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Abstract: Solar energy, specifically photovoltaic systems, has emerged as a prevalent source 

of electrical power worldwide, gaining acceptance on many continents. While numerous 

African countries are gradually embracing this alternative energy due to abundant sunlight, the 

high cost of solar panels and accessories remains a barrier to widespread adoption. This study 

focuses on refining recently developed iterative methods, leveraging quadrature rules of 

integration, to accurately estimate parameters in the design of photovoltaic (PV) systems for 

predetermined power outputs under diverse environmental conditions. The research compares 

these methods, particularly the authors’ MS-3/8 and TS-3/8 approaches, with the commonly 

used Newton-Raphson method. In the examination, a 10 W PV system with a single diode PV 

module is considered. Results indicate that the MS-3/8 method demonstrates greater efficiency 

and requires fewer iterations to converge to the estimated power output of the PV system 

compared to the Newton-Raphson method and other approaches by different authors. 

Ultimately, the research introduces a suggested mathematical model for a Four-Diode PV 

system, offering an alternative method for determining the parameters of the photovoltaic 

system. 

Keywords: photovoltaic system; solar energy; quadrature rules; single diode; power output; 

mathematical model; current; voltage 

1. Introduction 

Background 

Solar energy stands out as the most abundant renewable resource globally, 

facilitated by solar rays—electromagnetic waves delivering essential light and heat to 

sustain terrestrial life. Upon reaching the Earth’s surface as solar irradiation, this 

energy undergoes transformation into electrical energy. Two primary power plants 

enable this conversion: (i) photovoltaic (PV) systems, comprising arrays of 

semiconductor-based modules like silicon and germanium, directly converting solar 

irradiation into electricity; and (ii) heliothermic systems, generating electricity through 

fluid heating, functioning akin to traditional thermoelectric generators [1]. 

The PV system has proven superior, rendering it more competitive among various 

power sources. Its effectiveness hinges on three key factors: the PV module’s 

efficiency, determined by construction methods, materials, and converter design; the 

maximum power point tracking (MPPT) algorithm’s efficiency, controlling the 

system’s optimal power point; and the efficiency of the maximum power point 

tracking (MPPT) [2]. Enhancing PV module and converter efficiency involves labor-

intensive manufacturer research and development, while improving the MPPT 
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algorithm is a simpler and cost-effective endeavor [2]. 

Manufacturers typically construct and evaluate PV modules under standard test 

conditions (STC) with solar radiation at 1000 W/m2, cell temperature at 25 ℃, and a 

solar spectrum of 1.5. The parameters crucial for PV module input are subject to the 

area’s meteorological conditions, introducing unpredictability due to the random 

nature of climatic occurrences [3]. These uncertainties within the PV system 

contribute to overestimations or underestimations of PV module energy yield. To 

establish and refine control algorithms, extracting PV module parameters becomes 

imperative, serving as the cornerstone for determining energy yield. 

Notably, solar panel specifications have been previously extracted by researchers 

at the Centre for Research and Extension in Alternative Energies (NUPEA) [4]. 

This study aims to extract PV system parameters using recently developed 

methods by the authors [1,3,5], for the numerical solution of systems of nonlinear 

equations, which arise from the mathematical modeling of PV systems. A comparative 

analysis is conducted between the results of the study by Isaac et al. [1,3], which 

utilized the Newton-Raphson method for estimating PV system parameters, and the 

results obtained by the authors using the same secondary dataset. Subsequently, 

primary datasets collected by the authors are employed for parameter estimation, and 

the results are thoroughly analyzed. In summary, this study had three main objectives: 

1) Conduct a comparative analysis between the Newton-Raphson method and the 

MS-3/8 and TS-3/8 methods, utilizing secondary data from a 40 W PV module. 

2) Employ the MS-3/8 and TS-3/8 methods to estimate the parameters of a 10 W 

PV module and assess their applicability for determining its specific parameters. 

3) Introduce a mathematical model for a four-diode PV module, presenting a novel 

approach to describing and understanding its characteristics and behavior in 

photovoltaic systems. 

2. Literature review 

A solar cell, also known as a photovoltaic (PV) cell, is fundamentally a p-n 

junction created in a thin semiconductor wafer or layer. Utilizing the photovoltaic 

effect, the electromagnetic radiation from solar energy can be directly converted into 

electricity [6]. Photons possessing energy greater than the semiconductor’s band-gap 

energy are absorbed, leading to the creation of an electron-hole pair in proportion to 

the incident irradiation. In a simplified explanation of the PV system’s operation, 

internal electric fields within the p-n junction segregate these carriers, resulting in a 

photo-current that is directly proportional to the solar irradiation. 

To construct a circuit that accurately mimics a photovoltaic (PV) cell, one must 

first grasp its physical structure and the electrical characteristics of its components. 

The ideal equivalent electrical circuit for a PV cell involves a current source in series 

with a single-diode PV cell [7,8]. Figure 1 illustrates the electrical circuit 

configuration of a single-diode solar cell. 
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Figure 1. Electrical circuit of PV cell with single-diode [9]. 

Among various options, the single-diode PV module stands out as the most 

popular and widely employed. In the modeling of PV systems, it serves as the simplest 

module utilized by many authors when extracting parameters related to the PV system. 

Under known temperature and irradiance conditions, the cell’s parameters are 

determined at three key operating points: open circuit, short circuit, and maximum 

power. The output current equation for the circuit depicted in Figure 1 is provided as 

follows: 

𝐼 = 𝐼PV − 𝐼𝐷 (1) 

where, 

𝐼𝐷 = 𝐼0 [exp (
𝑣

𝐴𝑉𝑇
) − 1], (2) 

Substituting Equation (2) into Equation (1), the main output current equation, 

becomes: 

𝐼 = 𝐼PV − 𝐼0 [exp (
𝑣

𝐴𝑉𝑇
) − 1], (3) 

where, 𝐼PV is the current generated by the incidence of light; 𝐼0 is the diode reverse 

bias saturation current; 𝑉𝑇 is the thermal voltage of the PV module having 𝑁𝑆 cells 

connected in series; 𝑞 is the electron charge; 𝐾 is the Boltzmann constant; 𝑇 is the 

temperature of the p-n junction and 𝐴 is the diode ideality factor. 𝑉𝑇 is expressed as: 

𝑉𝑇 =
𝑁𝑆𝐾𝑇

𝑞
 (4) 

PV cells are defined by the short circuit current (𝐼𝑠𝑐), open circuit voltage (𝑉𝑜𝑐), 

or ideality factor (A), which are the three primary operating points in a PV system 

simulation. A current source’s output is proportional to the amount of light falling on 

the cell. The short circuit current (𝐼𝑠𝑐) is the highest value of the current generated by 

the cell under the same irradiance and p-n junction temperature circumstances [8,9]. 

