
Journal of  AppliedMath 2023;1(3): 129. 
Original Research Article 

1 

The study of chaotic dynamics of an eco-epidemiological predator-

prey model with alternative food 
Prodip Roy1, Abhishek Sarkar2, Kulbhushan Agnihotri2, Krishna Pada Das1,* 

1 Department of Mathematics, Mahadevananda Mahavidyalaya, Monirampore, Barrackpore, West Bengal 700120, India 
2 Department of Applied Science and Humanities, Shaheed Bhagat Singh State University, Ferozepur, Punjab 152001, India 

* Corresponding author: Krishna Pada Das, krishnaisi@yahoo.co.in

ABSTRACT: Parasites can alter the quality and quantity of 

participants. On the other hand, the spread of diseases between 

individuals or species is an important research topic. Here we consider 

a tritrophic food model in which bacteria spread among the animal's 

environment where other nutrients are present. We analyze the local 

stability of the model around the efficiency of the equation. We also 

report significant numbers of offspring in terms of ecology and disease 

and use these numbers to analyze community structure of the sample. 

We started from this situation as a model. Our numerical results show 

that at low infection level the body causes conflict, but at high infection 

level conflict prioritizes safety. Our findings therefore challenge 

previous models’ predictions that the parasite has a negative impact. 

We also looked at the impact of other foods on chaotic dynamics. 

When other nutrients increase, stress does not change, but when other 

nutrients decrease, chaos disappears and the disease among animals is 

eliminated from the body. 

KEYWORDS: disease in intermediate predator; chaos; period-doubling; 

limit cycle; stable focuses; alternative food 

1. Introduction

The interaction between animals and animals is one of the most important interactions in ecology

and epidemiology due to its importance in our real life. Ecological epidemiology is a branch of 

mathematical biology that considers both ecological and epidemiological problems. Anderson and 

May[1] were the first to combine the above two fields and create a model of animal diseases in which 

animals are infected. In the following period, many scientists prepared and examined different animal-

prey models in the presence of disease. Knowledge in the field of ecological epidemiology has increased 

tremendously in the last two years, of which we have only mentioned a few[2–7]. Early studies[8–10] 

focused solely on infection in victims.  

To our knowledge, Anderson and May[11], Hadeler and Freedman[5], Hochberg[12], Venturino[13] 

and[14], Chattopadhyay and Arino[2], Han et al.[15], Xiao WS, Chen WS, Hethcote et al.[9] Greenhalgh 

and Haqu[6] and Haque and Venturino[16]. Most of these studies involve animal models in which the 

animal is infected with the disease (except for Venturino[7], Haque and Venturino[16]). However, when 

there is a problem in animal control, it is very important to investigate animal diseases when killing 

animals. As we know, infectious diseases remain almost silent on this issue. However, to our 

knowledge, there have been few efforts to understand the dynamics of tritrophic food webs and 
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intermediate animal diseases. Here we consider a three-trophic trophic pattern endemic to the medium-

sized animal population and also consider other food sources for medium-sized animals. 

In this study, we focus on the power transfer of chaotic dynamics. Much of the early work was 

based on the search for stability and physical risk[17] and analyzed from the linear equation to nonlinear 

equation involving complex situations often needed by ecologists[18]. But now things are changing. The 

terms chaos, strange attractor, and fractal are familiar to most, if not all, ecologists[19]. Although stress is 

often predicted by mathematical models, the evidence for its existence in the natural world is mixed 

and uncertain[20]. Chaotic dynamics exist in tritrophic food webs and are of interest to model and 

experimental ecologists. Hastings and Powell (HP)[18] constructed a population crisis with a type II 

response function in a simple threetrophic food model. McCann and Yodzis[21] modified Hastings and 

Powell’s model[18] and found that the system produces pressure for a suitable connection between 

critical parameters. Impacts can occur not only in ecosystems but also in infectious diseases. General 

observations suggest that measles is a good candidate for infection, but conclusive evidence is still 

lacking[22–24]. Grenfell et al.[25] investigated the impact of local chaotic dynamics on global persistence in 

the epidemiological model. Although the study of chaos in ecoepidemiological systems is new, the 

literature on chaos in ecosystems is quite rich. Recently, Chatterjee et al.[26] found that disease 

transmission and predation rates are two main factors controlling the chaotic dynamics of 

ecoepidemiological systems. In our model, we examine the conflict between changes in the epidemic. 

Another important factor in this study is the alternative food for mesopredators. Another food 

source for mesopredators is an important factor in the interaction between species, and it may be useful 

to include this factor in eco-epidemiological studies. Predators generally do not feed on one type of prey, 

but turn to other food sources when the density of their preferred prey is low[5]. It is well known that 

foraging theory states that when the number of animals falls below the threshold due to disease of the 

preferred animals or other reasons, the top animals will switch to other food sources or include other 

foods in their diet. (in a fine-grained medium) or by switching to another food source (in a coarse-

grained medium). Charnov[27] published a well-known nutritional formula that involves replacing taken-

for-granted food with a diet mixed only with other foods. Fryxell and Lundberg[28] demonstrated from a 

numerical simulation study of one predator/two predators that predators will only switch to lower 

predators when they reduce prey availability, providing greater benefits to livestock. They also showed 

that this change would also reduce the stress on animal earnings when the number of animals is smaller. 

The availability of other foods for livestock can lead to a decrease in livestock balance, referred to as 

apparent competition[29]. 

This study tries to show the chaos in the body and finally we look at the role of other foods and the 

impact of foods on chaotic dynamics. Another research method is the community structure of our 

sample. To this end, we introduce the ecological concept and the concept of disease numbers of 

reproduction. Parity can be defined as the number of offspring produced by an individual during its 

lifetime, or the number of offspring expected from the second disease that an infected individual 

produces in the affected population during the period of transmission. Although the concept of 

reproduction in population was first developed at the beginning of the 20th century[30], it has become a 

standard tool in epidemiology since the work of Anderson and May[31] and Diekmann et al.[32]. We will 

use the number published as an important tool for determining the existence or demise of a species. 

This will allow us to separate the community composition of animals, predators, and diseases. The 

concept of threshold in number of births has been used in previous eco-epidemiological studies[5,9,10,15]. 
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The paper is organized as follows. In section 2, we outline the mathematical model with some 

basic assumptions. We study the stability of the equilibrium points and Hopf bifurcation in section 3 

and the permanence and impermanence of the system in section 4. We perform an extensive numerical 

simulation in section 5. The article ends with a discussion. 

