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Abstract: The law of energy accumulation in the earthquake focus is presented,
together with the temporal, energy and magnitude distributions of regular, background
earthquakes. The background seismicity is characterized by two parameters—the
seismicity rate and the Gutenberg-Richter parameter, which can be extracted by fitting
the empirical earthquake distributions. Time-magnitude and temporal correlations are
presented, and the information they can provide is discussed. For foreshocks the
time-magnitude correlations can be used to forecast (with limitations) the mainshock.
The temporal correlations indicate a decrease of the Gutenberg-Richter parameter
for small magnitudes, in agreement with empirical observations for foreshocks. On
the other hand, the aftershocks may be viewed as independent earthquakes with
changed seismic conditions, so they may exhibit an increase of this parameter, also in
accordance with empirical observations. The roll-off effect for small magnitudes and
the modified Gutenberg-Richter distribution are discussed for temporal corralations,
and the derivation of the Bath’s law is briefly reviewed.

Keywords: background seismicity; time-magnitude correlations; temporal correlations;
foreshocks for forecasting

1. Introduction
This paper deals with the statistical properties of the earthquakes. We represent

a typical earthquake by a spatially-localized focus (called also focal region), i.e. a
region extending in space over distances much smaller than the distances over which
we measure the seismic effects. We may say that the focus is “pointlike”. In time, the
earthquake energy is accumulated in focus, and suddenly released as seismic waves.
These seismic waves propagate in the earth, viewed as an elastic medium, where
they are attenuated, scattered by inhomogeneities, may produce damage (ruptures),
especially in the near-field region, etc. The particular geometry of the focal region is
not very relevant for statistical properties. By means of this simple assumption we are
able to derive the law of energy accumulation in the focus, and derive the well-known
standard Gutenberg-Richter statistical distrbutions of the earthquakes. Moreover, by
the same assumption, we derive the correlations that may exist between earthquakes.
These elaborations, together with other special cases are discussed in detail in Apostol
[1–4].

From a theoretical point of view the earthquakes imply the knowledge and
understanding of three questions at least. First, we need to know the connection
between the earthquake energy and the accumulation time in the focal region. Second,
the statistical distributions are an important aspect, related to the former, especially
including earthquake correlations. These two problems can be viewed as defining the
statistical seismology. Third, it is necessary to know the force acting in the seismic
focus and the seismic waves it produces, especially at earth’s surface (seismological
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problem). Related to this problem we have also the inverse seismological problem,
which aims at deriving the earthquake and the focal parameters from measurements
conducted at earth’s surface. The seismological problem was recently discussed [5].
We give herein a brief presentation of the statistical seismology, with emphasis on its
meaning and information it can provide. A technical Appendix is included.

2. Background seismicity

The background (regular) seismicity views earthquakes as independent events,
occurring by accumulating energy in a pointike focus during a certain lapse of time.
“By pointlike focus” we mean focal dimensions much smaller than the distances over
which we measure the earthquakes’ effects. The process of accumulation consists of
a succession of small amounts of energy E0, each produced in a short time t0; in time
t > t0 we may accumulate an energy E > E0. The energy E is the sum of several
energies E0, and the time t is the sum of several short times t0. The events with E0

and t0 are fundamental, E0-seismic events. In Apostol [4] we established the law of
accumulation

t/t0 = (E/E0)
r (1)

where r is a (statistical) parameter which characterizes the geometry of the focus; it
takes values in the range 1/3 < r < 1 (see Appendix).

By definition the (moment) magnitudeM of an earthquake is given by

E/E0 = ebM (2)

where b = 3.45 (in decimal base b = 3/2) [6–11]. By combining the above two
equations we can write the accumulation law as

t = t0e
βM , β = br (3)

this is the mean recurrence time.
The probability for a fundamental event to occur in time t is t0/t. If P (t)dt is

the probability of having an earthquake in the time interval t and t+ dt, its occurrence
probability is

∫ t
t0
dt′P (t′), and we must have

t0
t
+

∫ t

t0

dt′P (t′) = 1 (4)

this equation tells that we have either an E0-event, or an E > E0-earthquake in time t.
Hence, we get the probability