The short circuit current is calculated at 𝑉 = 0, yielding from Equation (3): 

𝐼𝑠𝑐 = 𝐼 = 𝐼PV (5) 

The open circuit voltage (𝑉𝑜𝑐) is the highest value of the voltage at the cell 

terminals under the same irradiance and temperature conditions, and it may be 

represented as: 

𝑉 = 𝑉𝑜𝑐 = 𝐴𝑉𝑇 ln [1 +
𝐼𝑠𝑐
𝐼0
] , 𝐼 = 0 (6) 

Thus, at the same conditions used for short circuit current and open circuit 

voltage, the power output of an ideal (single-diode) PV cell is given as: 

𝑃 = 𝑉 {𝐼PV − 𝐼0 [exp (
𝑣

𝐴𝑉𝑇
) − 1]} (7) 
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Similar to the single-diode module, the double-diode module introduces an 

additional diode (diode quality factor) to the photovoltaic (PV) cell, thereby 

augmenting the number of parameters within the cell. Some authors suggest that this 

extra diode significantly alters the outcomes of the double-diode PV cell, providing 

more accurate results compared to the single-diode PV cell [10]. 

In contrast to the single-diode and double-diode PV cells, the three-diode module 

incorporates three diodes, resulting in a total of nine unknown parameters in the 

module. Research by Benabdelkrim and Benatillah [11], Kisabo et al. [12] 

demonstrates the advantages of the three-diode PV module in extracting parameters 

for PV systems. When compared to the single- and double-diode models, the three-

diode model proves to be more efficient in acquiring PV system data [12]. Existing 

literature implies a trend that suggests that the more diodes present, the more efficient 

the module becomes. 

The succeeding section delves into the mathematical modeling of a PV system 

and provides a brief discussion of the methods employed for parameter determination. 

This is followed by the results and discussions section and, finally, the concluding 

section. 

3. Mathematical model of a PV system 

Mathematical models can be constructed to facilitate the extraction of parameters 

for photovoltaic (PV) systems, focusing on the PV cell as the fundamental unit. This 

section is dedicated to the modeling of a single-diode PV system, treating it as a system 

of nonlinear equations based on its specific configuration. 

For engineers seeking a quick reference to assess the performance of a PV system, 

the experimental current (I) and voltage (V) characteristics parameters of the Solarex 

MSX60, a single-diode module, are extracted. The obtained results are expected to 

align with the manufacturer’s provided experimental data, confirming the suitability 

of the presented module [13]. 

Various circuit modules have been devised to characterize the properties of 

photovoltaic systems, with single- and double-diode modules being the most widely 

employed. In certain instances, characteristics such as leakage or reverse saturation 

current, light-generated current, diode quality factor, shunt resistance, and series 

resistance can be utilized to encompass a PV cell’s full features within a single-diode 

module. External influences like light-generated current and reverse saturation current, 

along with internal influences like diode quality factor, shunt resistance, and series 

resistance, contribute to the comprehensive characterization of a PV cell. Accurate 

computation of these internal influences is pivotal for ensuring the quality of PV 

system modeling [11,14]. 

3.1. Model formulation for single diode PV module 

The development of the model employs Kirchhoff’s rule [15] for the single-diode 

PV module, which involves determining five unknown parameters: light-generated 

current, leakage or reverse saturation current, diode quality factor, series resistance, 

and shunt resistance [12]. 

Applying Kirchhoff’s current law to the circuit in Figure 1 gives: 
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𝐼 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ (8) 

but 

𝐼𝐷 = 𝐼𝑜 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴𝑉𝑇

) − 1] (9) 

𝐼𝑠ℎ =
𝑉 + 𝐼𝑅𝑠
𝑅𝑝

 (10) 

Substituting Equations (9) and (10) into Equation (8), the general formula from 

Kirchhoff’s current law becomes: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴𝑉𝑇

) − 1] −
𝑉 + 𝐼𝑅𝑠
𝑅𝑝

 (11) 

where: 

𝑉𝑇 =
𝑁𝑆 × 𝐾 × 𝑇

𝑞
, (12) 

𝐼𝑝ℎ =
𝐺

𝐺𝑛
[𝐼pvn + 𝐾1(𝑇 − 𝑇𝑛)], (13) 

𝐼0 = 𝑇0𝑛 (
𝑇𝑛
𝑇
)
3

exp [
𝑞𝐸𝑔

𝐴𝐾
(
1

𝑇𝑛
−
1

𝑇
)], (14) 

Substituting Equation (12) into Equation (11) and setting the resulting expression 

in the form 𝑓(𝑥) = 0, gives: 

𝑓(𝑥) = 𝐼𝑝ℎ − 𝐼𝑜 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴𝑉𝑇

) − 1] −
𝑉 + 𝐼𝑅𝑠
𝑅𝑝

− 𝐼 = 0 (15) 

where, 

𝑥 =

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

=

[
 
 
 
 
𝐼𝑝ℎ
𝐼0
𝐴
𝑅𝑠
𝑅𝑝 ]
 
 
 
 

 (16) 

Equation (15) is therefore a nonlinear equation with five variables which are the 

unknown parameters of the single diode PV module to be determined. Replacing the 

parameters by the 𝑥 variables as in Equation (16) will give the equation below: 

𝑓𝑘(𝑥) = 𝑥1 − 𝑥2 [exp (
𝑉𝑘 + 𝐼𝑘𝑥4
𝑥3𝑉𝑇

) − 1] −
𝑉𝑘 + 𝐼𝑘𝑥4

𝑥5
− 𝐼𝑘 = 0 (17) 

Substituting Equation (12) into Equation (17), we get 

𝑓𝑘(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝑞(𝑉𝑘+𝐼𝑘𝑥4)
𝑁𝑠𝐾𝑇𝑥3 − 1] −

𝑉𝑘 + 𝐼𝑘𝑥4
𝑥5

− 𝐼𝑘 = 0 (18) 

where: I is cell current, 𝐼𝑝ℎ  is photo generated current, 𝐼0 or 𝐼𝐷  is diode reverse 

saturation current, q is electron elementary charge (1.602 × 10−19 coulombs), k is 

the Boltzmann constant (1.381 × 10−23 J/K) , T is cell temperature, m is diode 

ideality factor, 𝑅𝑠 is cell series resistance, 𝑅𝑠ℎ  or 𝑅𝑝 is cell shunt resistance, and V is 

cell output voltage. 