2. Model formulation 

The HP model[18] with pairwise interactions between three species, namely, X, Y, and Z, which 

incorporates a Holling type II functional response in both consumers species, namely Y and Z are as 

follows: 

dX

dT
 = R0X (1 − 

X

K0
 ) − 

A1XY

B1 + X
  

(1) 
dY

dT
 = 

e1A1XY

B1 + X
 − 

A2YZ

B2 + Y
 − D1Y 

dZ

dT
 = 

e2A2YZ

B2 + Y
 − D2Z 

where X is the number of animals that are low on food, Y is the number of animals exposed to Here T 

is time. The constant R0 is the growth rate of the medium and the constant K0 is the carrying capacity 

of species X. The constants e1 and e2 are the transfer rate of the animal to type Y and Z, respectively; 

D1 and D2 are Y and Z type constants respectively. For i = 1 and 2, the constants Ai and Bi are the 

maximum predation rate and halfsaturation constant for Y and Z, respectively. Hastings and Powell[18] 

showed that the interaction between predators and prey on three simple food types is chaotic in one 

region of the parameter space. 

This disease is assumed to spread horizontally. We also assume that parasites only kill predator 

populations. The disease is spread by predators at a rate λ according to the law of mass order. 

According to the above assumptions, Equation (1) can be written as the following set of non-

differentiable differential equations: 

dX

dT
 = R0X (1 − 

X

K0
 ) − 

A1X(Y1 + Y2)

B1 + X
  

(2) 

dY1

dT
 = R1Y1(1 − 

Y1

K1
 ) + 

e1A1X(Y1 + Y2)

B1 + X
 − 

A2Y1Z

B2 + Y1
 − λY1Y2 − D1Y1 

dY2

dT
 = λY1Y2 − 

A2Y2Z

B2 + Y2
 − D2Y2 

dZ

dT
 = 

Ze2A2Y1

B2 + Y1 
 + 

Ze3A2Y2

B2 + Y2
 − D3Z 

To reduce the number of parameters and to determine which combinations of parameters control 

the behavior of the system, we dimensionalize the system with the following scaling: 

N = 
X

K0
 , S = 

Y1

K0
 , I = 

Y2

K0
 , P = 

Z

K0
 and t = R0T. 

Then Equation (2) takes the form (after some simplification), 

dN

dt
 = N(1 − N) − 

a1N( S + I)

1 + b1N
  

(3) 
dS

dt
 = S( r − d1 − 

 S

k
 ) + 

e1a1N( S + I)

1 + b1N
 − 

a2SP

1 + b2S
 − βSI 
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dI

dt
 = βSI − 

a2IP

1 + b2I
 − d2I 

dP

dt
 = 

e2a2SP

1 + b2S
 + 

e3a2IP

1 + b2I
 − d3P 

where 

a1 = 
A1K0

R0B1
 , b1 = 

K0

B1
 , a2 = 

A2K0

R0B2
 , b2 = 

K0

B2
 , r = 

R1

R0
 , k = 

K1

K0
 , d1 = 

D1

R0
 , d2 = 

D2

R0
 , β = 

K0λ
R0

 , d3 = 
D3

R0
 . 

Equaiton (3) has to be analyzed with the following initial conditions: 

N(0) > 0, S(0) > 0, I(0) > 0 and P(0) > 0. 

3. Model analysis 

3.1. Positivity and boundedness of model system 

The positivity and boundedness of the system in theoretical ecology indicate the system’s 

biologically well-behaved character. The provided results in this part will guarantee the positivity and 

boundedness of the suggested model system’s solutions. 

Theorem 1. All the solutions of the Equation (3) are positive. 

Proof. From the first equation of Equation (3) we can write, 

dN

N
 = [(1 − N) − 

a1( S + I)

1 + b1N
 ] dt, 

which implies 
dN

N
 = α1(N, S) dt, where α1(N, S) = [(1 − N) − 

a1( S + I)

1 + b1N
 ] . 

Now integrating above differential equation in the region [0, t] we have, 

N(t) = N(0)𝑒∫ α1(N,S)
𝑡

0 𝑑𝑡  > 0, ∀t. 

from the second equation of Equation (3) we can write,  

dS

S
 = [(r − d1 − 

 S

k
 ) + 

e1a1N( S + I)

S(1 + b1N)
 − 

a2P

1 + b2S
 − βI] dt 

which implies 
dS

S
 = α2(N, S, I) dt, where α2(N, S, I) = [(r − d1 − 

 S

k
 ) + 

e1a1N( S + I)

S(1 + b1N)
 − 

a2P

1 + b2S
 − βI]. 

Now integrating above differential equation in the region [0, t] we have, 

S(t) = S(0)𝑒∫ α2(N,S,I)
𝑡

0 𝑑𝑡  > 0, ∀t. 

From the third equation of Equation (3) we can write, 

dI

I
 = [βS − 

a2P

1 + b2I
 − d2] dt 

which implies 
dI

I
 =α3(S, I) dt, where α3(S, I) = [βS − 

a2P

1 + b2I
 − d2]. 

Now integrating above differential equation in the region [0, t] we have, 

I(t) = I(0)𝑒∫ α3(S,I)
𝑡

0 𝑑𝑡 > 0, ∀t. 

From the last equation of Equation (3) we can write, 

dP

P
 = [

e2a2S

1 + b2S
 + 

e3a2I

1 + b2I
 − d3] dt 
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which implies 
dP

dt
 = α4(S, I) dt, where α4(S, I) = [

e2a2S

1 + b2S
 + 

e3a2I

1 + b2I
 − d3]. 

Now integrating above differential equation in the region [0, t] we have, 

N(t) = N(0)𝑒∫ α4(S,I)
𝑡

0 𝑑𝑡  > 0, ∀t. 

Hence, we conclude that all the solutions of Equation (4) are always positive. □ 

Theorem 2. All the solutions of the Equation (4) which start in 𝑅+
3  are uniformly bounded. 

Proof. Let N(t), S(t), I(t), P(t) be any solution of the system with positive initial conditions. Since from 

the first equation of Equation (3). 

dN

dt
 ≤ N(1 − N), 

by standard comparison theorem, we have, 

lim
t→∞

supN(t) ≤ 1. 

We define a function, 

W = N + S + I + P. 