P (t)dt =
t0
t2
dt (5)

for an earthquake to occur in the short duration from t to t+ dt; it is the probability of
having an earthquake at time t, with an accumulated energy E given by Equation (2).
Making use of Equation (3) we get the magnitude probability

P (M)dM = βe−βMdM (6)
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and the cumulative (excedence) probability for an earthquake with magnitude greater
thanM

Pex = e−βM (7)

Equations (6) and (7) are known as Gutenberg-Richter (or Hanks-Kanamori) laws.
We can see that the law of energy accumulation and the definition of the probabilty lead
to the Gutenberg-Richter empirical distributions.

If, in a given seismic region, we have N0 earthquakes in a long time T and N

earthquakes with magnitude greater than M , then Pex = N/N0, or Pex = Nt0/T ,
such that the logarithmic form of Equation (7) reads

ln(N/T ) = − ln t0 − βM (8)

By fitting this law to the empirical distribution of earthquakes, we get the
parameters t0 and β (and r = β/b) of the background seismicity; 1/t0 is the rate of
seismicity. We analyzed a set of 3640 Vrancea earthquakes with magnitude M ≥ 3,
occurred during 1981−2018 [12], and get the parameters− ln t0 = 11.32 (t0 measured
in years) and β = 2.26 (r = 0.65; with an estimated 15% error). A completeness
magnitudeM = 2.2 toM = 2.8 is usually accepted for Vrancea (a more conservative
figure would beM = 3) [13], and the magnitude average error is ∆M = 0.1. Similar
parameters are obtained for 8455 Vrancea earthquakes with magnitudeM ≥ 2 (period
1980− 2019).

The value β = 2.26 for Vrancea is close to β = 2.3 (1 in decimal base),
corresponding to r = 2/3, which is accepted as reference value [14–17].

3. Time-magnitude correlations

It is reasonable to assume that an earthquake may affect the occurrence time and
the characteristics of another earthquake. In this case we say that the earthquakes are
correlated. Any pair, or any sequence of earthquakes, may be correlated, but it is
likely that correlations appear especially between a mainshock and its acompanying,
smaller foreshocks and aftershocks, in the same seismic region (relatively close to
the focus of the mainshock) and in a limited period of time, before and after the
mainshock. We note that we use the term “mainshock” in this paper as distinct from the
mainshock recorded by seismograms, usually associated with Rayleigh-Love waves. In
the sense used herein a mainshock is a big earthquake accompanied by foreshocks and
aftershocks. We cannot exclude regular earthquakes from foreshocks and aftershocks,
but it is likely that a mainshock modifies the seismic conditions, such as to produce
correlations, and correlated foreshocks and aftershocks. If two (or several) earthquakes
share their energy, or their accumulation time, we have correlations; other conditions
(constraints) which can be imposed upon earthquakes may also lead to correlations.
The laws governing correlated earthquakes are different from the laws described above
for background, regular earthquakes. The Bath’s law and the roll-off effect have been
derived from temporal correlations [4].

Let us suppose that two earthquakes share their energies E1,2, i.e. their
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accumulation law reads
t/t0 = [(E1 + E2)/E0]

r (9)

If we view the earthquake with energyE1 as a mainshock and the earthquake with
energy E2 < E1 as a foreshock or an aftershock, the above equation leads to

M ≃ 1

b
ln

τ

τ0
(10)

where M is the magnitude of the accompanying event, τ is the time elapsed from the
foreshock to the mainshock, or from the mainshock to the aftershock, and the small
cutoff τ0 is given by

τ0 = rt0e
−b(1−r)M0 (11)

whereM0 is the magnitude of the mainshock (t1 = t0e
βM0) [4]. The law given above

is valid for τ > τ0 and τ smaller than a cutoff time, in order to have M < M0. We
can see that the magnitude of the foreshocks decreases abruptly in the proximity of the
mainshock, and the magnitude of the aftershocks increases abruptly immediately after
a mainshock (see Appendix).

