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Abstract: This research discusses the importance of predictive modeling in optimizing 

efficiency in various sectors, particularly in industrial settings. It compares the effectiveness of 

linear regression and decision tree regression models in predicting productivity. The study aims 

to provide insights into the strengths and limitations of each technique, assisting decision-

makers in selecting the best model for their needs. It begins by explaining the theoretical 

foundations of both models and conducts a literature review to highlight their practical 

implementations. The methodology involves data collection, preprocessing, model training, 

evaluation, and comparison using real-world datasets. Performance metrics such as Mean 

Squared Error (MSE) are used for evaluation. The comparative analysis reveals that the linear 

regression model consistently outperforms the decision tree regressor model in terms of lower 

MSE values across all datasets. Overall, the study offers empirical evidence and practical 

insights into the predictive capabilities of both models, with potential implications for strategic 

decision-making in various industries. 

Keywords: productivity prediction; linear regression; decision tree regressor; industrial 

contexts; comparative analysis 

1. Introduction 

In today’s dynamic industrial world, boosting productivity is critical to creating 

a competitive advantage and long-term success. Industries from all industries are 

constantly looking for efficient methods to anticipate and improve productivity levels. 

Among the several predictive modeling techniques, linear regression and decision tree 

regression stand out for their simplicity, interpretability, and effectiveness in modeling 

complicated relationships within datasets. 

This study aims to examine the effectiveness of linear regression and decision 

tree regression models in forecasting productivity in an industrial setting. By using 

real-world data and these two distinct modeling approaches, this study hopes to 

provide valuable insights into the strengths and limitations of each technique, assisting 

industry practitioners and decision-makers in selecting the best predictive model for 

their specific needs. 

The study will begin by discussing the theoretical foundations and operational 

mechanisms of linear regression and decision tree regression. A thorough analysis of 

current literature will be carried out to highlight the historical evolution, theoretical 

underpinnings, and practical implementations of these approaches in industrial 

productivity prediction. 

Subsequently, the research will delineate the methodology employed, 

encompassing data collection, preprocessing, model training, evaluation, and 

comparison processes. Real-world datasets pertinent to industrial productivity will be 
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utilized to ensure the applicability and relevance of the findings to industrial settings. 

The chosen datasets will be carefully curated and prepared to adhere to the 

requirements of both linear regression and decision tree regression models. 

This study is built on an investigation of the theoretical underpinnings and 

operational mechanisms of linear regression and decision tree regression. Drawing on 

important publications by several authors [1,2], this paper will outline the historical 

evolution and practical uses of these approaches in industrial productivity prediction. 

Furthermore, the research technique will include data collecting, preprocessing, 

model training, evaluation, and comparison procedures. Real-world datasets relevant 

to industrial productivity, such as those investigated by several authors [3,4], will be 

carefully curated and prepared to fulfill the needs of both linear regression and 

decision tree regression models. 

The comparative analysis will be underpinned by performance metrics including 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R2) 

coefficient. This comprehensive assessment, informed by the works of several authors 

[5–7], will illuminate the predictive accuracy, model interpretability, and 

computational efficiency across both modeling paradigms. 

The comparative analysis will be conducted based on various performance 

metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

and R-squared (R2) coefficient. These metrics will facilitate a comprehensive 

assessment of predictive accuracy, model interpretability, and computational 

efficiency across both modeling paradigms. 

Finally, the study intends to add to the current body of knowledge by providing 

empirical evidence and practical insights regarding the effectiveness of linear 

regression and decision tree regression models in forecasting productivity in industrial 

settings. The study’s findings have the ability to guide strategic decision-making 

processes, optimize resource allocation, and drive performance improvement 

initiatives across a wide range of industrial sectors. 

2. Production prediction models 

As stated in the introduction, the primary goal of this study is to conduct a 

thorough comparison of two distinct production prediction models across a variety of 

datasets, with the overarching goal of determining which model produces superior 

predictive capabilities in the context of productivity. This section explains the 

mathematical foundations of the linear regression and decision tree models, which will 

then be applied and thoroughly tested using authentic datasets. 