Its time derivative along the solutions of Equation (3) is, 

dW

dt
= 

dN

dt
 + 

dS

dt
 + 

dI

dt
 + 

dP

dt
 , 

dW

dt
 = N(1 − N) – βSI – d2I – d3P, 

dW

dt
 = N – N2 – 1 – N+1+N –βSI – d2I – d3P, 

dW

dt
 = [ –(N2-2N+1)+1 – N –βSI – d2I – d3P]. 

The following inequality holds: 

dW

dt
 + LW ≤ –(N – 1)2 + 1, 

where, L = min(1, β, d2 ,d3). 

Hence, 

dW

dt
 + LW ≤ 1. 

Applying a theory of differential equation we obtain, 

0 < W(N, S, I, P) < 
1−exp(−Lt)

L
 + W(N(0), S(0), I(0), P(0))exp(−Lt).  

For t → ∞, we have 0 < W < 
1

L
 . All the solutions of the Equation (3) which start in 𝑅+

3  are 

uniformly bounded. 

From the above theorem we observed that all the solutions of the model Equation (3) initiating in 

𝑅+
3  eventually lie in the region B defined 

B = {(N, S, I, P): 0 ≤ W ≤ 
1

L
 + 𝜀, for any 𝜀 >0}, 
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that means all trajectories of the model Equation (3) initiating from any point in R+
3  ultimately lie in 

fixed bounded region defined by B. Hence, the dynamical system associated with model Equation (3) is 

dissipative. □ 

3.2. Local stability of equilibrium points 

The system has seven equilibrium points. The trivial equilibrium point E0(0, 0, 0, 0) and the axial 

equilibrium point E1(1, 0, 0, 0) exist for all parametric values. The axial equilibrium point is E2(0, θ, 0, 

0), where θ = k(r − d1) > 0. Predator free equilibrium point is E3(N3, S3, 0, 0) where N3 is the positive 

root of the equation: 

b1
2N3

3 + (2b1 − b1
2)N3

2 + (e1a1
2k + 1 − 2b1 + (r − d1)a1b1k)N3 + a1k(r − d1) − 1= 0 (4) 

and S3 = 
(1 + b1N3 )(1−N3)

a1
 . 

The disease-free equilibrium point is E4(N4, S4, 0, P4) where N4 is the positive root of the equation 

b1(e2a2 − b2d3)N4
2 + (e2a2 − b2d3)(1 – b1)N4 + a1d3 − (e2a2 − b2d3) = 0. S4 = 

d3

 e2a2 − b2d3 
  and P4 = 

(1 + b2S4)

a2
  [(r − d1 − 

S4

k
 ) + 

e1a1N4

 1 + b1N4
 ]. 

The endemic equilibrium point is E5(N5, S5, I5, 0), where N5 is the positive root of the equation 

S5[k(r − d1) − S5](1 + b1N5) + e1a1kN5(S5 + I5) − βkS5I5(1 + b1N5) = 0, S5 = 
d2

β
 and I5 = 

β(1 − N5)( 1 + b1N5) − a1d2

 a1β
 . 

The interior equilibrium point is given by E6(N6, S6, I6, P6) where N6, S6, I6 and P6 satisfy the 

following equations:  

(1 − N6) − 
a1( S6 + I6)

1 + b1N6
 = 0 

S6(r − d1 − 
 S6

 k
 ) + 

e1a1N6( S6 + I6)

1 + b1N6
 − 

a2S6P6

1 + b2S6
 − βS6I6 = 0 

βS6 − 
a2P6

1 + b2I6
 − d2 = 0 

e2a2S6

1 + b2S6
 + 

e3a2I6

1 + b2I6
 − d3 = 0 

The Jacobian matrix J of the Equation (3) at any arbitrary point (N, S, I, P) is given by (Jij)4×4 

where, J11 = 1 − 2N − 
a1(S + I)

 (1 + b1N)2 , J12 = J13 = 
−a1N

 1 + b1N
 , J14 = 0, J21 = 

e1a1(S + I)

 (1 + b1N)2 , J22 = r − d1 − 
2S

 k
 + 

e1a1N

 1 + b1N
 − 

a2P

 (1 + b2S)2 − βI, J23 = 
e1a1N

 1 + b1N
 − βS, J24 = 

− a2S

 1 + b2S
 , J31 = 0, J32 = βI, J33 = βS − 

a2P

 (1 + b2I)
2 − d2, 

J34 = 
− a2I

 1 + b2I
 , J41 = 0, J42 = 

e2a2P

 (1 + b2S)2 , J43 = 
e3a2P

 (1 + b2I)
2 , J44 = 

e2a2S

 1 + b2S
 + 

e3a2I

 1 + b2I
 − d3. 
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Theorem 3. The trivial equilibrium point E0 is always unstable. The axial equilibrium point E1 is locally stable if 

R1 < 1, where R1 = ( 
1

 d1 − r
 )(

e1a1

1 + b1
 ). The predator-free equilibrium point E2 is locally asymptotically stable if R20 

< 1, R21 < 1, and R22 < 1. The disease-free equilibrium point E3 is locally asymptotically stable if (1 + b1N3)
2 > 

a1b1S3 and R30 < 1, R31 < 1. The meaning of R20, R21, R22, R30, and R31 are given in the proof section. 

Proof. Since one of the eigenvalues associated with the Jacobian matrix computed around E0 is 1 > 0, 

the equilibrium point E0 is always unstable. 

The characteristic roots of the Jacobian matrix at E1 are −1, (r – d1) +
e1a1

1 + b1
 , −d2, and −d3. Hence 

E1 is stable if (r – d1) + 
e1a1

1 + b1
 < 0 which implies R1 < 1 where R1 = (

1

 d1 − r
 )(

e1a1

1 + b1
 ). 

The Jacobian matrix J2 at predator free equilibrium point E2 is given by J2 = (Cij)4×4 where C11 = 1 − 

a1θ, C12 = C13 = C14 = 0, C21 = e1a1θ, C22 = −
θ
 k

 , C23 = −βθ, C24 = 
− a2θ

 1 + b2θ
 , C31 = C32 = 0, C33 = βθ − d2, 

C34 = C41 = C42 = C43 = 0, C44 = 
e2a2θ

 1 + b2θ
 − d3. 

The characteristic roots of the Jacobian matrix J2 are 1 − a1θ, −
θ
 k

 , βθ − d2 and 
e2a2θ

 1 + b2θ
 − d3 where 

θ = k(r − d1). Hence it is clear that E2 is stable if 1 − a1θ < 1, βθ − d2 < 1 and 
e2a2θ

 1 + b2θ
 − d3 < 1 which 

implies that if R20 < 1, R21 < 1 and R22 < 1 where R20 = 
1

a1θ
 , R21 = 

βθ
 d2

 and R22 = 
e2a2θ

 (1 + b2θ)d3
 . 

