = gMﬁTﬁow

we have the following relations

Tulva = Tl/|ozp + Toz|1/,u7
1 ~
Tu\ya = g(’framu - Wu\ua) + T,uuom

as well as the consistent condition

Tulva + Tajuw + Tyjap = 0.

T=T,,¥"" e A3 is an arbitrary skew-symmetric tensor.
By the above theorem we obtain the absolute differential (9) of vector A. In the case
7., = 0, the absolute differential of vector A is given by

dA = VAly,dx® = V Ay de®, (16)
where V, denotes the absolute derivatives of vector defined as follows

VoAl = Al + Th AP, Al = 0, AF + TH, A,
vaA/t = Au;a - TguAﬂv Au;a = aaAu - FZ/LAV7

where Af‘a and A, are usual covariant derivatives of vector without torsion. Torsion T, €
A3 is an antisymmetrical tensor of C?2 independent components.
By Equation (15) and Equation (11), we have the second order differential of v* as

007" = —(0u K, — KE K] )7

Thus we have
(owa - Daaw)’yu = R“aw7ﬂ7
in which

R#

Boaw

_ u u v v
= 0uKly — 0,K!y + KL K], — KM K.

In the case of K, = I'l 5, R},

calculate the absolute differential for any tensor. It is easy to check the following results.
Theorem 2. For the basis (7) of the Clifford algebra C{(R'3), we have connection calculus

is just Riemann curvature tensor. Similarly, we can

0a7123 = d,7% = 0.

027" = (0270771, 0477 = —(0am1)7",
07" = (0a72)77, 0a7"1? = —(0a73)7"1 .

0123

For the skew-symmetric tensor S = S,,,,v**“ = Sv*y , we have

VoS = (VaSu )77, VS, = 8aSp — (Th s + Th,)S,.
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For the torsion S = T we have V,,T,, = 0, T3 — FgﬁTu.
For k-vector

1

F=_F

K12
il pipzpr Y )

the exterior differential d and co-differential ¢ are defined as

1 1
dF = oy e o By s, OF =

viva V1"

,YVIVZ"'Vk—laaFa

Then we have the following beautiful results [16, Ch7.1].
Theorem 3. [n the case of torsion-free, we have

d’F =30%F =0,
VF = (d + §)F, V2F = (dé + 6d)F,

where V. = y*V,,.

3.2. Algebraic derivatives of Basis

In order to find the eigenfunctions of Dirac equation Hy = Ei in curved space-time,
we need to compute the commutative operators [24]. In this case, the v, are only regarded as
matrices of numbers rather than basis vectors, and the derivatives of the operator-valued Clifford
numbers are normal partial derivatives. Here (y,,,7") have no longer geometric meanings, and
they are different from the basis vectors (y,,,7*) in Equation (3).

We introduce the following Christoffel-like connections C* 5 = FH0q f4", then for the
matrices (7y,,,7"), the algebraic derivatives are given by

ao/}/ﬁ = ’Yaaozfﬂa = ’Vuflfzaaf,@a = 'Yucf)f[ja
Bo™ = A"0aft =27 f50afl = =7 Cliy.

In this case, we have 0,7* = 0 and (9,0, — 0,0,,)7* = 0.
Similarly to Equation (16), we can define the covariant algebraic derivatives V, for Clif-
ford numbers as

oA = 0a(A",) = 7 Va A =, (9 A" + Cliy A7)
= Oa (A;L'Y'u) = VﬂﬁaAu = '7# (aOéAM - Cﬂ Aﬁ) )

L

8aN = ’YMUV(XN“V - 'yuy (aozN/“/ + CZBNBV + CgBNILﬁ)
= YValNu =" (0aNuw — C5, N, — Ch,Nyg) ,

and so on. The computing rules of V,, is quite similar to that of V,, in Equation (16), which
also satisfies conditions (10)-(13).