2.1. The linear regression model 

The linear regression model, a mainstay of predictive analytics, is the foundation 

of many predictive modeling efforts. At its core, the linear regression model seeks to 

establish a linear relationship between a dependent variable (or target variable) and 

one or more independent variables (or predictors) [8]. The mathematical formulation 

of the linear regression model is as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (1) 

where: 
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𝑌 is the dependent variable (productivity). 

𝑋1, 𝑋2, … , 𝑋𝑛 are the independent variables (raw material cost, labor efficiency, 

machine utilization). 

𝛽0 is the y–intercept. 

𝛽1, 𝛽2, … , 𝛽𝑛  are the coefficients representing the impact of each independent 

variable on the dependent variable. 

𝜀  is the error term, representing unobserved factors affecting the dependent 

variable. 

The objective is to minimize the sum of squared differences between the 

predicted (�̂�) and actual (𝑌) values: 

𝐽(𝛽) =
1

2𝑚
∑(�̂�𝑖 − 𝑌𝑖)

2
𝑚

𝑖=1

 (2) 

where: 

𝑚 is the number of data points. 

Let’s represent the method using matrix notation: 

𝑌 = 𝑋𝛽 + 𝜀 (3) 

where:  

𝑌 is an 𝑚 × 1 vector of actual values. 

𝑋 is an 𝑚 × (𝑛 + 1) matrix of features (including a column of ones for the 

intercept). 

𝛽 is a (𝑛 + 1) × 1 vector of errors. 

To minimize 𝐽(𝛽), we set the gradient of 𝐽 with respect to 𝛽 equal to zero >. 

To do this, we define the objective function. 

𝐽(𝛽) =
1

2𝑚
(𝑋𝛽 − 𝑌)𝑇(𝑋𝛽 − 𝑌) (4) 

Completing the gradient 𝐽(𝛽) with respect to 𝛽: 

∇𝐽(𝛽) =
1

𝑚
(𝑋𝛽 − 𝑌)𝑇 (5) 

Finding the minimum of 𝐽(𝛽), we set the gradient equal to zero: 

1

𝑚
𝑋𝑇(𝑋𝛽 − 𝑌) = 0  (6) 

Multiply both sides by 𝑚 to simplify: 

𝑋𝑇(𝑋𝛽 − 𝑌) = 0 (7) 

Expanding and simplifying, we get 

𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑌 (8) 

Solving for 𝛽, multiply both sides by (𝑋𝑇𝑋)−1 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (9) 

Hence, this is the least square solution for the coefficient 𝛽. 

Once 𝛽 is obtained, predictions (�̂�) can be made using: 

�̂� = 𝑋𝛽 (10) 

If feature scaling is applied, the scaled features (𝑋𝑠𝑐𝑎𝑙𝑒𝑑) are obtained using the 

equation: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)
 (11) 
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2.2. Decision tree model 

In contrast to the linear regression model’s parametric approach, the decision tree 

model employs a non-parametric methodology distinguished by its hierarchical 

structure of decision nodes and leaf nodes. At each decision node, the decision tree 

model separates the feature space based on the most discriminative features, with the 

goal of iteratively improving the model’s predictive power. Mathematically, the 

decision tree model can be described as a recursive partitioning process, with each 

division aiming to maximise the homogeneity of the objective variable within the 

subsequent subsets [9,10]. 

The decision tree model’s essential idea is the capacity to recursively partition 

the feature space into disjoint sections, each regulated by a set of conditional rules. 

The decision tree’s leaf nodes make predictions based on the target variable’s majority 

class (for classification tasks) or mean value (for regression tasks) within the 

appropriate subset [11]. 

By defining the mathematical formulations of both the linear regression and 

decision tree models, this study aims to lay a solid foundation for the forthcoming 

empirical evaluations utilizing actual data. This study aims to provide valuable 

insights into the relative strengths and limitations of each modeling paradigm in 

predicting productivity within industrial contexts by meticulously examining their 

predictive capabilities across diverse datasets [12,13]. 

The mathematical formulation of decision trees includes ideas like as entropy and 

information gain, but it does not use calculus or linear algebra for optimization. 