The Jacobian matrix J3 at disease free equilibrium point E3 is given by J3 = (Dij)4×4 where D11 = −N3 

+ 
a1b1N3S3

 (1 + b1N3)
2 , D12 = D13 = −

a1N3 

1+b1N3
 , D14 = 0, D21 = 

e1a1S3

 (1 + b1N3)
2 , D22 = −

S3

k
 , D23 = 

 e1 a1N3 

1+b1N3
 − βS3, D24 

= −
a2S3

1+b2S3
 , D31 = D32 = 0, D33 = βS3 − d2, D34 = D41 = D42 = D43 = 0, D44 = 

e2a2S3

1+b2S3
 − d3. 

The characteristics roots of the Jacobian matrix J3 are βS3 − d2, 
e2a2S3

1+b2S3
 − d3 and the roots of the 

equation 

λ2 + (N3 − 
a1b1N3S3

(1+b1N3)
2 + 

S3

k
 )λ + (N3 − 

a1b1N3S3

(1+b1N3)
2 ) 

S3

k
 + (

a1N3 

1+b1N3
 )(

 e1 a1S3 

(1+b1S3)
2 ) = 0. 

Now it is clear that E3 is stable if, N3 − 
a1b1N3S3

 (1 + b1N3)
2 > 0, i.e., N3 > 

a1b1N3S3

 (1 + b1N3)
2 , i.e., (1+b1N3)

2 > 

a1b1 S3, and βS3 − d2 < 0, 
e2a2S3

1+b2S3
 − d3 < 0, i.e., R30 < 1, R31 < 1 where R30 = 

βS3

 d2
 and R31 = 

e2a2S3

 d3(1+b2S3)
 . □ 

Theorem 4. The disease-free equilibrium point E4(N4, S4, 0, P4) is asymptotically stable if βS4 − a2P4 − d2 < 0 

with H11 < 0, H22 < 0 and H44 < 0. The endemic equilibrium point is E5(N5, S5, I5, 0) is asymptotically stable if 

e2a2S5

1+b2S5
 + 

e3a2I5

1+b2I5
 − d3 < 0 with M11 < 0, M22 < 0, M33 < 0 and M23 = 0. 
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Proof. The Jacobian matrix J4 at disease free equilibrium point E4 is given by J4 = (Hij)4×4 where, H11 = 

1 − 2N4 − 
a1S4

 (1 + b1N4)
2 , H12 = H13 = −

a1N4 

1+b1N4
 , H14 = 0, H21 = 

e1a1S4

 (1 + b1N4)
2 , H22 = r − d1 − 

2S4

k
 + 

e1a1N4 

1+b1N4
 − 

a2P4

 (1 + b2S4)
2 , H23 = 

e1a1N4 

1+b1N4
 − βS4, H24 = − 

a2S4 

1+b2S4
 , H31 = H32 = 0, H33 = βS4 − a2P4 − d2, H34 = H41 = 0, 

H42 = 
e2a2P4

 (1 + b2S4)
2 , H43 = e2a2P4, H44 = 

e2a2S4

1+b2S4
 − d3. 

The characteristic roots of the Jacobian matrix J4 are βS4 − a2P4 − d2 and the roots of the equation: 

λ3 + Φ1λ2 + Φ2λ + Φ3 = 0, where Φ1 = −(H11 + H22 + H44), Φ2 = H11H22 + H11H44 + H22H44 − H24H42 − 

H12H21 and Φ3 = −(H11H22H44 − H11H24H42 − H12H21H44). 

Thus, if the conditions stated in the theorem (i.e., if βS4 − a2P4 − d2 < 0 with H11 < 0, H22 < 0, and 

H44 < 0) hold, then all the Routh-Hurwitz criteria (i) all Φ1, Φ2 , Φ3 > 0 and (ii) Φ1Φ2 − Φ3 > 0 are 

satisfied, and the disease-free equilibrium point E4(N4, S4, 0, P4) is asymptotically stable. 

Again, the Jacobian matrix J5 at endemic equilibrium point E5(N5, S5, I5, 0) is given by J5 = (Mij)4×4 

where, M11 = 1 − 2N5 − 
a1(S5 + I5)

 (1 + b1N5)
2 , M12 = M13 = −

a1N5 

1+b1N5
 , M14 = 0, M21 =  

e1a1(S5 + I5)

 (1 + b1N5)
2 , M22 = r − d1 

− 
2S5

k
 + 

e1a1N5 

1+b1N5
 − βI5, M23 = 

e1a1N5 

1+b1N5
 − βS5, M24 = − 

a2S5 

1+b2S5
 , M31 = 0, M32 = βI5, M33 = βS5 − d2, M34 = 

−
a2I5 

1+b2I5
 , M41 = M42 = M43 = 0, M44 = 

e2a2S5

1+b2S5
 + 

e3a2I5

1+b2I5
 − d3. 

The characteristic roots of the Jacobian matrix J5 are 
e2a2S5

1+b2S5
 + 

e3a2I5

1+b2I5
 − d3 and the roots of the 

equation: λ3 + Ψ1λ2 + Ψ2λ + Ψ3 = 0, where Ψ1 = −(M11 + M22 + M33), Ψ2 = M11M22 + M11M33 + M22M33 

− M12M21 − M23M32 and Ψ3 = −(M11M22M33 + M13M21M32 − M11M23M32 − M12M21M33). 

Now, all the Routh-Hurwitz criteria (i) all Ψ1, Ψ2, Ψ3 > 0 and (ii) Ψ1Ψ2 − Ψ3 > 0 will be satisfied if 

the conditions stated in the theorem (i.e., 
e2a2S5

1+b2S5
 + 

e3a2I5

1+b2I5
 − d3 < 0 with M11 < 0, M22 < 0, M33 < 0 and 

M23 = 0) holds. Then the endemic equilibrium point is E5(N5, S5, I5, 0) is asymptotically stable. □ 

3.3. Stability of the interior equilibrium point E6(N6, S6, I6, P6) 

The Jacobian matrix at the interior equilibrium point E6 is given by J6 = (Vij)4×4 where,V11 = 

a1b1N6( S6 + I6)

(1 + b1N6)
2  − N6, V12 = V13 = −

a1N6

1+b1N6
 , V14 = 0, V21 = 

e1a1(S6 + I6)

 (1 + b1N6)
2 , V22 = −

S6

k
 − 

e1a1 N6I6

S6(1+b1N6)
 + 

a2b2S6P6

 (1 + b2S6)
2 , V23 = 

e1a1N6 

1+b1N6
 − βS6 , V24 = −

a2S6 

1+b2S6
 , V31 = 0, V32 = βI6, V33 = 

a2b2I6P6

 (1 + b2I6)
2 , V34 = −

a2I6

1+b2I6
 , 

V41 = 0, V42 = 
e2a2P6

 (1 + b2S6)
2 , V43 = 

e3a2P6

 (1 + b2I6)
2 , V44 = 0. 