3.3. Variations of frame and metric

In spinor theory in curved space-time, we need the variation of frame -y, instead of dg,,,,
in some cases [22]. By Equation (5) or g,,, = 7, - 7, we know that map (v,,7,) — g isa
single valued and continuous mapping. However, for g,,, — 74, equation (5) has multiple roots
for v, and 7y, can only be determined to an arbitrary Lorentz transformation X’ = A0 X. For
a fixed Lorentz transformation, the map g,,,, — 7, has continuous and bijective branches, and

each branch is somewhat similar to the quotient group. Thus the map g,,,, <+ v, is a bijection in
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a connected injective domain D for a fixed A, and dg,,,, <+ 67, is a linear transformation. Now
we determine one of such linear transformations for a bijective branch. By Sylvester inertial
theorem (g,,,,) =~ (nas) and Gram-Schmidt orthogonalization process, under some arrangement
of the order of coordinates, we have

Theorem 4. Let us suppose for matrix (g,,,,) that

(gw) = L) LT, (") =UMmu)U", U=L7T, (17)

where L is a real lower triangular matrix and U an upper one

LY 0o - 0 vy vy ... U4
Lt L2 ... 2 . 2

L=| 7% 0 ., U= 0 U3 Un , (18)
L r? ... L 0 0o - U

and (L, U) have positive diagonal elements L, > 0, U%, > 0. The map g, <+ L® € Risa

bijective and continuous map in a connected domain D. We have
X = LT dx, (ea) = (v)U,
where 6 X and dx are column vectors, (e,) and (v,,) are raw vectors, namely
6X = (6X1,6X2 ... 6X™)7T, (eq) = (€1, €9, ,€,).

We take e, = v, to avoid confusion with -, the corresponding metric is given by (1).
Proof. The decomposition (17) is equivalent to transforming ds* = g,,,dz*dz” into the sum
of squares ds? = 1,,0 X *6 X by completing squares. In matrix form, we have

6X = L%z, dx* = gudatde’ =nu0X 6X°. (19)

Eq(18) is a direct result of Equation (19), but Equation (19) manifestly shows the geometric
meanings of the frame coefficients L ;. By a fixed order of coordinates for completing squares
and taking L, > 0, we get a unique solution of L and U = L~ The solution L= f(gap)
is analytic in D, so g,,,, <> L is bijective and continuous. The proofis completed. [
Theorem 5. For any solution of frame (5) in matrix form (f,*) and (f%,), there exists a local
Lorentz transformation §X'* = A%§ X" independent of g,,,,, such that

(f)=LAT,  (fo)=UA"Y = flve Y= fo0", (20)

where A = (A%) is the matrix of Lorentz transformation.

Proof. For any solution (5) we have

(guv) = L(ab) LT = (£, 0a0) (£,DT & L7HED 0a) (L) = (1ab)-

So we have a Lorentz transformation matrix A = (A%), such that

L7V =AT & (£ =LAT  or  fo=L}AY.

By Equation (5) we have (f#) = (fua)’T = UA~L. The proofis finished. (J
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For any variation of frame d-,, = €,,7", by Equation (4) we have a variation of metric

59;”/ = 5'7# Yo+ Ve oy, = Euwv + Eup-

Thus in the bijective domain D, we have solution

]' « « « o
awza@w+&ﬁmm, Ko =Ki* =K

j224 v

where K l‘jff should be determined by frame coefficients (f,*, f%,).
For LU decomposition (18), we define a spinor coefficient table by

o -vtvy —viruy ... —vluy
viroy 0 —vhuy o oo
swo= | vhuy uvhuy 0 Ut | =S, en
vieor vty ooy 0
in which
a1
UrUy = S UL+ ULUY) = UYTY.
s — Uy usign(a — b) = —S!" is symmetrical for Riemann indices (u,) but anti-

symmetrical for Minkowski indices (a, b). For any local Lorentz transformation 6 X’ = AdX,
if taking (21) as the proper values and setting Lorentz transformation

(S = A~T(Se)AY, 22)

then S’} becomes a tensor for indices (a, b). Definition (21) fixes the Lorentz transformation.
Theorem 6. [nthe 1 < p+ q < 4 dimensional space-time (RP?, g,,,,), for frame (20) we have

1 v
57@ = 5’}/'6(59(1,8 + K5559W)7 (23)
1 v
5’7/\ = _59)\[3,)/(1 (6904,8 + K§559uu)> (24)
in which
Kl = SWLILY =SB0 @

is independent of any Lorentz transformation.

Proof. By symbolic calculation we can check Equation (25) for the cases of 1 < p+¢q < 4, so
Equation (23) holds. By v* = ¢*®~, and

dgr™ 1
— (M gra VA o
D9m 599" +97g"),
we have
A Ao ‘99/\u Ao Ao B
5’7 =g 57& + Ya W(Sguu =g 6704 — g 5gozﬁ~ (26)
v

Substituting Equation (23) into Equation (26) and using K/; = —KJ we obtain Equation

8
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(24). The proof is completed. [J
In the case of p+ ¢ > 4, Theorem 6 should be also valid, but it seems difficult to generally
prove Equations (21) and (25).