For classification issues, entropy measures a set’s impurity. The entropy of a set 

S that contains p positive and n negative samples is defined as: 

𝐻(𝑆) = −𝑝. 𝑙𝑜𝑔2(𝑝) − 𝑛. 𝑙𝑜𝑔2(𝑛) (12) 

The entropy of a set 𝑆 is defined using the concept of information content: 

𝐻(𝑆) = − ∑ 𝑃𝑖 . 𝑙𝑜𝑔2(𝑃𝑖)

𝑐

𝑖=1

 (13) 

where: 

𝑐 is the number of classes (in binary classification, 𝑐 = 2), 

𝑃𝑖 is the probability of class 𝑖 in set 𝑆. 

For binary classification (𝑐 = 2), let 𝑝 be the probability of the positive class 

(class 1) and 𝑛 be the probability of the negative class (class 0). The probabilities are 

calculated as: 

𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 (14) 

𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 (15) 

Substitute these into the entropy equation: 

𝐻(𝑆) = −𝑝. 𝑙𝑜𝑔2(𝑝) − 𝑛. 𝑙𝑜𝑔2(𝑛) 

Proof. The entropy of set 𝑆 is defined as: 

𝐻(𝑆) = − ∑ 𝑃𝑖 . 𝑙𝑜𝑔2(𝑃𝑖)

𝑐

𝑖=1

 

For binary classification (𝑐 = 2), where 𝑝 is the probability of the position class 
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and 𝑛 is the probability of the negative class: 

𝐻(𝑆) = −𝑝. 𝑙𝑜𝑔2(𝑝) − 𝑛. 𝑙𝑜𝑔2(𝑛) 

The entropy of each subset 𝑆𝑖 is calculated similarly based on the probabilities 

𝑃𝑖  𝑎𝑛𝑑 𝑛𝑖: 

𝐻(𝑆𝑖) = −𝑙𝑜𝑔2(𝑃𝑖) − 𝑛𝑖 . 𝑙𝑜𝑔2(𝑛𝑖) 

Weighted sum of entropies of the subsets is: 

∑
|𝑆𝑖|

|𝑆|
𝐻(𝑆𝑖)

𝑘

𝑖=1

 

The information gain is defined as the reduction in entropy achieved by splitting 

the set 𝑆: 

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑
|𝑆𝑖|

|𝑆|
𝐻(𝑆𝑖)

𝑘

𝑖=1

 

Substitute the expressions for 𝐻(𝑆) and 𝐻(𝑆𝑖): 

𝐼𝐺(𝑆, 𝐴) = −𝑝. 𝑙𝑜𝑔2(𝑝) − 𝑛. 𝑙𝑜𝑔2(𝑛) − ∑
|𝑆𝑖|

|𝑆|
((−𝑃𝑖 . 𝑙𝑜𝑔2(𝑃𝑖) − 𝑛𝑖 . 𝑙𝑜𝑔2(𝑛𝑖)))

𝑘

𝑖=1

 

Combine terms to simplify the expression: 

𝐼𝐺(𝑆, 𝐴) = −(𝑝. 𝑙𝑜𝑔2(𝑝) + 𝑛. 𝑙𝑜𝑔2(𝑛) + ∑
|𝑆𝑖|

|𝑆|
𝑘
𝑖=1 (𝑃𝑖 . 𝑙𝑜𝑔2(𝑃𝑖) + 𝑛𝑖 . 𝑙𝑜𝑔2(𝑛𝑖))□ 

2.3. Experimental study 

To provide a comprehensive comparison of both models, this research 

incorporates four distinct datasets spanning various domains. These datasets 

encompass Sales Prediction in Retail, House Price Prediction, Employment 

Performance Evaluation, and Temperature Prediction. They are respectively labeled 

as Dataset 1, Dataset 2, Dataset 3, and Dataset 4, as outlined in Table 1 below. The 

features of each dataset along with their corresponding data are elaborated in Table 1. 

Table 1. Datasets for experimental test. 

Dataset Features 

Dataset 1 

Customer Visits Advertising Budget Store size 

100 500 50 

1000 5000 500 

200 200 200 

Dataset 2 

Number of Bedrooms Distance to City House Price 

800 2 1 

4000 6 20 

300 300 300 

Dataset 3 

Hours Worked Communication Skills Performance Score 

20 0 1 

60 1 5 

150 150 150 
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Table 1. (Continued). 