Let 

𝜆 =
𝑞

𝐾𝑇
 (19) 

Substituting Equation (19) into Equation (18) gives, 
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𝑓𝑘(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉𝑘+𝐼𝑘𝑥4)
𝑥3𝑁𝑠 − 1] −

𝑉𝑘 + 𝐼𝑘𝑥4
𝑥5

− 𝐼𝑘 = 0 (20) 

Since the single diode PV system has five parameters, we need five equations to 

solve for the unknown parameter. The equations are given by Equation (21): 

𝑓1(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉1+𝐼1𝑥4)
𝑥3𝑁𝑠 − 1] −

𝑉1 + 𝐼1𝑥4
𝑥5

− 𝐼1 = 0 

𝑓2(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉1+𝐼1𝑥4)
𝑥3𝑁𝑠 − 1] −

𝑉1 + 𝐼1𝑥4
𝑥5

− 𝐼2 = 0

𝑓3(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉1+𝐼1𝑥4)
𝑥3𝑁𝑠 − 1] −

𝑉1 + 𝐼1𝑥4
𝑥5

− 𝐼3 = 0

𝑓4(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉1+𝐼1𝑥4)
𝑥3𝑁𝑠 − 1] −

𝑉1 + 𝐼1𝑥4
𝑥5

− 𝐼4 = 0

𝑓5(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉1+𝐼1𝑥4)
𝑥3𝑁𝑠 − 1] −

𝑉1 + 𝐼1𝑥4
𝑥5

− 𝐼5 = 0
}
 
 
 
 
 
 

 
 
 
 
 
 

 (21) 

Equivalent nonlinear equations can be formulated for two and three-diode PV 

modules employing the same principles and procedures as those used for the single-

diode PV system. However, it’s important to note that the number of variables or 

parameters, and consequently the size of the resulting nonlinear system of equations, 

would increase with the number of diodes. 

3.2. Methods of solution 

The Newton-Raphson method is a reliable approach for finding approximate 

solutions or roots to numerical problems, particularly in cases where analytical 

methods prove impractical, especially for systems of nonlinear equations. However, it 

is crucial to note that if the initial guess is not in proximity to the solution or root, the 

Newton-Raphson method may fail to converge or converge to an incorrect root [16]. 

In the context of estimating parameters for photovoltaic (PV) modules, Newton’s 

method has been widely employed by researchers to extract parameter values. Known 

for its ease of application and quadratic convergence [1,14], this method has been 

utilized in related studies to estimate five parameters of PV systems, employing 

carefully selected initial guess values [1]. In contrast, this study employs the Midpoint-

Simpson-3/8 methods (MS-3/8), a quadrature rule, along with other existing methods 

to extract PV system parameters. The solutions obtained through these methods are 

then compared (refer to the studies of Ahmad et al. [17] and Bonkoungou et al. [18] 

for a detailed discussion of the methods). 

4. Problem formulation 

This investigation focused on estimating parameters for a single diode 

photovoltaic system, utilizing both secondary and primary data. The choice of 

secondary data was deliberate, as a different numerical method (specifically, the 

Newton-Raphson method) had been previously employed to address the same 

problem. Consequently, this study aimed to assess the newly developed solution 

methods introduced by the authors by applying them to the identical problem, 
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facilitating a comparison of results with those obtained through the Newton-Raphson 

method. 

4.1. A PV module problem with secondary data 

The issue with the secondary data was derived from a previously published article 

[15]. The mentioned article investigated a 40 W single-diode PV module with the 

following specifications, as shown in Table 1 below. 

Table 1. Specifications of a 40 W PV module. 

Characteristics Specifications (value) 

Peak power (Pmpp) 40 W 

Voltage at peak power (Vmpp) 16.6 V 

Current at peak power (Impp) 2.45 A 

Short-circuit current (Isc) 2.8 A 

Open-circuit voltage (Voc) 20.5 V 

Number of cells (Ns) 36 

In their 2017 study [15], presented two curves derived from experimental data, 

showcasing current and voltage values. The data were collected at various temperature 

and irradiance values, outlined as follows in Table 2 below: 

Table 2. Irradiation and temperature values for curves 1 & 2. 

 Irradiation Temperature 

Curve 1 225 W/m2 25 ℃ 

Curve 2 596.8 W/m2 35 ℃ 

Current and voltage values were extracted from the two curves to formulate the 

system of nonlinear equations for the 40 W PV module. These extracted values served 

as the data used in the analysis and are summarized in Tables 3 and 4. 

Table 3. Current and voltage values for curve 1. 

𝑽𝟏, 𝑰𝟏 𝑽𝟐, 𝑰𝟐 𝑽𝟑, 𝑰𝟑 𝑽𝟒, 𝑰𝟒 𝑽𝟓, 𝑰𝟓 

3.00, 0.62 8.00, 0.60 12.00, 0.56 17.00, 0.30 18.8, 0.02 

Table 4. Current and voltage values for curve 2. 

𝑽𝟏, 𝑰𝟏 𝑽𝟐, 𝑰𝟐 𝑽𝟑, 𝑰𝟑 𝑽𝟒, 𝑰𝟒 𝑽𝟓, 𝑰𝟓 

3.00, 1.58 8.00, 1.54 12.5, 1.57 16.00, 0.4 19.5, 0.01 

The system of nonlinear equations, illustrated by the single-diode model in 

Equation (22) below, is subsequently solved for the five parameters. This is achieved 

by employing the authors’ proposed Broyden-like methods in conjunction with an 

existing numerical method (Newton-Raphson method). The results obtained from 

these methods are then compared for evaluation. 
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𝑓1(𝑥) = 𝑥1 − 10
−6𝑥2 (𝑒

𝜆(𝑉1+𝐼1𝑥4)
36𝑥3 − 1) −

(𝑉1 + 𝐼1𝑥4)

𝑥5
− 𝐼1 = 0 

𝑓2(𝑥) = 𝑥1 − 10
−6𝑥2 (𝑒

𝜆(𝑉2+𝐼2𝑥4)
36𝑥3 − 1) −

(𝑉2 + 𝐼2𝑥4)

𝑥5
− 𝐼2 = 0 

𝑓3(𝑥) = 𝑥1 − 10
−6𝑥2 (𝑒

𝜆(𝑉3+𝐼3𝑥4)
36𝑥3 − 1) −

(𝑉3 + 𝐼3𝑥4)

𝑥5
− 𝐼3 = 0 

𝑓4(𝑥) = 𝑥1 − 10
−6𝑥2 (𝑒

𝜆(𝑉4+𝐼4𝑥4)
36𝑥3 − 1) −

(𝑉4 + 𝐼4𝑥4)

𝑥5
− 𝐼4 = 0 

𝑓5(𝑥) = 𝑥1 − 10
−6𝑥2 (𝑒

𝜆(𝑉5+𝐼5𝑥4)
36𝑥3 − 1) −

(𝑉5 + 𝐼5𝑥4)

𝑥5
− 𝐼5 = 0 

(22) 

where 

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

=

[
 
 
 
 
𝐼𝑝ℎ
𝐼0
𝐴
𝑅𝑠
𝑅𝑝 ]
 
 
 
 

, with the initial guesses (IG) below. 