3.4. Lie differentials of frame

The most commonly used groups in physics are the continuous transformation groups,
such as the rotation transformation group SO(3) on R3, the proper Lorentz transformation
group SO(1, 3) on Minkowski space-time, and so on. These groups are Lie groups with infinite
orders. We take SO(1, 3) as example to show how to define the Lie differentials of fields and
frame. Let

X = (t7m7y,Z)T7 n:diag(la_la_la_l)v de = (a,b,c,u7v7w) _>07
then we have infinitesimal Lorentz transformation

X'=AX, ATpA=n+0(s?),

in which
1 a b c ax + by + cz
1 — t —
A~ a w v — I+ 0(|5e]), SX = X! — X — at +wy — vz
b —w 1 bt + uz — wzx
c v —u 1 ct +vr —uy

The infinitesimal generator of SO(1, 3) is defined by

J=0250, = K*a+ KYb + K?c + J%u + JY%v + J*w,
K* = (x@t — tam), KY = (y@t — tay), K* = (Zat — taz),
J? = (20y —y0,), JY=(20,—20;), J*=(y0,— xdy).

In the flat Minkowski space-time, we have the corresponding Lie algebra satisfying

[Kj,Kk] = [Jj,Jk] = €jlil, Jg = 5lka7
(K7, J%] = MK, [K7,.J7] = 0.

In which the subalgebra {.J*} corresponds to the rotation group SO(3).
For a scalar field ¢(x), its Lie differential is defined as

36(x) = lim (¢(x') — p(x)) = (02 9)d(x) = JH(x).

5e—0

For a vector field A(x) «» A = (A%, A', A%, A3)T its Lie differential is defined as

SA(x)

Yo Jim (A9 (x') — A%(x)) ¢ lim (A'(x') — A(x))

= Jim ((A'(x) = A'(x)) + (A"(x) = A(x)))
= (62%0)AX) + (A —D)A = (J+A—DA(x). (27)
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On the other hand, by

lim (A'(x) — A(x)) < (aA' +bA% 4+ cA®)y0 + (aA® + wA? —vA®)y +

de—0

(A +uA® —wA )y, + (cAY +vA' — uA?)ys,
we can take it as A“g'y,,,, thus we have the Lie differentials of frame as
(67a) = (a7 + byz + €¥3, @70 + v¥3 — wy2, b0 + Wy — uys, Y0+ ura —vy1)- (28)
Substituting (28) into (27) we obtain the universal form
SA(X) = (JAT)y, + A%, (29)

3.5. Differentials of moving frame

The Frenet-Serret frame in an n-dimensional Euclidean space is derived in the study
of Snygg [17, Ch7.1] and in the study of Hestenes and Sobczyk [28, pp.27-28]. In pseudo-
Euclidean spaces or in spaces embedded in pseudo-Euclidean spaces, there are vectors with
length zero. If any such vectors occur in the original basis, then the method outlined will not
work. In the next we generalize the results to the pseudo-Euclidean space-time.

In the tangent space with a fixed point X, there is a set of orthonormal basis vectors
e, constructed by Theorem 4. In the neighborhood U(xg) = {x; |x — Xo| < €}, there is a null
hypersurface 7,,6 X *§ X = 0, Separating U into the time-like region {U* C U|7q;,6 X6 X? >
0} and space-like region {U® C U156 X6 X® < 0}. In the time-like region U?, C'is a smooth
curve segment cross Xq. For all points on C, if g,,, dz*dz” > 0 hold, then the curve segment is
called a time-like curve. The length element of the arc C'is given by ds = /g, dx*dz”. For
a parameter ¢ with x(t = 0) = xo, the arc length is calculated by

_dzt

t
S(t) = / \/guyi#iudt, H = W
0

Now we examine the moving frame attached on C'. For convenience we take the arc length
s as parameter, then we have n vectors constructed by derivatives of C

kx
Tk =——3k=1,2,--- ,n}.
{ k d Sk }
Ifri Ama A+ AT, # 0 at X, then 73,’s are linearly independent, and they are equivalent to
the basis vectors {e, }. Thus we can constructed a natural or intrinsic frame {E, } from {71} by
means of the Gram-Schmidt process.