By writing τ = tms − t, where tms is the occurrence time of the mainshock, we
can use Equation (10) to forecast a mainshock, by fitting this equation to a sequence
of magnitude-descending correlated foreshocks, occuring at times t < tms. The
fitting parameters are the occurrence time tms of the mainshock and the cutoff time
τ0. This latter parameter gives the magnitudeM0 of the mainshock, by using Equation
(11), providing we know the parameters t0 and r (β) (background seismicity). The
best fit determines also the period of time over which the correlated foreshocks (or
aftershocks) are present. This procedure (together with its limitations) is described in
detail elsewhere [18,19], with many specific examples.

Although they are governed by the same time-magnitude correlation law given by
Equation (10), the aftershocks and the foreshocks have a distinct character.

Like the foreshocks, the aftershocks share their energy with the mainshock. On
the other hand, Equation (10) can be used as if the aftershocks might be viewed as
independent earthquakes, occurring after the mainshock, with an accumulation time

τ = τ0e
bM (12)

By using the procedure described above for background earthquakes, this
accumulation law leads to the distribution

PafterdM = be−bMdM (13)

By comparying these results with Equations (3)–(6), we can see that the
Gutenberg-Richter parameter increased from β to b. Indeed, it is reasonable to assume
that the mainshock changes the seismicity conditions of the focal region. The increase
from β to b is valid until Pafter = βe−βM , which indicates a range of magnitudes from
0 up to Mc = 0.36 for r = 2/3, b = 3.45 and β = 2.3. An estimation of the average
increase in β is (b− β)/2β = 25% for β = 2.3, which agrees quantitatively with data
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recently reported [20–22]. Within this interpretation, the Gutenberg-Richter parameter
increases for aftershocks. Of course, it is not necessary to have changed seismicity
conditions after a mainshock, in which case the aftershocks cannot be viewed as
independent earthquakes; they remain, simply, correlated events to the mainshock. We
cannot know apriori which possibility is the actual one. These time variations of the
Gutenberg-Richter parameter for foreshocks and aftershocks are analyzed in detail
elsewhere [19].

A similar interpretation is not valid for foreshocks, because we cannot define a
reference moment of time for foreshocks, when they start to accumulate energy, as
we could for aftershocks. We cannot disentangle the foreshocks from the mainshock,
in order to view them as independent earthquakes. The mechanism of occurrence of
the foreshocks is different from the mechanism corresponding to the aftershocks. For
aftershocks the focal region accumulates an energy which is released successively as
the mainshock and the remainder as aftershocks. For foreshocks, the focal region
accumulates a higher energy at the moment of the foreshocks, the small excess is
released as foreshocks, and the larger amount is released later as themainshock. In order
to accumulate a higher energy at a previous moment, the accumulation law requires a
decrease in the parameter r at that moment. This change indicates an instantaneous
modification in the seismic conditions of the focal region, though of a distinct nature
than the modification corresponding to the aftershocks. The background value of the
parameter r is recovered immediately after the foreshock.

The only possible interpretation for the foreshocks is their correlations with the
mainshock. The same interpretation holds also for the aftershocks, but the aftershocks
accept also another interpretation, as independent earthquakes, in changed seismicity
conditions.

By using the time-magnitude correlations the maximal information we can get is
that described above. However, while sharing their energy, the accompanying events
share also their occurrence time with the mainshock. Consequently, another aspect of
the correlations can be seen in the temporal correlations.

4. Temporal correlations

We consider now that an earthquake occurs in time t1, and another earthquake
occurs in time t2 after the former; the total time is t = t1 + t2. These earthquakes
share their accumulation time, which means correlations. We call them temporal (or
dynamical) correlations. By a similar procedure which leads to Equations (5) and (6)
we get the probability densities

P (t1, t2) =
2t0

(t1+t2)3
,

d2P (M1,M2) = 4β2 eβ(M1+M2)

(eβM1+eβM2)
3dM1dM2

(14)

which are pair (bivariate) distributions (t1,2 = t0e
βM1,2) (Apostol [4]). By integrating

the second equation with respect toM2, we get the marginal distribution of a correlated
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earthquake
dP = βe−βM1

2

(1 + e−βM1)
2dM1 (15)