Table 5. Initial guesses. 

Initial guess (IG) Initial guess values 

1° X0 = [1.5; 0.5; 1.0; 0.5; 50] 

2° X0 = [2.0; 0.1; 1.0; 1.0; 100] 

3° X0 = [2.0; 1.0; 1.0; 1.0; 100] 

4° X0 = [2.0; 1.0; 1.0; 1.0; 50] 

5° X0 = [0.6; 2.5; 1.5; 2.0; 100] 

For the purpose of this research, Table 5 is a set of initial values for the five 

parameters under consideration. Having encapsulated the entire PV parameter 

estimation problem in a system of five nonlinear equations with five unknowns, 

numerical methods can be employed to derive the parameters [20]. In the instance of 

the Newton-Raphson method, its formula is expressed as follows: 

[
 
 
 
 
𝑥1,𝑛+1
𝑥2,𝑛+1
𝑥3,𝑛+1
𝑥4,𝑛+1
𝑥5,𝑛+1]

 
 
 
 

=

[
 
 
 
 
𝑥1,𝑛
𝑥2,𝑛
𝑥3,𝑛
𝑥4,𝑛
𝑥5,𝑛]

 
 
 
 

−

[
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

𝜕𝑓1
𝜕𝑥4

𝜕𝑓1
𝜕𝑥5

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

𝜕𝑓2
𝜕𝑥4

𝜕𝑓2
𝜕𝑥5

𝜕𝑓3
𝜕𝑥1

𝜕𝑓3
𝜕𝑥2

𝜕𝑓3
𝜕𝑥3

𝜕𝑓3
𝜕𝑥4

𝜕𝑓3
𝜕𝑥5

𝜕𝑓4
𝜕𝑥1

𝜕𝑓4
𝜕𝑥2

𝜕𝑓4
𝜕𝑥3

𝜕𝑓4
𝜕𝑥4

𝜕𝑓4
𝜕𝑥5

𝜕𝑓5
𝜕𝑥1

𝜕𝑓5
𝜕𝑥2

𝜕𝑓5
𝜕𝑥3

𝜕𝑓5
𝜕𝑥4

𝜕𝑓5
𝜕𝑥5]

 
 
 
 
 
 
 
 
 
 
 
−1

[
 
 
 
 
𝑓1(𝑥𝑛)
𝑓2(𝑥𝑛)
𝑓3(𝑥𝑛)
𝑓4(𝑥𝑛)
𝑓5(𝑥𝑛)]

 
 
 
 

 (23) 

The Jacobian matrix’s general form for the PV system problem is crucial, as it 

dictates which numerical method demands a lower computational time for solution. In 

the Newton-Raphson method, the inverse Jacobian matrix is computed at each 

iterative step. Conversely, in the proposed method in this study, the values are updated 

only between successive iterative steps. 
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𝐽−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 10−6 (𝑒

𝜆(𝑉1+𝐼1𝑥4)
12𝑥3 − 1)

10−6𝑥2(𝑉1 + 𝐼1𝑥4)𝜆𝑒
𝜆(𝑉1+𝐼1𝑥4)

12𝑥3

12𝑥3
2

10−6𝐼1𝑥2𝜆𝑒
𝜆(𝑉1+𝐼1𝑥4)

12𝑥3

12𝑥3
2 −

𝐼1
𝑥5

𝑉1 + 𝐼1𝑥4

𝑥5
2

1 10−6 (𝑒
𝜆(𝑉2+𝐼2𝑥4)

12𝑥3 − 1)
10−6𝑥2(𝑉2 + 𝐼2𝑥4)𝜆𝑒

𝜆(𝑉2+𝐼2𝑥4)
12𝑥3

12𝑥3
2

10−6𝐼2𝑥2𝜆𝑒
𝜆(𝑉2+𝐼2𝑥4)

12𝑥3

12𝑥3
2 −

𝐼2
𝑥5

𝑉2 + 𝐼2𝑥4

𝑥5
2

1 10−6 (𝑒
𝜆(𝑉3+𝐼3𝑥4)

12𝑥3 − 1)
10−6𝑥2(𝑉3 + 𝐼3𝑥4)𝜆𝑒

𝜆(𝑉3+𝐼3𝑥4)
12𝑥3

12𝑥3
2

10−6𝐼3𝑥2𝜆𝑒
𝜆(𝑉3+𝐼3𝑥4)

12𝑥3

12𝑥3
2 −

𝐼3
𝑥5

𝑉3 + 𝐼3𝑥4

𝑥5
2

1 10−6 (𝑒
𝜆(𝑉4+𝐼4𝑥4)

12𝑥3 − 1)
10−6𝑥2(𝑉4 + 𝐼4𝑥4)𝜆𝑒

𝜆(𝑉4+𝐼4𝑥4)
12𝑥3

12𝑥3
2

10−6𝐼4𝑥2𝜆𝑒
𝜆(𝑉4+𝐼4𝑥4)

12𝑥3

12𝑥3
2 −

𝐼4
𝑥5

𝑉4 + 𝐼4𝑥4

𝑥5
2

1 10−6 (𝑒
𝜆(𝑉5+𝐼5𝑥4)

12𝑥3 − 1)
10−6𝑥2(𝑉5 + 𝐼5𝑥4)𝜆𝑒

𝜆(𝑉5+𝐼5𝑥4)
12𝑥3

12𝑥3
2

10−6𝐼5𝑥2𝜆𝑒
𝜆(𝑉5+𝐼5𝑥4)

12𝑥3

12𝑥3
2 −

𝐼5
𝑥5

𝑉5 + 𝐼5𝑥4

𝑥5
2 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (24) 

4.2. The PV module problem with primary data 

A crucial step in this research, crucial to simulating the proposed numerical 

methods, involved collecting experimental data from the photovoltaic system setup 

[19–21]. The study focused on a monocrystalline 10 W PV module with the following 

specifications in Table 6 below: 

Table 6. Mono crystalline 10 W PV module specification (STC: G = 1000 W/m2 and 

T = 25 ℃). 