Now the characteristic equation of the matrix J6 = (Vij)4×4 is given by λ + σ1λ3 + σ2λ2 + σ3λ + σ4 = 0, 

where 

σ1 = −(V11 + V22 + V33), 

σ2 = V11V22 + V11V33 + V22V33 − V12V21 − V23V32 − V24V42 − V34V43, 
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σ3 = V11V34V43 + V11V23V32 + V11V24V42 + V22V34V43 + V33V24V42 + V33V12V21 − V11V22V33 − V23V34V42 − 

V24V32V43 − V13V21V32, 

σ4 = V11V23V34V42 + V11V24V32V43 + V12V21V34V43 − V11V22V34V43 − V11V33V24V42 − V13V21V34V42, 

Therefore, the interior equilibrium point E6 will be asymptotically stable if σ1, σ2, σ3, σ4 satisfy all 

the Routh-Hurwitz conditions (i) all σ1, σ2, σ3, σ4 > 0, (ii) σ1σ2 > σ3 and (iii) σ1σ2σ3 > σ3
2 + σ1

2σ4. 

Now we shall find out the conditions for which the interior equilibrium point E6 enters into Hopf 

bifurcation as β varies over Ɍ. Routh-Hurewitz Criterion and Hopf bifurcation: Let Ψ: (0, ∞) → Ɍ be 

the following continuously differentiable function of β: 

Ψ(β) = σ1(β)σ2(β)σ3(β) − σ3
2(β) − σ1

2 (β)σ4(β) 

The assumptions for Hopf bifurcation to occur are the usual ones and these require that the 

spectrum σ(β) = {λ:Ɗ(λ) = 0} of the characteristic equation such is that: 

(a) There exists β* ∈ (0, ∞), at which a pair of complex eigenvalues(β*), λ̅(β*) ∈ σ(β) is such that Re 

λ(β*) = 0, Im λ(β*) = ω0 > 0, mand the transversality condition [
dReλ(β)

dβ
 ]at(β*) ≠ 0; 

(b) all other elements of σ(β) have negative real parts. 

Now we present a theorem for Hopf bifurcation. 

Theorem 5. The Hopf bifurcation of the interior equilibrium point E6 occurs at β = β* ∈ (0, ∞) if and only if Ψ(β*) 

= 0, [
dReλ(β)

dβ
 ]at(β*) ≠ 0 and all other eigenvalues are of negative real parts, where λ(β) is purely imaginary at β = β*. 

Proof. By the condition Ψ(β*) = 0, the characteristic equation can be written as 

(λ2 + 
σ3

σ1
 )(λ2 + σ1λ + 

σ1σ4

σ3
 ) = 0 (5) 

If it has four roots, say λi(i = 1, 2, 3, 4) with the pair of purely imaginary roots at β = β* as λ1 = λ̅2, 

then we have 

λ3 + λ4 = −σ1 (6) 

ω0
2 + λ3λ4 = σ2 (7) 

ω0
2(λ3 + λ4) = −σ3 (8) 

ω0
2λ3λ4 = σ4 (9) 

where ω0 = Im λ1(β*). By above ω0 = 
σ3

σ1
 . Now, if λ3 and λ4 are complex conjugates, then from Equation 

(5), it follows that 2Reλ3 = -σ1; if they are real roots, then by Equations (8) and (9) λ3 < 0 and λ4 < 0. To 

complete the discussion, it remains to verify the transversality condition. 

As Ψ(β*) is a continuous function of all its roots, so there exists an open interval β ∈ (β* − ε, β* + ε) 

where λ1 and λ2 are complex conjugates for β. Suppose, their general forms in this neighborhood are 

λ1(β) = µ(β) + iυ(β), 

λ2(β) = µ(β) − iυ(β). 

Now, we shall verify the transversality condition 
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[
dRe(λj(β))

 dβ
 ]at(β=β*) ≠ 0, j = 1, 2. 

Substituting λj(β) = µ(β) ± iυ(β), into (5) and calculating the derivatives, we have 

K(β)µʹ(β) − L(β)υʹ (β) + M(β) = 0 

K(β)µʹ(β) + L(β)υʹ (β) + N(β) = 0 

where 

K(β) = 4µ3 − 12µυ2 + 3σ1(µ
2 − υ2) + 2σ2µ + σ3, 

L(β) = 12µ2υ + 6σ1µυ − 4µ3 + 2σ2µ, 

M(β) = σ1µ
3 − 3σ1

ʹµυ2 + σ2
ʹ(µ2 − υ2) + σ3

ʹµ, 

N(β) = 3σ1
ʹµ2υ − σ1

ʹυ + 2σ2
ʹµυ + σ3

ʹµ. 

Solving for µʹ(β*) we have 

[
dRe(λj(β))

 dβ
 ]at(β=β*) = µʹ(β)β=β* = −

L(β*) N(β*) +  K(β*) M(β*)

 K2 (β*) +  L2 (β*)
 ≠ 0, 

since L(β*) N(β*) + K(β*) M(β*) ≠ 0. Thus, the transversality conditions hold and hence Hopf 

bifurcation occurs at β = β*. 

Hence the theorem. □ 

4. Numerical results and discussion 

In this study, we will perform various mathematical experiments to evaluate the global behavior of 

the model. In this study, the disease rate β in the mesopredator group is a new change from most 

previous studies. a1 = 4.9, a2 = 0.1, b1 = 2.9, b2 = 2.0, d1 = 0.4, d2 = 0.41, d3 = 0.01, e1 = 0.98, e2 = 

0.6, d3 = 0.9 r = 0.01, we get the parameter set k = 0.5, b = 8.2. Throughout the numerical experiments, 

we fixed the above method of measurement parameters, mainly taken from Hastings and Powels[18]. We 

first considered the evolution of our claim to understanding changes in the transmission of disease 

between animals. Finally, we look at the role of other foods. The implementation of disease by host 

animals is a critical issue in tri-trophic food systems.  