A further integration from M1 = M to +∞ leads to the correlated cumulative
distribution

Pex(M) =

∫ ∞

M
dP = e−βM 2

1 + e−βM
(16)

(see Appendix). It is worth noting that if we use the law of energy accumulation
t1/t0 = eβM1 in Equation (15) we get the time probability of a correlated earthquake
dP = 2t0dt1/(t1 + t0)

2, which differs from the law of a regular (background)
earthquake (Equation (5)) by the presence of t0 in the denominator and a factor 2. We
can see that the correlated distributions given by these equations differ from the standard
Gutenberg-Richter distributions (Equations (6) and (7)). If we look at the cumulative
distribution given by Equation (16) we can see that the difference consists in a flattening
for small magnitudes and an increase by ≃ ln 2 for larger magnitudes, while the slope
β is practically preserved in the region of larger magnitudes. According to Equation
(16), the Gutenberg-Richter parameter tends to β/2 for correlated earthquakes. The
small-magnitude flattening is known as the roll-off effect [23,24]. Usually, this effect
is assigned to an insufficiency of data for small-magnitude earthquake. We can see
that it is given, at least partially, by time correlations. The data reported for southern
California earthquakes recorded between 1945–1985 and 1986–1992 exhibit such an
effect [25].

The pair distribution given by Equation (14) can be applied to an earthquake and
the magnitude difference between that earthquake and another correlated earthquake.
From the resulting distribution we can extract the distribution of the magnitude
difference between two correlated earthquakes. For small values of the magnitude
difference this distribution is affected by the roll-off effect, which, according to
Equation (16), amounts to an effective β/2 Gutenberg-Richter parameter. By making
use of these results the Bath law has been derived [4]. This empirical law tells that,
in certain conditions, the average magnitude difference between a mainshock and its
largest aftershock (foreshock) is approximately 1.2 (though deviations are known [4]).

We can apply Equation (16) to foreshocks (as well as to all earthquakes). A
convenient way to use it is to introduce a modified Gutenberg-Richter parameter B
by

e−βM 2

1 + e−βM
= e−BM (17)

which leads to
B ≃ β − ln 2

M
(18)

for a reasonable range of magnitudes M > 1. A similar formula can be obtained for
the modified parameterR = B/b and its temporal dependence, by using Equation (10).
Equation (18) shows the decrease of the Gutenberg-Richter parameter in a foreshock
sequence. For instance, a 10% decrease is achieved for M = 3, or τ/τ0 ≃ 3.6 × 104

(β = 2.3, r = 2/3), which agrees quantitatively with recently reported data [19–22].
Applied to aftershocks, the law τ = τ0e

bM (Equation (12)) shows that these events
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may be viewed as independent earthquakes with accumulation time τ and changed
seismicity conditions (τ0 ̸= t0). Since b is greater than β, the ratio τ/τ0 is greater than
the background ratio t/t0 = eβM . Consequently, the higher-magnitude earthquakes are
disfavoured, theGutenberg-Richter parameter increases, and themagnitude distribution
gets flattened for small magnitudes, in accordance with the predictions of the temporal
correlations (as expected). As discussed above, though valid for foreshocks, the law
τ = τ0e

bM cannot be viewed as indicating independent events, since we cannot
define a starting moment of time when the foreshocks begin to accumulate energy.
On the other hand, the temporal correlations show that the higher-magnitude events
are favoured in this case, due to the factor ln 2 in Equation (16). Consequently, the
Gutenberg-Richter parameter decreases and the magnitude distribution becomes again
flattened for small magnitudes, in accordance with the temporal correlations prediction.
We note that the flattening of the magnitude distribution for small magnitudes is
valid irrespective of viewing the aftershocks as correlated independent events; indeed,
the change in the seismicity conditions, necessary for viewing the aftershocks as
independent earthquakes, is derived by assuming correlations.

The flattening of the correlated distribution given by Equation (16) for small
magnitudes requires a special attention in fitting the empirical distributions (for getting
the background-seismicity parameters). We should note that the modified distribution
is valid for a certain amount of correlated earthquakes (including foreshocks and
aftershocks), while the regular Gutenberg-Richter distribution remains valid for the
other fraction of background seismicity. Therefore, an aditional fitting parameter must
be used in dealing with these fitting formulae.