Characteristics Specifications (value) 

Peak power (Pmpp) 10 W 

Voltage at peak power (Vmpp) 9 V 

Current at peak power (Impp) 0.8 A 

Short-circuit current (Isc) 0.9 A 

Open-circuit voltage (Voc) 10.4 V 

Number of cells (Ns) 12 

To facilitate the extraction of parameters from the modeled PV system using the 

proposed enhanced numerical methods, voltage-current characteristic curves were 

generated using data gathered under three distinct weather conditions. The practical 

experiment involved the following steps to obtain data: 

Step one: Three tests were carried out using the same PV module but at different 

times of the day (i.e., morning, afternoon (sunny day), and cloudy day). 

Step two: The data obtained was used to draw graphs indicating the relationships 

between current and voltage and voltage and power, as shown in as shown in Figures 

2–9 below. 

Step three: Five data points corresponding to voltage and current from Figures 4, 

6 and 8 were selected. The selection was done with respect to the positioning of 

parameters on the standard voltage-current characteristic curve found in the literature, 

as shown in Figures 2 and 3 below. 
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Step four: The data obtained above were then used together with the proposed 

numerical methods to extract and approximate the parameters of the modelled 10 W 

PV module. 

Following the above steps, the 10 W PV system was set up on the campus of 

Regentropfen College of Applied Sciences (ReCAS), located in a community called 

Kansoe in the Bongo District of the Upper East Region, Ghana. Data values for current 

and voltage were picked at different times, starting in the morning, afternoon, and on 

a cloudy day. Table 7 summarizes the data for different times of a day using 10W PV 

system. 

Table 7. Data from 10 W photovoltaic system at different times of a day. 

Morning Afternoon—Sunny day Cloudy day 

V I P V I P V I P 

0.103 0.0064 0.0006592 0.18 0.131 0.02358 0.411 0.313 0.128643 

0.105 0.1403 0.0147315 0.244 0.131 0.031964 0.842 0.281 0.236602 

0.105 0.3151 0.0330855 0.526 0.131 0.068906 0.861 0.251 0.216111 

0.105 0.6703 0.0703815 0.472 0.131 0.061832 0.897 0.256 0.229632 

0.103 1.003 0.103309 0.649 0.131 0.085019 1.181 0.264 0.311784 

0.102 1.504 0.153408 0.955 0.128 0.12224 1.6 0.254 0.4064 

0.1 2.2492 0.22492 1.383 0.127 0.175641 2.127 0.232 0.493464 

0.099 3.274 0.324126 2.216 0.127 0.281432 3.265 0.222 0.72483 

0.098 4.919 0.482062 2.957 0.127 0.375539 4.58 0.225 1.0305 

0.094 7.012 0.659128 4.41 0.129 0.56889 6.8 0.222 1.5096 

0.078 8.5 0.663 7.15 0.122 0.8723 8.8 0.181 1.5928 

0.026 9.539 0.248014 8.36 0.112 0.93632 9.14 0.15 1.371 

   8.73 0.102 0.89046 9.29 0.137 1.27273 

   8.9 0.095 0.8455 9.37 0.13 1.2181 

   9.71 0.027 0.26217 9.62 0.127 1.22174 

      9.73 0.126 1.22598 

      9.6 0.121 1.1616 

      9.982 0.059 0.588938 

4.3. Typical PV module characteristic curve 

From literature, the characteristic curve showing the relationship between voltage 

and current, and voltage and power, for a PV module is as shown in Figures 2 and 3 

respectively below. 

Based on the curves presented above, it was anticipated that the graphs generated 

from the primary data acquired for the 10 W PV module in this study would exhibit 

similarities to Figures 2 and 3 depicted earlier. 
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Figure 2. Standard voltage—Current characteristic curve from literature [9]. 

 

Figure 3. Standard voltage—Power characteristic curve from literature [9]. 

4.4. Experimental data output graphs for primary PV data 

Figure 4 was generated by plotting the voltage and current values from Table 8, 

corresponding to the morning recordings. The resulting graph exhibited similar 

features to the standard PV module curve depicted in Figure 2. 

 

Figure 4. Relationship between voltage and current—Morning. 

Table 8. Current and voltage values for morning. 

𝑽𝟏, 𝑰𝟏 𝑽𝟐, 𝑰𝟐 𝑽𝟑, 𝑰𝟑 𝑽𝟒, 𝑰𝟒 𝑽𝟓, 𝑰𝟓 

0.026, 9.539 0.026, 9.500 0.075, 8.5 0.099, 3.274 0.105, 0.1403 

Five voltage values, along with their corresponding current values, were chosen 
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from the graph to represent the morning conditions and are documented in Table 8. 

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5 denote the voltage values, while 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5  represent the 

corresponding current values. 

The morning values for voltage and power were also plotted to obtain the graph 

as shown in Figure 5 below. 

 

Figure 5. Relationship between voltage and power—Morning. 

In a similar manner, values for current and voltage recorded on a sunny day 

(afternoon) were also plotted to obtain the Figure 6. 

 

Figure 6. Relationship between voltage and current—Sunny day. 

The Table 9 are data representing current and voltage values for the sunny day 

and these values were selected from the graph. 

Table 9. Current and voltage values for sunny day. 

𝑽𝟏, 𝑰𝟏 𝑽𝟐, 𝑰𝟐 𝑽𝟑, 𝑰𝟑 𝑽𝟒, 𝑰𝟒 𝑽𝟓, 𝑰𝟓 

0.244, 0.131 4.41, 0.129 8.36, 0.112 8.9, 0.095 9.71, 0.027 

The voltage and power values for sunny day were also plotted to obtain the 

Figure 7. 

Another test was carried out on a cloudy day to obtain data for the current and 
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voltage of the 10 W PV module. Data for the current and voltage was plotted and 

represented in Figure 8. 

 

Figure 7. Relationship between voltage and power—Sunny day. 

 

Figure 8. Relationship between voltage and current—Cloudy day. 

The Table 10 contains values of current and voltage selected from the data of 

cloudy day, for the computation of the parameters of the PV module. 

Table 10. Current and voltage values for cloudy day. 

𝑽𝟏, 𝑰𝟏 𝑽𝟐, 𝑰𝟐 𝑽𝟑, 𝑰𝟑 𝑽𝟒, 𝑰𝟒 𝑽𝟓, 𝑰𝟓 

0.411, 0.313 4.58, 0.225 8.8, 0.181 8.9, 0.095 9.37, 0.13 

The graph in Figure 9 is the voltage and power values for the cloudy day 

readings. 
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Figure 9. Relationship between voltage and power—Cloudy day. 