We observed chaotic dynamics for process parameter values in our scheme (Figure 1). We make a 

diagram of the chaotic dynamics (Figure 2) and see that this will lead to the shape of the teacup 

attractor. Now let’s analyze the motion of the teacup puller. The dynamics in the tractor are roughly as 

follows. The system starts from the handle of the tea glass, moves towards the tip of the tea glass, then 

draws spirals along the tea glass, moving towards the narrow end and back into the handle. In terms of 

species behavior, the top animal Z collapses, causing large population level changes in X and Y1 + Y2.  

As the value of Z increases, the changes in X and Y1+Y2 weaken until Z collapses at the Y1+Y2 

level.  

This causes Z to explode and X to explode, restarting the process. The sequence of events always 

follows a general pattern depending on the number of species. What is unpredictable is time. One way 

to express this is that the duration of the Z type collapse is variable. 
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In addition, the peak of type Y is different from the crack size, and the population size of the peak 

is also different. The delicate dependence of future dynamics in the present case, i.e., chaotic character, 

is due to the fact that all trajectories of the teacup handle are very close. 

 
Figure 1. The time series solution of the model Equation (3) for a1 = 4.9, a2 = 0.1, b2 = 2.0, d1 = 0.4, d2 = 0.41, d3 = 0.01, e1 

= 0.98, e2 = 0.95, e3 = 0.6, b1 = 2.9, r = 0.01, k = 0.5 and β = 8.2. 

 
Figure 2. The phase plane of the model Equation (3) for a1 = 4.9, a2 = 0.1, b2 = 2.0, d1 = 0.4, d2 = 0.41, d3 = 0.01, e1 = 0.98, 

e2 = 0.95, e3 = 0.6, b1 = 2.9, r = 0.01, k = 0.5 and β = 8.2. 

If we increase the β value from 8.2 to 9.6, we observe quasiperiodic dynamics (Figure 3). If we add 

the β voltage, we see that the quasiperiodic dynamics decreases to avoid period oscillations (Figure 4). 

Finally, we see that the system oscillates from its limit cycle to a steady state (Figure 5). To better 

understand the behavior of the system, we draw a bifurcation diagram (Figure 6), from which we see 

that the system moves from chaotic dynamics to a steady state, causing diffusion. It is seen that the 

system transitions from a chaotic state to a stable state, which increases the transmission power (β). We 

observe that the system enters quasiperiodic chaos; It limits the loop oscillations with quasiperiodic 

dynamics and finally provides a stable environment by limiting the loop oscillations for further 

conduction. Therefore, it is clear that when the infection level is low, the system exhibits a chaotic 

dynamic, while when the infection level is high, the chaos decreases to a constant level. Current 

mathematical models show that the introduction of pathogens into animal populations tends to affect 

livestock producing communities. This has been proposed for microparasites with direct life[3,11,33], and 
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indirect life[8,34]. Macroscopic parasite models generally favor instability because they account for the 

parasite in the host in additional equations[1,8,35]. Here we show that chaotic dynamics reduce to a stable 

analysis to have transfer. 

 
Figure 3. The time series quasi-periodic dynamics of the Equation (3) for β = 9.6 and other parameter values given in the 

Figure 1. 

 
Figure 4. The time series limit cycle oscillation of the Equation (3) for β = 10.2 and other parameter values given in the Figure 

1. 

Introduction of the virus into the central predator of the tritrophic food model may have a direct 

effect of increasing the stress of the predator. We demonstrate this in a threetrophic food model in 

which mesopredators are infected. Thus, our model brings together two fields of ecology and 

epidemiology as it expands the spread of infectious diseases through population interactions and 

interventions. From the above discussion, we see that when the disease is at a low level, the system 

exhibits chaotic dynamics. We now want to analyze the role of other nutrients in chaotic dynamics. To 

do this, we will change the carrying capacity of the mesopredator k. As can be seen from Figure 7, the 
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system exhibits chaotic dynamics at k = 0.5. Now if we reduce the value of k from 0.5 to 0.2, the 

system enters a quasiperiodic process (Figure 4). If we further reduce the value of k, we observe a 

quasiperiodic extinction with the extinction of intermediate predators (Figure 8). We also prepare the 

bifurcation graph (Figure 9) to observe the real dynamic behavior of k change. As a result, when other 

foods are reduced, stress disappears and infections disappear from the body, but when other foods are 

increased, the chaos in our body remains unchanged. Therefore, other nutrients can be used as 

preservatives in our body. 

 
Figure 5. The time series stable solution of the Equation (3) for β = 10.5 and other parameter values given in the Figure 1. 

 
Figure 6. Figure shows the bifurcation diagram for β ϵ [8.0, 11.0] and other parameter values given in Figure 1. 
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Figure 7. The time series chaotic dynamics of the Equation (3) for k = 0.2, r = 0.01, β = 9.0 and other parameter values given 

in the Figure 1. 

 
Figure 8. The time series chaotic dynamics of the Equation (3) for k = 0.02, r = 0.01, β = 9.0 and other parameter values given 

in the Figure 4. 
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Figure 9. The bifurcation diagram of the Equation (3) for k ϵ [0.02, 0.2], r = 0.01 and other parameter values given in Figure 1. 

We will now describe the new information obtained from this study. We see that at low infection 

levels, the system exhibits chaotic dynamics, while at high infection levels, chaos becomes the target of 

stability. We have also seen some negative events leading to the transmission of intermediate species, 

from chaos to quasi-periodicity; quasi-periodic to limit cycle; Limit the cycle to stability. We also look 

at the effects of other foods on chaotic dynamics. It has been shown that when other nutrients are at 

low levels, stress disappears and animalborne diseases are eliminated from the body, but when other 

nutrients are at high levels, the stress pressure in the body does not change. We have shown that, to our 

knowledge, the conflict observed in the system can be stabilized by the spread of disease in the 

mesopredator population. This contradicts existing theory regarding the instability of the affected 

organism[3,5,8,11,33–35]. Our findings also have implications for health management, as infectious diseases 

can be used as antidotes against harmful species such as invaders. Interestingly, this research shows that 

parasites can affect different trophic levels and can be used for management in different systems. 

Disease control not only controls or eliminates livestock, but also allows the animal to recover. For 

example, bacteria can be used to control domestic animals such as feral domestic cats (predators) on 

oceanic islands, which have a significant impact on wild animals such as seabirds[36–38]. 