5. Concluding remarks

We have briefly presented above the laws of background seismicity and correlated
earthquakes, with the aim of bringing a further clarification in their meaning and
applications. We emphasized that the background seismicity is characterized by two
basic parameters, namely the inverse rate of seismicity t0 and the Gutenberg-Richter
parameter β. These parameters can be obtained by fitting the cumulative earthquake
(statistical) distribution corresponding to a long period of time in a seismic region.
The background seismicity views the earthquakes as independent events. However,
the earthquakes may be correlated, in the sense that they may be affected by one
another. For instance, any condition (constraint) imposed upon a pair of earthquakes
leads to correlations between those two earthquakes. Most likely, the correlations occur
between foreshocks and the mainshock and between the mainshock and its aftershocks,
in a relatively limited seismic region and timewindow. The time-magnitude correations
are defined for earthquakes which share their energy. For foreshocks these correlations
can be used to forecast (with limitations) the mainshock. Temporal correlations are
defined for earthquakeswhich share their accumulation time. These correlations predict
a decrease of the Gutenberg-Richter parameter for small magnitudes, as indicated
by some empirical studies of the foreshocks. The aftershocks may also be viewed
as independent earthquakes with changed seismicity conditions, so they exhibit an
increase of this parameter, also in agreement with some empirical observations. The
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temporal correlations flattens the Gutenberg-Richter distribution for small magnitudes,
also in agreement with empirical observations (the roll-off effect).
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Appendix

I. Energy accumulation law
Typically, the focal region of the earthquakes have small dimensions in comparison with the distances over which we

measure the effects of the earthquakes (pointlike focus). The energy accumulation should obey the continuity equation

∂E

∂t
= −vgradE (A1)

where t denotes the time, v is the accumulation energy and E denotes the energy. We may use small differences for the
derivatives in Equation (A1), like ∆E/∆x for ∂E/∂x. The energy may be taken equal to zero at the borders, such that
we have∆E = −E. The coordinates of the borders may be viewed as being in uniform motion, such that we may write
∆x = uxt, where u is the velocity of the background. Under these condition Equation (A1) becomes

∂E

∂t
=

(
vx
ux

+
vy
uy

+
vz
uz

)
E

t
(A2)

If we leave aside the energy loss, and consider a uniform displacement, the two velocities are equal, v = u, such
that we get the value 3 for the bracket. This is a limiting case. The other limiting case is a one-dimensional motion, for
which the bracket is equal to 1. A two-dimensional accumulation process will give the value 2. Consequently, Equation
(A2) becomes

∂E

∂t
=

1

r

E

t
(A3)

where 1/3 < r < 1. For a shearing fault we have both a motion alng the x-direction and a motion along two opposite
y-directions (mass conservation), such that ux = vx and uy = 2vy, vz = 0. Then, the r-value is the reference value
r = 2/3, i.e. β = br = 2.3 (b = 3.45).

In order to integrate Equation (A3) we need two cutoffs, one for energy, another for time. They are provided by E0

and t0, corresponding to the fundamental processes. By integrating Equation (A3), we get the accumulation law

t/t0 = (E/E0)
r (A4)

which shows that in time t an energy E is released in an earthquake.

II. Time probability
If we denote byM the seismic moment and byM the moment magnitude, the well-known Hanks-Kanamori law

lnM = const+ bM (A5)

holds, where b = 3.45 (3/2 in decimal base). The seismic moment can be viewed as the mean seismic moment, M =(∑
ij M

2
ij

)1/2
, where Mij is the seismic-moment tesor. The relationship M = 2

√
2E is known [3], where E is the

earthquake energy, such that we can write
lnE = const+ bM (A6)

or
E/E0 = ebM (A7)

where E0 is a threshold energy (see above). By making use of Equation (A4), we get

t = t0e
brM = t0e

βM (A8)
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where β = br. This equation serves to obtain the important relations dt = βt0e
βMdM , or dt = βtdM . Since

dP = βe−βMdM (A9)

(the Gutenberg-Richter law), we get the time probability

dP = β
t0
t

1

βt
dt =

t0
t2
dt (A10)

This is the probability of an earthquake to occur between time t and time t+ dt, with energy E and magnitude M .
The definition of the probability for E0-seismic events leads to the same law (dP = − ∂

∂t
t0
t dt [4]). It is worth noting that

in the derivation of this law the earthquakes are assumed to be independent.