Using the single-diode model, the photovoltaic system problem described above 

in Equation (22) is now written as Equation (25). Estimations of the parameters here 

are then carried out for the morning, sunny and cloudy days. 

𝐾 = 1: 𝑓1(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉1+𝐼1𝑥4)

12𝑥3 − 1] −
𝑉1+𝐼1𝑥4

𝑥5
− 𝐼1 = 0 

𝐾 = 2: 𝑓2(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉2+𝐼2𝑥4)

12𝑥3 − 1] −
𝑉2+𝐼2𝑥4

𝑥5
− 𝐼2 = 0 

𝐾 = 3: 𝑓3(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉3+𝐼3𝑥4)

12𝑥3 − 1] −
𝑉3+𝐼3𝑥4

𝑥5
− 𝐼3 = 0 

𝐾 = 4: 𝑓4(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉4+𝐼4𝑥4)

12𝑥3 − 1] −
𝑉4+𝐼4𝑥4

𝑥5
− 𝐼4 = 0 

𝐾 = 5: 𝑓5(𝑥) = 𝑥1 − 10
−6𝑥2 [𝑒

𝜆(𝑉5+𝐼5𝑥4)

12𝑥3 − 1] −
𝑉5+𝐼5𝑥4

𝑥5
− 𝐼5 = 0 

(25) 

5. Results and discussion for PV module problem with secondary 

data 

The outcomes presented in Table 11 illustrate the extracted parameters of the PV 

module problem, computed using both the Newton-Raphson method (NR) and the 

Midpoint-Simpson 3/8 method (MS-3/8). The results clearly demonstrate that both 

methods successfully converged to a solution across all five categories of initial 

guesses considered in this research. 

While there were slight variations in the values of individual parameters in terms 

of decimal places, both methods yielded approximately the same result. This suggests 

that the MS-3/8 method is comparably effective. Ultimately, the results in Table 11 

establish that the MS-3/8 method is notably faster and more efficient than the Newton-

Raphson method, as it required fewer iterations for all the initial guesses compared to 

the Newton-Raphson method. Table 11 below summarizes the data obtained for curve 

1. 
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Table 11. Obtained parameters for the curve 1. 

IG 

𝒙𝟏 = 𝑰𝒑𝒉 𝒙𝟐 = 𝑰𝟎 𝒙𝟑 = 𝑨 𝒙𝟒 = 𝑹𝒔 𝒙𝟓 = 𝑹𝒑 Number of iterations 

NR MS3/8 
TS-

3/8 
NR MS3/8 

TS-

3/8 
NR MS3/8 

TS-

3/8 
NR MS3/8 

TS-

3/8 
NR MS3/8 TS3/8 NR MS8/8 TS3/8 

1° 0.6687 0.6632 0.6612 0.2006 0.2000 0.2000 1.4288 1.4290 1.4290 1.1686 1.2002 1.2002 120.58 120.00 120.00 9 8 9 

2° 0.6687 0.6632 0.6612 0.2006 0.2000 0.2000 1.4288 1.4290 1.4290 1.1686 1.2002 1.2002 120.58 120.00 120.00 7 4 6 

3° 0.6687 0.6632 0.6612 0.2006 0.2000 0.2000 1.4288 1.4290 1.4290 1.1686 1.2002 1.2002 120.58 120.00 120.00 9 5 7 

4° 0.6687 0.6632 0.6612 0.2006 0.2000 0.2000 1.4288 1.4290 1.4290 1.1686 1.2002 1.2002 120.58 120.00 120.00 9 5 6 

5° 0.6687 0.6632 0.6612 0.2006 0.2000 0.2000 1.4288 1.4290 1.4290 1.1686 1.2002 1.2002 120.58 120.00 120.00 4 2 4 

Similarly, the outcomes presented in Table 12 reveal the parameter values of the 

PV module, computed using both the Newton-Raphson and Midpoint-Simpson 3/8 

methods, utilizing certain current and voltage values from curve 2. 

The results from Table 12 affirm that both methods successfully converged for 

all the selected initial guess values. The parameter values obtained through both 

methods were approximately identical, with the MS-3/8 method demonstrating fewer 

iterations for all initial guesses compared to the Newton-Raphson method. This 

observation once again suggests that the MS-3/8 method is faster and more efficient 

than the Newton-Raphson method. 

Table 12. Obtained parameters of the curve 2. 

IG 
𝒙𝟏 = 𝑰𝒑𝒉 𝒙𝟐 = 𝑰𝟎 𝒙𝟑 = 𝑨 𝒙𝟒 = 𝑹𝒔 𝒙𝟓 = 𝑹𝒑 Number of iterations 

N MS3/8 TS3/8 N MS3/8 TS3/8 N MS3/8 TS3/8 N MS3/8 TS3/8 N MS3/8 TS3/8 N MS8/8 TS3/8 

1° 1.8462 1.8500 1.8500 0.0441 0.0421 0.0421 1.0245 1.0311 1.0311 0.1979 0.2000 0.2000 58.92 59.00 59.00 5 2 3 

2° 1.8462 1.8500 1.8500 0.0441 0.0421 0.0421 1.0245 1.0311 1.0311 0.1979 0.2000 0.2000 58.92 59.00 59.00 7 5 4 

3° 1.8462 1.8500 1.8500 0.0441 0.0421 0.0421 1.0245 1.0311 1.0311 0.1979 0.2000 0.2000 58.92 59.00 59.00 8 4 5 

4° 1.8462 1.8500 1.8500 0.0441 0.0421 0.0421 1.0245 1.0311 1.0311 0.1979 0.2000 0.2000 58.92 59.00 59.00 8 5 5 

5° 1.8462 1.8500 1.8500 0.0441 0.0421 0.0421 1.0245 1.0311 1.0311 0.1979 0.2000 0.2000 58.92 59.00 59.00 4 3 4 

Tables 11 and 12 showcase the current and voltage values derived from curves 1 

and 2, which were utilized for estimating the parameters of the PV module through the 

Newton-Raphson and MS-3/8 methods. The successful execution of both methods 

indicates their efficiency in handling intricate nonlinear systems of equations, such as 

the PV module problem. Notably, the MS-3/8 method, with fewer iterations in both 

tables, emerges as the preferred method compared to Newton-Raphson for solving 

problems involving complex systems of nonlinear equations. 