Theorem 7. Ifpq # 0and 71 Ao A\ --- AT, # O, then the following sequence of vectors

1 To N T 1 Tn N\ NTo AT

= — = - — ElEQ-“En_l 30
s L I} 5 5
™ = T Al " A AT AT G0)

E,;

forms the orthonormal basis vectors of the tangent space-time at Xq. In which the metric is

given by
hap = Eq - By = diag(1, £1,--- ,+1) = h?, E® = hE,,.

| - || is the Calvet’s norm of Clifford-Grassmann number.
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Proof. We prove it by induction. For Eq, by the definition (30) we have

hi1 =E; -E; =1, ptt =1, E! = E;.

For E,, by
T2 /\7'1 1 1 1
= = — .E 6 A R
At T amg I 2 ET)
we have ||[Ez|| = 1 and
hao = Eg - Eo = £1, hi2 = ha1 = Eo - E; =0,
where hyo = £1 means hoy = 1 or hos = —1, which is determined by the values of 7.

Assuming for given k < n the conclusions hold. For expression of Ey, by E, - E> = 5°

and Clifford calculus we have
TN ANToANTI XELEp_1---E1 =Eg A--- ANEs AEq. 31

For the case Ej1, according to Gram-Schmidt process, let
k
X =Tpy1 — O h*(7hp1 - Eq)Eq € A,

a=1

then for a < k we have X - E, = 0. By using Equation (31) we have
Th+1 N\ (Tk /\“-/\’7'2/\7'1) X T41 N (Ek A+ NEo /\El) =XE; ---EsE;q. (32)
Solving Equation (32) for X, we obtain

X & (Thg1 ATEA-- AT /\Tl)ElE2~~Ek,

Ep = X _ Tt NTE N - - ANTa ATy EE2... g
HXH ||Tk+1/\7'k/\'~~/\7'2/\7'1”

)

and hgy1 k41 = £1, hg k+1 = Exy1 - E4 =0, (a < k). The proof is completed. [J
Theorem 8. The Frenet-Serret frame satisfies

0 kK 0 -- 0 0
E, k1 0 Ky - 0 0 E!
d | E2 0 —ky O --- 0 0 E?
ds : - : : L : : : ’ (33)
E, 0 0 0 - 0 Kn_1 E"
0 0 0 -+ —kpq1 O

where £4(s) € R are the characteristic quantities of the curve C. By selecting the sign of +Eg,

we can set all k, > 0. The hypercomplex formalism of Equation (33) becomes

1
Ko ECETT, (34)
1

n

dE* 1
— = E*M — ME*, M= -
ds 2

a

11
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Proof. Since {E,} are orthonormal basis vectors, we have

dE,

b
= wapE ) Wab = —Wha-
ds

For 1 < k < n denoting

dx d’x dFx
Vi = span(E1,Eq, - Ex) = span (ds’dsw'” ’dsk) .

By the definition of E, we find %Ea € Vg41 for a < n, thus we have

dE, &, dE, <& )
:ZwabE, 7=ZwabE.
ds P ds —

Noticing wep = —wp, We obtain Equation (33) by taking wy k41 = K.
For 1 < k < n, by Clifford calculus we have
EFECET! = EF(E® A EoFY) = phegat! — photlge  EF A B2 AEOTY, 35
E‘E*TEF = (E® A E2TY)EF = phatlge — phegat! L EF A E® A BT (33)

Substituting Equation (35) into Equation (34), we find Equation (34) holds for 1 < k < n.
In the case & = 1, we should have a > 0 in Equation (35), thus Equation (34) holds for k£ = 1.
In the case k = n, we should have a < n in Equation (35), thus Equation (34) holds for £ = n.
The proof is completed. [J

If the space-time is flat, then the moving frame {E,} and the fixed frame {e,} can be
transformed each other. At this time, the change of the moving frame can be regarded as the
change of the Lorentz transformation matrix A with the parameter s. Thus, the evolution equa-
tions of A(s) can be established from Equation (33), so that the equations of motion (33) can
be simplified. This method can be extended to the cases of high-dimensional surfaces, associ-
ated with the equivariant moving frame, computing the symmetry groups of partial differential
equations and solving the group classification problem [29]. The new equivariant formulation
of moving frames has led to a wide variety of novel and unexpected applications in pure and
applied mathematics [30,31].