Dataset Features 

Dataset 4 

Latitude Altitude Humidity 

−90 0 0 

90 
250 

5000 100 

 250 250 

Based on the parameters delineated in the preceding table, both models were 

implemented using Python scripts. Subsequently, these scripts were executed to 

generate the respective predicted outcomes, accompanied by estimates of mean square 

error values. 

3. Related theorems and lemmas of the models 

Linear regression and decision tree regressor models are important techniques for 

predictive modeling in a variety of applications, including estimating productivity in 

industrial settings. Theorems and lemmas related with these models provide 

theoretical insights, properties, and considerations necessary for understanding their 

behavior and performance. 

3.1. Theorems and lemmas of linear regression model 

Theorems and lemmas are essential for understanding the mathematical 

underpinnings and properties of linear regression models. Some essential concepts are: 

Theorem 1. Least squares estimation [14].  

Given a set of mm observations (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 represents the input variables 

and 𝑦𝑖 represents the corresponding output variable (productivity), the least squares 

estimate �̂�  for the parameters 𝛽  in the linear regression model 𝑦 = 𝛽0 + 𝛽1𝑥1 +

𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖 is obtained by minimizing the sum of squared residuals: 

�̂� = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑛𝑥𝑖𝑛))
2

𝑚

𝑖=1

 (16) 

Theorem 2. Gauss-Markov theorem [15].  

Under the assumptions of the classical linear regression model, the least squares 

estimators �̂� are unbiased and have the minimum variance among all linear unbiased 

estimators. 

Lemma 1. Properties of residuals [16,17]. 

For the linear regression model 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖 , the 

residuals 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 have the following properties: 

1) The residuals have a mean of zero: 
1

𝑚
∑ 𝑒𝑖 = 0𝑚

𝑖=1 . 

2) The residuals are uncorrelated with the predictors: 𝐶𝑜𝑣(𝑒𝑖 , 𝑥𝑖𝑗) = 0 for all 𝑗 =

1,2, … , 𝑛. 

3) The residuals have constant variance (homoscedasticity): 𝑉𝑎𝑟(𝑒𝑖) = 𝜎2. 

4) The residuals are normally distributed:𝑒𝑖~𝑁(0, 𝜎2) for all 𝑖 = 1,2, … , 𝑚. 

Lemma 2. Gauss-Markov Assumptions [15].  

For the Gauss-Markov theorem to hold, the following assumptions must be 
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satisfied: 

1) Linearity: The relationship between the predictors and the response variable is 

linear. 

2) Independence: The errors (residuals) are independent of each other. 

3) Homoscedasticity: The errors have constant variance. 

4) Normality: The errors are normally distributed with mean zero and constant 

variance. 

5) No Perfect Collinearity: There is no perfect multicollinearity among the 

predictors. 

3.2. Theorems and lemmas of decision tree regressor model 

Theorem 3. Regression tree construction. 

Given a set of mm observations(𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 represents the input variables 

and 𝑦𝑖  represents the corresponding output variable (productivity), a decision tree 

regressor partitions the feature space into disjoint regions 𝑅1, 𝑅2 , … , 𝑅𝑗 , such that the 

response variable 𝑦 is predicted as the mean of the training observations in each 

region: 

�̂�𝑗 =
1

𝑁𝑗
∑ 𝑦𝑖

𝑖𝜖𝑅𝑗

 (17) 

where �̂�𝑗 is the predicted value for region 𝑅𝑗  and 𝑁𝑗 is the number of observations in 

region 𝑅𝑗 . 

Theorem 4. Recursive partitioning [18]. 

The decision tree regressor algorithm recursively partitions the feature space 

based on the most discriminative attributes, aiming to maximize the homogeneity of 

the target variable within the resultant subsets. 

Lemma 3. Properties of decision trees [19].  

For decision tree regressors, the following properties hold: 

1) Hierarchical partitioning: The feature space is partitioned into disjoint regions 

hierarchically, with each partition corresponding to a decision node in the tree. 

2) Piecewise constant prediction: Within each partition (leaf node) of the decision 

tree, the prediction for the response variable yy is a constant value. 

3) Interpretability: Decision trees are interpretable models, as the splits in the tree 

correspond to intuitive decision rules based on feature values. 

Lemma 4. Overfitting control [14]. 

Decision tree regressors are prone to overfitting, especially when the trees are 

deep and complex. Regularization techniques such as pruning, limiting the maximum 

depth of the tree, or setting a minimum number of samples required to split a node can 

help control overfitting and improve the generalization performance of the model. 