5.1. Results and discussion for PV module problem with primary data 

Considering the complexities inherent in manually solving the photovoltaic 

system problem using the proposed methods, MATLAB codes were developed for the 

newly introduced methods (MS-3/8 and TS-3/8 methods). These codes were utilized 

to compute the parameters of the 10 W PV module. The computations were executed 

using MATLAB R2020b on a machine with the following specifications: CPU-AMD 

EI-2100APU with Radeon TM Graphics 1.00 GHz, installed memory (RAM)—4.00 

GB, and system type—64-bit Operating System, X64-based processor. The program 

was designed to terminate when the number of iterations reached 500. 
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It is imperative to have approximate values in mind when applying the Newton-

Raphson technique, MS-3/8, and TS-3/8 approaches, as these initial guesses should be 

in close proximity to the solution of the problem [15]. 

In the simulations conducted in this study, various guesses were employed, with 

some converging while others failed to converge. Table 13 provides a summary of the 

initial guesses adopted for this study. 

Table 13. Initial guesses. 

Initial guess (IG) Initial guess values 

1° X0 = [1.0; 2.0; 1.5; 1.0; 20] 

2° X0 = [1.0; 2.0; 1.5; 1.5; 20] 

3° X0 = [1.0; 1.5; 1.5; 1.5; 20] 

4° X0 = [1.0; 2.0; 1.0; 1.5; 20] 

5° X0 = [1.0; 1.5; 2.0; 2.0; 20] 

Table 14 displays the results obtained when the MS-3/8 and TS-3/8 methods 

were applied to estimate the parameters of the 10 W PV module using morning data. 

Both methods generated solutions for all the initial guesses considered in the study. 

However, the individual values of the parameters exhibited slight variations between 

the two methods. This slight difference in parameter values for both methods could be 

attributed to the approximation of values within each method. 

Upon closer examination of the values from both methods, it is evident that the 

MS-3/8 method consistently produced values greater than the TS-3/8 method, with an 

average difference of approximately 0.005 for all the initial guesses. Additionally, the 

results in Table 14 highlight that the MS-3/8 method required fewer iterations to reach 

a solution compared to the TS-3/8 method, particularly for the current and voltage 

values obtained during the morning hours. 

Table 14. Results of MS-3/8 and TS-3/8 methods—Morning. 

IG 
𝒙𝟏 = 𝑰𝒑𝒉 𝒙𝟐 = 𝑰𝟎 𝒙𝟑 = 𝑨 𝒙𝟒 = 𝑹𝒔 𝒙𝟓 = 𝑹𝒑 Number of iterations 

MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS8/8 

1° 0.6522 0.6480 1.8420 1.8140 1.5325 1.4991 1.0421 1.0025 19.85 19.69 4 6 

2° 0.6522 0.6480 1.8420 1.8140 1.5325 1.4991 1.0421 1.0025 19.85 19.69 4 5 

3° 0.6522 0.6480 1.8420 1.8140 1.5325 1.4991 1.0421 1.0025 19.85 19.69 5 6 

4° 0.6522 0.6480 1.8420 1.8140 1.5325 1.4991 1.0421 1.0025 19.85 19.69 4 7 

5° 0.6522 0.6480 1.8420 1.8140 1.5325 1.4991 1.0421 1.0025 19.85 19.69 4 4 

A test utilizing the data from a sunny day was conducted for both the MS-3/8 and 

TS-3/8 methods, and the summarized results are presented in Table 15. The data 

exhibited a consistent pattern of judgment when comparing the two methods. Both 

methods successfully converged for all the initial guesses employed in the study, and 

the parameter values obtained using the MS-3/8 method showed an average difference 

of 0.005 compared to the TS-3/8 method. Additionally, the MS-3/8 method required a 

lower number of iterations for all initial guesses considered compared to the TS-3/8 

method. 
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Table 15. Results of MS-3/8 and TS-3/8 methods—Sunny day. 

IG 
𝒙𝟏 = 𝑰𝒑𝒉 𝒙𝟐 = 𝑰𝟎 𝒙𝟑 = 𝑨 𝒙𝟒 = 𝑹𝒔 𝒙𝟓 = 𝑹𝒑 Number of iterations 

MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS8/8 

1° 0.4951 0.3992 1.5231 1.5001 1.3412 1.3315 0.9852 0.9431 19.69 19.60 3 6 

2° 0.4951 0.3992 1.5231 1.5001 1.3412 1.3315 0.9852 0.9431 19.69 19.60 6 8 

3° 0.4951 0.3992 1.5231 1.5001 1.3412 1.3315 0.9852 0.9431 19.69 19.60 4 6 

4° 0.4951 0.3992 1.5231 1.5001 1.3412 1.3315 0.9852 0.9431 19.69 19.60 6 10 

5° 0.4951 0.3992 1.5231 1.5001 1.3412 1.3315 0.9852 0.9431 19.69 19.60 3 5 

To gain a comprehensive understanding of how these parameter values might 

vary under different weather conditions, data was extracted from the same setup on a 

cloudy day, and the outcomes were condensed in Table 16 below. Both methods 

effectively estimated the parameters of the 10 W PV module in accordance with the 

specified initial guesses for the study. Consistent with the observations in Tables 14 

and 15, data from Table 16 indicated a lower number of iterations for the MS-3/8 

method when compared to the TS-3/8 method. 

Table 16. Results of MS-3/8 and TS-3/8 methods—Cloudy day. 

IG 
𝒙𝟏 = 𝑰𝒑𝒉 𝒙𝟐 = 𝑰𝟎 𝒙𝟑 = 𝑨 𝒙𝟒 = 𝑹𝒔 𝒙𝟓 = 𝑹𝒑 Number of iterations 

MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS3/8 MS3/8 TS8/8 

1° 0.4410 0.4021 1.5420 1.5223 1.1213 1.1024 0.9827 0.9812 20.05 19.98 5 8 

2° 0.4410 0.4021 1.5420 1.5223 1.1213 1.1024 0.9827 0.9812 20.05 19.98 4 6 

3° 0.4410 0.4021 1.5420 1.5223 1.1213 1.1024 0.9827 0.9812 20.05 19.98 3 5 

4° 0.4410 0.4021 1.5420 1.5223 1.1213 1.1024 0.9827 0.9812 20.05 19.98 4 6 

5° 0.4410 0.4021 1.5420 1.5223 1.1213 1.1024 0.9827 0.9812 20.05 19.98 4 5 

5.2. Mathematical model for four diodes PV module 

In line with the research’s third objective, which aims to introduce a mathematical 

model for a four-diode PV module, offering an innovative perspective to articulate and 

comprehend its characteristics and behavior within photovoltaic systems, Figure 10 

presents a proposed verification of the four-diode PV module model. 