4. Covariant differentials of quaternion

The connection operators can be also defined for general hypercomplex numbers. In this
section we take quaternion as example to show the covariant differentials. If taking the quater-
nions H as Clifford algebra C'¢(R%?) and (i, j) as the generators, by the above procedure we
can get a 2-dimensional differential geometry. But this treatment is obviously unnatural, be-
cause the intrinsically symmetric coordinates will be artificially graded. Therefore, we should
introduce the coordinate transformation and the connection coefficients in a new way [23].

Let (e, = Io,1,]j, k), we should have transformation rules of basis and coordinate as

dx = dz''e, = dzeq, e, = fes, e,= fle,, = fl oz
Denoting the multiplication rules of basis vectors as

eep =Coee,  eue, =Cloe,,  C% = foflfoCs, (36)
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we get the multiplication matrix and the matrix form of the structure coefficients as

€ €1 €2 €3
e —€o €3 —e oM
M = (ejer) = , cC"=(Ch)=—.
(ejex) & —es e o (C) = 5
€3 € —€1 —€
The structure coefficients matrices read C° = diag(1, —1, —1, —1) and
01 0 O 0 01 O 0 0 01
cl 1 0 0 O 2 0 00 -1 b 0 0 1 0
00 0 1|’ 1 oo o |’ 0 -1 0 0
0 0 -1 0 01 0 O 1 0 00

For given m we have (C7; = 0,=+1) and | det(C™)| = 1. The matrix form of Equation
(36) is given by

CY=F(f5C)F', F=(f"), (fo)=EF""
The determinant of the quaternion is a scalar, so we have

||dx||? = det(dx) = 6,,02%02° = Guvdatda”, Juv = 5abfuaf,,b.

The above equations clarify the geometric meaning and the computing method of f,*. For an
arbitrary quaternionic function q = ¢/ (x)e,,, the absolute derivative is defined as

dq = (aaqﬁ + q"Kgu)eBdm“, 0., = Kgueﬂ.

Substituting d,€, = K/ ,&p into Equation (36), We obtain the consistent condition for

the connection coefficients /7 L, 88
ClsKL, +Ch KL, —ChLKL, =0.C),.

We have the following solution.
Theorem 9. Suppose a = 0,1,2,3 and k = 1,2,3, p* € R are any given smooth functions.
Let

0 0 0 0
P, = 8 _p§ P ‘i _i j , 37)
0 p2 —pl 0
then we have
Kig = f0afs + fléfaafﬂb(Pa)bc' (38)

Proof. By the properties of connection operator (10)-(13), we have

Kle, =065 = 0a(fier) = (Dafs)es + fo' f5 0aks. (39)
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Denoting d,e, = (P,), e, by multiplication relation (36) we have
(Pa)y Cg + (Pa)y Ce = Cgp(Pa) .’
or in the form of matrix

P,C° + CPT = C*(Py) ~. (40)
The solution of Equation (40) can be easily found. By straightforward calculation we obtain
(37). Substituting the solution P, into d,e;, = (P,), e, and then into Equation (39), we obtain
Equation (38). P, is similar to the torsion in a space-time. The proof is completed. [J

5. Discussion and conclusion

In recent years, it has been strongly suggested that theoretical physicists should be all
familiar with the differential forms. However, in the context of the Clifford algebra, the differ-
ential forms and the co-forms can be greatly simplified. In differential geometry, dz* and 0,
are presented as coordinate basis vectors of dual spaces in abstract significance. Indeed, dz*
and ~* have the same coordinate transformation laws, because (2) is independent of coordinate
system. Thus taking dz* as a basis vector usually does not lead to contradictory conclusions.
But the true geometric meaning of dz* is the coordinate increment, which is just a real variable
rather than a vector. The double roles of dz* in differential geometry leads to unnecessary com-
plexity and confusion. A manifold is essentially a generalization of the vector space in curved
space-time, so the direct introduction of the basis {7} at each point will greatly simplify the
description.

The differentials of frame are always equivalent to a linear transformation of the frame,
and the linear transformation is distinct in different contexts. In Riemannian geometry, the
linear transformation is the connection operator (10). Corresponding to the variation of metric,
the variation of the frame is given by Equation (23) or Equation (24). In a different context, the
definitions of differential of the frame are different, so the corresponding linear transformation
is also different. This unified view of the frame or basis vectors will bring great convenience
to the research and application of Clifford algebra.
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