Lemma 5. Feature importance [20]. 

Decision tree regressors provide a measure of feature importance, indicating the 

relative importance of each feature in predicting the target variable. Features that are 

frequently used for splitting nodes higher up in the tree are considered more important 

in predicting productivity. 
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4. Results discussion 

Drawing upon the mathematical formulations of linear regression and decision 

tree regression, the parameters specified in Table 2 were meticulously inputted into 

the respective models. Subsequently, comprehensive analyses were conducted, 

yielding a myriad of results elucidating the predictive capabilities of each model across 

diverse datasets. These results encompassed a range of performance metrics, including 

but not limited to mean squared error, R-squared coefficient, and root mean squared 

error, which collectively provided valuable insights into the efficacy and robustness 

of each modeling approach. 

Table 2. Predicted parameters for linear regression and decision tree regressor 

models. 

Dataset Parameters 
Linear Regression 

Model 
Decision Regressor Model 

1 
Predicted Scales 85106.53583717004 88214.08324241744 

Mean Squared Error 1419926.7292265582 17255642.55627085 

2 
Predicted House Price 298646.1429131364 380778.5276175679 

Mean Squared Error 2446593752.5670934 5509637467.099092 

3 
Predicted Performance Score 313.15168967988734 329.078546122949 

Mean Squared Error 98.4842183439387 444.6210049620012 

4 
Predicted Temperature 36.36307221002279 31.54859473247914 

Mean Squared Error 4.45761528055088 25.57305707384498 

The table presents the predicted parameters and corresponding mean squared 

error values for both the linear regression and decision tree regressor models across 

four different datasets. 

Dataset 1 was meant to predict sales. The linear regression model predicted sales 

to be approximately 85,106.54, while the decision tree regressor model predicted 

slightly higher at around 88,214.08. Also, the linear regression model exhibited a 

lower MSE of approximately 1,419,926.73 compared to the decision tree regressor 

model, which had a substantially higher MSE of approximately 17,255,642.56. The 

results from Dataset 1 suggest that the linear regression model performed better in 

predicting sales for Dataset 1, as evidenced by its lower MSE. The decision tree 

regressor model, on the other hand, appeared to have a higher error rate, indicating 

less accurate predictions. 

Unlike Dataset 1, Dataset 2 was meant to be used to predict House Prices. The 

linear regression model predicted the house price to be around 298,646.14, whereas 

the decision tree regressor model predicted a higher value of approximately 

380,778.53. However, the linear regression model exhibits a substantial MSE of 

approximately 2,446,592,752.57, while the decision tree regressor model shows an 

even higher MSE of approximately 5,509,637,467.10. This clearly show that in 

Dataset 2, both models predict higher house prices, with the decision tree regressor 

model showing higher predictions and a significantly higher MSE. This suggests that 
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the linear regression model may provide more reliable predictions compared to the 

decision tree regressor model for this dataset. 

Predicting Performance Score is what Dataset 3 aimed to get. The linear 

regression model predicted a performance score of approximately 313.15, while the 

decision tree regressor model predicted a slightly higher score of around 329.08. 

Meanwhile, the linear regression model demonstrated a relatively low MSE of 

approximately 98.48, whereas the decision tree regressor model exhibits a higher MSE 

of approximately 444.62. Hence for Dataset 3, both models predicted similar 

performance scores, with the decision tree regressor model showing slightly higher 

predictions. However, the linear regression model outperformed the decision tree 

regressor model in terms of MSE, indicating better predictive accuracy. 

Dataset 4 predicted Temperature. The linear regression model predicted the 

temperature to be around 36.36 degrees Celsius, while the decision tree regressor 

model predicts a lower temperature of approximately 31.55 degrees Celsius. The linear 

regression model demonstrated a relatively low MSE of approximately 4.46, whereas 

the decision tree regressor model exhibited a higher MSE of approximately 25.57. In 

Dataset 4, the linear regression model predicted a higher temperature compared to the 

decision tree regressor model. Additionally, the linear regression model achieved a 

lower MSE, indicating better predictive performance for temperature prediction.   

Based on the analysis of the four datasets, it is apparent that both the linear 

regression and decision tree regressor models generated substantial predictions. 