Other foods are also control agents in our model. This study provides information on establishing 

ecological and epidemiological systems to help understand how diseases affect society. We also present 

a comparison with most previous studies. Hadeler and Freedman[5] evaluated, developed and analyzed 

a predatorprey model in which two species are affected by parasitism. They also suggested that animals 

could become infected by eating livestock, and that animals could become infected by parasites 

transmitted from livestock to the environment. There is no fire. It also shows that the parasite can 

increase the risk to livestock in cases where the animal cannot survive on livestock alone in a 

diseasefree environment, as it can only survive on livestock if some animals are infected with certain 

diseases. It is easier to catch the disease. In Hsieh and Hsiao’s study[39], animals could become infected 

when they approached or were near animals during hunting, but animals could not become infected 

from each other. They showed that infected animals played a minor and indirect role in the spread of 

the disease; this was mainly due to the assumption that animals could not infect other members of the 
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population. Recently, Hilker and Schmitz[40] evaluated the impact of the prey population on infectious 

diseases frequently transmitted in the predator population. These are provided by music and consensus 

(population numbers and epidemics) that allow them to determine the entire society. Their findings 

contradict predictions from previous models showing a negative effect of the parasite and suggest that 

the predator prevents the beneficial effect. In this study, a threetrophic food model in which only the 

intermediate predator is an insect and the intermediate predator has other foods is considered. We see 

chaotic dynamics becoming a stable environment for infection. We also look at the effects of other 

foods on chaotic dynamics. It has been found that at low levels of other foods, clutter disappears and 

disease among animals is eliminated from the body, but at high levels of other foods, clutter is still 

unchanged in our bodies. Recently, Mandal et al.[41] Consider a predatorprey system in which victims 

are affected by a disease. They observed changes in this system under the influence of severe and 

invisible diseases and other food predators. They believe that hunters only choose infected animals for 

their food because these animals are more dangerous. The results show that when the disease is severe, 

the animal population prefers other foods over infected foods. However, if the parasite attack is not 

obvious, the strategy is reversed. In this study, we considered the tritrophic food model, in which 

disease spreads between humans and animals, and other food is found among animals. We see that 

when the infection level is low, the system exhibits stress, while at high levels, stress becomes the key 

factor in maintaining stability. We also look at the effects of other foods on chaotic dynamics. When 

other nutrients increase, the stress in the body remains constant, but when other nutrients decrease, the 

stress disappears and intermediate organisms are eliminated from the body. 

5. Conclusion 

Infectious diseases control not only their own populations but also other species to which their 

hosts belong[11]. In this study, we consider a tritrophic food model that results from bacterial infection of 

a medium containing other nutrients. We track the local security of our system models closely into the 

performance equation. We report the ecology and disease of a significant number of children and 

identify community patterns in the sample. We performed several simulations to evaluate the global 

behavior of the model system. We saw stress when the infection rate was low, doubling the duration 

and limited cycles when the infection was high. Finally, we see that the crisis has become the main 

element of stability during the epidemic period. Nonlinear interactions between predators and prey are 

known to produce endogenous oscillations. As we know, random changes in the three trophic trophic 

structures can be offset by the spread of diseases among animals. This contrasts with current theory 

regarding the instability of associated diseases[11,42]. We also looked at the effect of other foods on chaos 

dynamics, finding that when other foods increase, the stress in the body does not change, but when 

other foods decrease, the stress leads to stability and diseases among animals are eliminated from the 

body. 

Author contributions 

Conceptualization, KPD and PR; methodology, AS; software, AS; validation, PR, AS and KDP; 

formal analysis, PR; investigation, AS; resources, KPD; data curation, AS; writing—original draft 

preparation, AS; writing—review and editing, KA and KPD; visualization, KA; supervision, KA; 

project administration, KPD; funding acquisition, PR. All authors have read and agreed to the 

published version of the manuscript. 

 



Journal of  AppliedMath 2023; 1(3): 129. 

17 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. Anderson RM, May RM. Infectious diseases and population cycles of forest insects. Science 1980; 210(4470): 
658–661. doi: 10.1126/science.210.4470.658 

2. Dobson AP. The population biology of parasite-induced changes in host behavior. Quarterly Review of Biology 
1988; 63(2): 139–165. doi: 10.1086/415837 

3. Grenfell BT, Bolker BM, Kleczkowski A. Seasonality and extinction in chaotic metapopulations. Proceedings: 

Biological Sciences 1995; 259(1354): 97–103 

4. Hilker FM, Schmitz K. Disease-induced stabilization of predator-prey oscillations. Journal of Theoretical 

Biology 2008; 255(3): 299–306. doi: 10.1016/j.jtbi.2008.08.018 
5. Courchamp F, Chapuis JL, Pascal M. Mammal invaders on islands: Impact, control and control impact. 

Biological Reviews of the Cambridge Philosophical Society 2003; 78(3): 347–383. doi: 10.1017/s1464793102006061 
6. Mandal AK, Kundu K, Chatterjee P, Chattopadhyay J. An eco-epidemiological study with Parasitic attack 

and alternative prey. Journal of Biological Systems 2009; 17(2): 269–282. doi: 10.1142/S0218339009002776 
7. Anderson RM, May RM. The invasion, persistence and spread of infectious diseases within animal and plant 

communities. Philosophical Transactions of the Royal Society B 1986; 314(1167): 533–570. doi: 
10.1098/rstb.1986.0072 

8. Hsieh YH, Hsiao CK. Predator-prey model with disease infection in both populations. Mathematical Medicine 

and Biology 2008; 25(3): 247–266. doi: 10.1093/imammb/dqn017 
9. Grenfell BT, Wilson K, Isham VS, et al. Modelling patterns of parasite aggregation in natural populations: 

Trichostrongylid nematode-ruminant interactions as a case study. Parasitology 1995; 111: S135–S151. doi: 
10.1017/s0031182000075867 

10. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press; 1991. 