 

Figure 10. Electrical circuit of PV cell with four-diodes. 

Applying Kirchhoff’s current law to the above circuit diagram, we have 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝐷3 − 𝐼𝐷4 − 𝐼𝑠ℎ (26) 
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But 

𝐼𝐷1 = 𝐼01 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴1 × 𝑉𝑇

) − 1] (27) 

𝐼𝐷2 = 𝐼02 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴2 × 𝑉𝑇

) − 1] (28) 

𝐼𝐷3 = 𝐼03 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴3 × 𝑉𝑇

) − 1] (29) 

𝐼𝐷4 = 𝐼04 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴4 × 𝑉𝑇

) − 1] (30) 

𝐼𝑠ℎ =
𝑉 + 𝐼𝑅𝑠
𝑅𝑝

 (31) 

Hence 

𝐼 = 𝐼𝑝ℎ − 𝐼01 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴1 × 𝑉𝑇

) − 1] − 𝐼02 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴2 × 𝑉𝑇

) − 1] − 𝐼03 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴3 × 𝑉𝑇

) − 1]

− 𝐼04 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴4 × 𝑉𝑇

) − 1] −
𝑉 + 𝐼𝑅𝑠
𝑅𝑝

− 𝐼𝑘 

(32) 

Set 𝑓(𝑥) = 𝐼 and writing Equation (32) as 𝑓(𝑥) = 0, we have 

𝑓(𝑥) = 𝐼 = 𝐼𝑝ℎ − 𝐼01 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴1 × 𝑉𝑇

) − 1] − 𝐼02 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴2 × 𝑉𝑇

) − 1] − 𝐼03 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴3 × 𝑉𝑇

) − 1]

− 𝐼04 [exp (
𝑉 + 𝐼𝑅𝑠
𝐴4 × 𝑉𝑇

) − 1] −
𝑉 + 𝐼𝑅𝑠
𝑅𝑝

− 𝐼𝑘 

(33) 

Hence Equation (33) is a multidimensional function involving eleven parameters 

and eleven equations (𝐾 = 1, 2, 3, … ,11). The parameters are as shown below: 

[
 
 
 
 
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
𝑥11]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝐼𝑝ℎ
𝐼01
𝑅𝑠
𝐴1
𝐼02
𝐴2
𝐼03
𝐴3
𝐼04
𝐴4
𝑅𝑝 ]
 
 
 
 
 
 
 
 
 
 
 

 

Replacing the parameters in Equation (33) with their corresponding 𝑥  variables 

above give: 

𝑓𝑘(𝑥) = 𝑥1 − 𝑥2 [exp (
𝑉 + 𝐼𝑥3
𝑥4 × 𝑉𝑇

) − 1] − 𝑥5 [exp (
𝑉 + 𝐼𝑥3
𝑥6 × 𝑉𝑇

) − 1] − 𝑥7 [exp (
𝑉 + 𝐼𝑥3
𝑥8 × 𝑉𝑇

) − 1]

− 𝑥9 [exp (
𝑉 + 𝐼𝑥3
𝑥10 × 𝑉𝑇

) − 1] −
𝑉 + 𝐼𝑥3
𝑥11

− 𝐼𝑘 

(34) 

Substituting 

𝑉𝑇 =
𝑁𝑆 × 𝐾 × 𝑇

𝑞
 

Into Equation (34), we have 

𝑓𝑘(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝑞(𝑉+𝐼𝑘𝑥3)
𝑥4𝑁𝑠𝐾𝑇 − 1] − 𝑥5 [𝑒

𝑞(𝑉+𝐼𝑘𝑥3)
𝑥6𝑁𝑠𝐾𝑇 − 1] − 𝑥7 [𝑒

𝑞(𝑉+𝐼𝑘𝑥3)
𝑥8𝑁𝑠𝐾𝑇 − 1] − 𝑥9 [𝑒

𝑞(𝑉+𝐼𝑘𝑥3)
𝑥10𝑁𝑠𝐾𝑇 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼𝑘  (35) 

Let 𝜆 =
𝑞

𝐾𝑇
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𝑓𝑘(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼𝑘 (36) 

For 𝐾 = 1, 2, 3,… ,11 we get the following system of nonlinear equations with 

eleven unknowns. 

𝑓1(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼1 

𝑓2(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼2 

𝑓3(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼3 

𝑓4(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼4 

𝑓5(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼5 

𝑓6(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼6 

𝑓7(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼7 

𝑓8(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼8 

𝑓9(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼9 

𝑓10(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼10 

𝑓11(𝑥) = 𝑥1 − 𝑥2 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥4𝑁𝑠 − 1] − 𝑥5 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥6𝑁𝑠 − 1] − 𝑥7 [𝑒
𝜆(𝑉3+𝐼3𝑥4)

𝑥8𝑁𝑠 − 1] − 𝑥9 [𝑒
𝜆(𝑉3+𝐼3𝑥4)
𝑥10𝑁𝑠 − 1] −

𝑉 + 𝐼𝑥3
𝑥11

− 𝐼11 

(37) 

Therefore, Equation (37) constitutes a set of nonlinear equations, serving as the 

model representation of a four-diode PV module that encompasses eleven equations 

and eleven unknown parameters. 

6. Conclusion 

This research initially focused on formulating mathematical models for 

estimating the parameters of the PV system, including single-diode, two-diode, three-

diode, and four-diode PV system models. Testing these models using secondary data 

from a 40 W PV system and primary data from a 10 W PV system revealed their 

effectiveness with the Newton-Raphson method. However, when applying the MS-3/8 

and TS-3/8 methods, a notable reduction in the number of iterations was observed, 

indicating that the MS-3/8 method is faster in estimating unknown parameters 

compared to the Newton-Raphson method. 

Despite its complexity, the proposed four-diode model has the potential to 

provide more accurate parameter estimates for PV systems compared to single, double, 

and three-diode models. This is because related research has demonstrated that 

increasing the number of diodes can stabilize and enhance the accuracy of the model. 

However, a module with multiple diodes could be expensive to produce. 

In conclusion, this research has presented compelling evidence to affirm that the 
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proposed methods (MS-3/8 and TS-3/8) are both efficient for solving systems of 

nonlinear equations. The MS-3/8 method, in particular, has demonstrated greater 

robustness, efficiency, and speed compared to the Newton-Raphson method. It is 

recommended for tackling complex problems, such as parameter estimation for a PV 

module. 
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