However, a notable trend emerges: the linear regression model consistently exhibits 

lower Mean Squared Error (MSE) values across all datasets. This pattern suggests that 

the linear regression model tends to produce predictions with comparatively less error 

than the decision tree regressor model for each dataset utilized. 

In a typical linear regression model graph, the x-axis represents the actual values 

of the target variable (e.g., sales), and the y-axis represents the predicted values of the 

target variable generated by the linear regression model. Each data point on the graph 

corresponds to a particular observation in the dataset. The ideal scenario is that all data 

points lie close to a diagonal line, indicating a perfect prediction where actual values 

match predicted values. Deviations from the diagonal line suggest discrepancies 

between actual and predicted values. A scattered or dispersed distribution of data 

points around the line may indicate variability or errors in the model’s predictions. 

 

Figure 1. Predicted sales graph for linear regression and decision tree regressor 

models. 
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Figure 2. Predicted house price graph for linear regression and decision tree 

regressor models. 

 

Figure 3. Predicted performance score for linear regression and decision tree 

regressor models. 

 

Figure 4. Predicted temperature for linear regression and decision tree regressor 

models. 

On the other hand, the graph for a decision tree regressor model typically 

showcases the actual values of the target variable on the x-axis and the corresponding 

predicted values on the y-axis. Unlike the linear regression model, the graph for a 

decision tree regressor model may not necessarily follow a linear pattern. Instead, it 

may exhibit a series of steps or plateaus corresponding to the splits and decisions made 

by the decision tree algorithm. The visualization may reveal distinct clusters or groups 

of data points, each associated with a different leaf node or prediction from the 

decision tree model. 

From Figure 1, which shows the graphs of linear regression and decision tree 
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regressor models predicting sale using the dataset 1, and going by the ideal scenario 

of graphs for linear regression models, it is comparatively clear that data points lie 

very close to the diagonal line for the linear regression model graph compared to that 

of the decision tree regression model. For the Figure 2, which displays the predicted 

house price graphs for the linear regression and decision tree regressor models, it can 

be observed that both graphs seem to have very scatted data points, however, the graph 

for the decision tree regressor seem to have a more scatted data points compared with 

the linear regression model. A similar conclusion can be said about Figures 3 and 4 

respectively. 

5. Conclusion  

In conclusion, this research has presented a comprehensive comparison between 

linear regression and decision tree regression models for predicting productivity 

within industrial contexts. By leveraging real-world datasets and employing rigorous 

evaluation methodologies, valuable insights have been obtained regarding the efficacy 

and limitations of each modeling approach. 

The results indicate that while both linear regression and decision tree regression 

models can produce significant predictions, there are discernible differences in their 

performance across diverse datasets. Specifically, the linear regression model 

consistently exhibited lower Mean Squared Error (MSE) values across all datasets, 

suggesting comparatively less error in its predictions compared to the decision tree 

regression model. This pattern underscores the robustness and reliability of the linear 

regression approach in capturing complex relationships within industrial datasets. 

Furthermore, the comparative analysis highlighted the importance of selecting an 

appropriate predictive model tailored to specific industrial contexts. While decision 

tree regression models may offer interpretability and flexibility, their performance 

may vary depending on the nature and complexity of the dataset. In contrast, linear 

regression models provide a straightforward and interpretable framework for 

predicting productivity, particularly in scenarios where the relationships between 

variables are predominantly linear. 

Overall, this study contributes to the existing body of knowledge by offering 

empirical evidence and practical insights into the effectiveness of linear regression and 

decision tree regression models in predicting productivity within industrial settings. 

The findings have the potential to inform strategic decision-making processes, 

optimize resource allocation, and drive performance improvement initiatives across 

diverse industrial sectors. 

Moving forward, future research endeavors could explore more advanced 

predictive modeling techniques, such as ensemble methods or neural networks, to 

further enhance the accuracy and robustness of productivity predictions in industrial 

contexts. Additionally, longitudinal studies could be conducted to assess the long-term 

predictive performance and scalability of different modeling approaches in dynamic 

industrial environments. 

In summary, this research serves as a foundation for future investigations aimed 

at optimizing productivity prediction methodologies and ultimately fostering 

innovation and efficiency within industrial sectors. 
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