11. Godfray HCJ, Grenfell BT. The continuing quest for chaos. Trends in Ecology & Evolution 1993; 8(2): 43–44. 
doi: 10.1016/0169-5347(93)90155-i 

12. Hochberg ME. Non-linear transmission rates and the dynamics of infectious disease. Journal of Theoretical 

Biology 1991; 153(3): 301–321. doi: 10.1016/s0022-5193(05)80572-7 

13. McCann K, Yodzis P. Nonlinear dynamics and population disappearances. The American Naturalist 1994; 
144(5): 873–879. doi: 10.1086/285714 

14. Nogales M, Martı´n A, Tershy BR, et al. A review of feral cat eradication on islands. Conservation Biology 
2004; 18(2): 310–319. doi: 0.1111/j.1523-1739.2004.00442.x 

15. Schaffer WM, Kot M. Chaos in ecological systems: The coals that Newcastle forgot. Trends in Ecology & 

Evolution 1986; 1(3): 58–63. doi: 10.1016/0169-5347(86)90018-2 

16. Dobson AP, Keymer AE. Life history models. In: Crompton DWT, Nickol BB (editors). Biology of the 

Acanthocephala. Cambridge University Press; 1985. pp. 347–384. doi: 10.1007/978-3-642-61317-3_6 

17. Hadeler KP, Freedman HI. Predator-prey populations with parasitic infection. Journal of Mathematical Biology 
1989; 27: 609–631. doi: 10.1007/BF00276947 

18. Charnov EL. Optimal foraging: The marginal value theorem. Theoretical Population Biology 1976; 9(2): 129–
136. doi: 10.1016/0040-5809(76)90040-X 

19. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproductive 

ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 1990; 
28: 365–382. doi: 10.1007/BF00178324 

20. Engbert R, Drepper FR. Chance and chaos in population biology—Models of recurrent epidemics and food-

chain dynamics. Chaos Solitons & Fractals 1994; 4(7): 1147–1169. doi: 10.1016/0960-0779(94)90028-0 

21. Venturino E. Epidemics in predator-prey model: Disease in the predators. Mathematical Medicine and Biology: 

A Journal of the IMA 2002; 19(3): 185–205. doi: 10.1093/imammb/19.3.185 
22. Venturino E. Epidemics in predator-prey models: Disease in the prey. In: Arino O, Axelrod D, Kimmel M 

(editors). Mathematical Population Dynamics: Analysis of Heterogeneity. Theory of Epidemics. Wuerz Publishing, 
Winnipeg, Canada; 1995. pp. 381–393. doi: 10.1016/j.tpb.2004.06.010 

23. Xiao Y, Van Den Bosch F. The dynamics of an eco-epidemic model with biological control. Ecological 

Modelling 2003; 168(1–2): 203–214. doi: 10.1016/S0304-3800(03)00197-2. 

24. Haque M, Venturino E. The role of transmissible disease in Holling-Tanner predator-prey model. Theoretical 

Population Biology 2006; 70(3): 273–288. doi: 10.1016/j.tpb.2006.06.007 



Journal of  AppliedMath 2023; 1(3): 129. 

18 

25. Beltrami E, Carroll TO. Modelling the role of viral disease in recurrent phytoplankton blooms. Journal of 

Mathematical Biology 1994; 32: 857–863. doi: 10.1007/BF00168802 

26. Venturino E. The influence of disease on Lotka-Volterra systems. The Rocky Mountain Journal of Mathematics 
1994; 24(1): 381–402. 

27. Greenhalgh D, Haque M. A predator-prey model with disease in the prey species only. Mathematical Methods 

in the Applied Sciences 2007; 30(8): 911–929. doi: 10.1002/mma.815 
28. Singh BK, Chattopadhyay J, Sinha S. The role of virus infection in a simple phytoplankton zooplankton 

system. Journal of Theoretical Biology 2004; 231(2): 153–166. doi: 10.1016/j.jtbi.2004.06.010 

29. Hastings A, Hom CL, Ellner S, et al. Chaos in ecology: Is mother nature a strange attractor? Annual Review of 

Ecology and Systematics 1993; 24(1): 1–33. doi: 10.1146/annurev.es.24.110193.000245 

30. Schaffer WM, Kot M. Chaos in ecological systems: The coals that Newcastle forgot. Trends in Ecology & 

Evolution 1986; 1(3): 58–63. doi: 10.1016/0169-5347(86)90018-2 
31. Courchamp F, Sugihara G. Modeling the biological control of an alien predator to protect island species 

from extinction. Ecological Application 1999; 9(1): 112–123. doi: 10.1890/1051-
0761(1999)009[0112:MTBCOA]2.0.CO;2 

32. Lotka AJ. Relation between birth rates and death rates. Science 1907; 26(653): 21–22. doi: 
10.1126/science.26.653.21-a 

33. Fenton A, Rands SA. The impact of parasite manipulation and predator foraging behavior on predator-prey 

communities. Ecology 2006; 87(11): 2832–2841. doi: 10.1890/0012-9658(2006)87[2832:tiopma]2.0.co;2 

34. Hethcote HW, Wang W, Han W, Ma Z. A predator-prey model with infected prey. Theoretical Population 

Biology 2004; 66(3): 259–268. doi: 10.1016/j.tpb.2004.06.010 

35. Han L, Ma Z, Hethcote HW. Four predator prey models with infectious diseases. Mathematical and Computer 

Modelling 2001; 34(7–8): 849–858. doi: 10.1016/S0895-7177(01)00104-2 
36. Chatterjee S, Bandyopadhyay M, Chattopadhyay J. Proper predation makes the system disease free—

Conclusion drawn from an eco-epidemiological model. Journal of Biological Systems 2006; 14(4): 599–616. doi: 
10.1142/S0218339006001970 

37. Hastings A, Powell T. Chaos in three-species food chain. Ecology 1991; 72(3): 896–903. doi: 
10.2307/1940591 

38. Harmon JP, Ives AR, Losey JE, et al. Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea 

aphids promoted by proximity to dandelions. Oecologia 2000; 125(4): 543–548. doi: 10.1007/s004420000476 

39. Chattopadhyay J, Arino O. A predator-prey model with disease in the prey. Nonlinear Analysis: Theory, 

Methods & Applications 1999; 36(6): 747–766. doi: 10.1016/S0362-546X(98)00126-6 

40. Freedman HI. A model of predator-prey dynamics modified by the action of parasite. Mathematical Biosciences 
1990; 99(2): 143–155. doi: 10.1016/0025-5564(90)90001-F 

41. Fryxell JM, Lundberg P. Diet choice and predator-prey dynamics. Evolutionary Ecology 1994; 8: 407–421. doi: 
10.1007/BF01238191 

42. Haque M, Venturino E. An ecoepidemiological model with disease in predator: The ratio-dependent case. 

Mathematical Methods in the Applied Sciences 2007; 30(14): 1791–1809. doi: 10.1002/mma.869 