III. Time-magnitude correlations
Two, or several, earthquakes are correlated if there exists an inter-dependence of their parameters. We discuss

only two-earthquake (pair) correlations. It is reasonably to assume that correlations appear in the same region and over
relatively short intervals of time, like mainshocks, foreshocks and aftershocks. We call time-magnitude correlations those
correlations where the earthquakes share their energy. If the earthquakes share their accumulation time, the corelations are
temporal. These correlations affect the statistical distributions of the earthquakes. Also, constraints upon the statistical
variables may lead to statistical correlations.

Let us consider two successive earthquakes with energies E1,2 (magnitudesM1,2) , such that E = E1 +E2 (energy
sharing); the energy E is accumulated in time t. Then, the accumulation law (Equation (A4)) gives

t/t0 = (E/E0)
r = (E1/E0 + E2/E0)

r =

= (E1/E0)
r(1 + E2/E1)

r

(A11)

or
t = t1

[
1 + eb(M2−M1)

]r
(A12)

where t1 = t0(E1/E0)
r is the accumulation time corresponding to the earthquake with energy E1. From this Equation

(A12) we get
b(M2 −M1) = ln

[
(1 + τ/t1)

1/r − 1
]

(A13)

where t = t1 + τ and τ is the time between the occurence of the two earthquakes. Since τ/t1 ≪ 1 for
foreshocks-mainshock-aftershocs, this equation gives

M2 ≃
1

b
ln

τ

τ0
, τ0 = rt0e

−b(1−r)M1 (A14)

It is worth noting that τ is different from the accumulation time of an earthquake with magnitude M2 (Equation
(A8)); it depends on the parameters of the M1-earthquake. The M1-earthquake may be viewed as as a mainshock, in
which case the M2-earthquake is a foreshock or an aftershock. We may say that such accompanying earthquakes are
correlated with the mainshock.

IV. Temporal correlations
Let us suppose that an earthquake occurs in time t1 and in the next duration of time t2 appears another earthquake

follows in time t2. These earthquakes share their accumulation time in the total duration t = t1 + t2. From Equation

11
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(A10), such an event has the probability density

− ∂

∂t2

t0
(t1 + t2)2

=
2t0

(t1 + t2)3
(A15)

(where t0 < t1 < +∞, 0 < t2 < +∞). By passsing to magnitude distributions (t1,2 = t0e
βM1,2), we get

d2P = 4β2 eβ(M1+M2)

(eβM1 + eβM2)
3dM1dM2 (A16)

(where 0 < M1,2 < +∞, corresponding to t0 < t1,2 < +∞; this explains the factor 2 in Equation (A15)). Usually, this
is called a pair (bivariate) statistical distribution (Apostol [4]). By integrating it with respect toM2, we get the marginal
distribution

dP = βe−βM1
2

(1 + e−βM1)
2dM1 (A17)

by a further integration fromM1 = M to +∞, we get the correlated cumulative distribution

P (M) =

∫ ∞

M
dP = e−βM 2

1 + e−βM
(A18)

We note that forM ≫ 1 this distribution becomesP (M) ≃ 2e−βM and lnP (M) ≃ ln 2−βM . Therefore, the slope
β of the logarithm of the cumulative distribution of independent earthquakes (Gutenberg-Richter, standard distribution
e−βM ) is not changed (for large magnitudes); the correlations introduce only an upward shift of ln 2. In the region of the
small magnitudes (M ≪ 1) the slope of the correlated distribution is β/2 (by series expansion P (M) ≃ 1− 1

2βM + ...),
which is different from the slope β of the Gutenberg-Richter distribution (e−βM ≃ 1−βM + ...). This is a roll-off effect.
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