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ABSTRACT: The objective of this paper is to study some properties of 

quasi-conformal and concircular tensors on the (ϵ)-Kenmotsu manifold 

admitting the Schouten-van Kampen connection. Expressions of the 

curvature tensor, Ricci tensor, and scalar curvature admitting Schouten-

van Kampen connection have been obtained. Locally symmetric (𝜖) -

Kenmotsu manifold admitting the Schouten-van Kampen connection and 

quasicon formally flat as well as quasi-conformally semisymmetric (𝜖)-

Kenmotsu manifolds admitting Schouten-van Kampen connection are 

studied. 
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1. Introduction 
De and Sarkar[1] introduced the concept of indefinite metrics on Kenmotsu manifolds, which are 

called (ϵ)-Kenmotsu manifolds. They studied conformally flat, Weyl semisymmetric, 𝜙-recurrent (ϵ)-
Kenmotsu manifolds. The Schouten-van Kampen connection has been introduced for studying non-
holomorphic manifolds. It preserves, by parallelism, a pair of complementary distributions on a 
differentiable manifold endowed with an affine connection (see Bejancu and Farran[2], Ianus[3], Schouten 
and van Kampen[4]). Then, Olszak[5] studied the Schouten-van Kampen connection to adapt it to an 
almost contact metric structure. He characterized some classes of almost contact metric manifolds with 
the Schouten-van Kampen connection and established certain curvature properties with respect to this 
connection. Recently, Ghosh[6] and Yildiz[7] have studied the Schouten-van Kampen connection in 
Sasakian manifolds and 𝑓-Kenmotsu manifolds, respectively. Some related developments can be found 
in many other works[8–33]. 

This paper is structured as follows: Section 2 gives a brief review of (𝜖)-Kenmotsu manifolds. In 
Section 3, we obtain the expressions of the curvature tensor, Ricci tensor, and scalar curvature, admitting 
the Schouten-van Kampen connection. In Section 4, we study locally symmetric (𝜖)-Kenmotsu manifold 
admitting Schouten-van Kampen connection. In Sections 5, we study quasiconformally flat and quasi-
conformally semisymmetric (𝜖)-Kenmotsu manifolds admitting Schouten-van Kampen connection. In 
Section 6, we prove (𝜖) Kenmotsu manifolds admitting Schouten-van Kampen connection satisfying 
𝑍‾(𝑋, 𝑌. 𝑆‾(𝑈, 𝑊)) = 0 is an 𝜂-Einstein manifold. 
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2. Preliminaries 
An almost contact structure on a differentiable manifold 𝑀 is a triple (𝜙, 𝜉, 𝜂), where 𝜙 is a tensor 

field of type (1,1), 𝜂 is a 1-form and 𝜉 is a vector field such that 
𝜙ଶ = 𝑋ଵ + 𝜂(𝑋ଵ)𝜉, (1)

𝜂(𝜉) = 1,  𝜙𝜉 = 0,  𝜂𝜙 = 0 (2)

A differential manifold with an almost contact structure is called an almost contact manifold. An 
almost contact metric manifold is an almost contact manifold endowed with a compatible metric 𝑔. An 
almost contact metric manifold 𝑀 is said to be an (𝜖)-almost contact metric manifold, if 

𝑔(𝜉, 𝜉) = ±1 = 𝜖, (3)

𝜂(𝑋) = 𝜖𝑔(𝑋, 𝜉), 𝑟𝑎𝑛𝑘(𝜙) = 𝑛 − 1, (4)

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜖𝜂(𝑋)𝜂(𝑌), ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀), (5)

where 𝜉 is space-like or time-like but it is never a light like vector field. We say that (𝜙, 𝜉, 𝜂, 𝑔) is an 
(𝜖)-contact metric structure, if 

𝑑𝜂(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌) (6)

In such case, 𝑀 is an (𝜖)-contact metric manifold. An (𝜖)-contact metric manifold is called an(𝜖)-
Kenmotsu manifold[1], if 

∇𝑋𝜙𝑌 = 𝑔(𝑋, 𝜙𝑌)𝜉 − 𝜖𝜂(𝑌)𝜙𝑋, (7)
where ∇ is the Riemannian connection of 𝑔. An (𝜖)-almost contact metric manifold is an (𝜖)-Kenmotsu 
manifold if and only if 

∇𝑋𝜉 = 𝜖(𝑋 − 𝜂(𝑋)𝜉). (8)

The following conditions hold in an (𝜖)-Kenmotsu manifold[1]: 
(∇𝜂)(𝑌) = 𝑔(𝑋, 𝑌) − 𝜖𝜂(𝑋)𝜂(𝑌), (9)

𝜂(𝑅(𝑋, 𝑌, 𝑍)) = 𝜖(𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋), (10)

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, 𝑅(𝜉, 𝑋)𝑌 = 𝜂(𝑌)𝑋 − 𝜖𝑔(𝑋, 𝑌)𝜉, (11)

𝑆(𝑋, 𝜉) = −(𝑛 − 1)𝜂(𝑋), 𝑄𝜉 = −𝜖(𝑛 − 1)𝜉, (12)

𝑆(𝜙𝑋, 𝜙𝑌) = 𝑆(𝑋, 𝑌) + 𝜖(𝑛 − 1)𝜂(𝑋)𝜂(𝑌). (13)

3. (𝝐)-Kenmotsu manifolds admitting Schouten-van Kampen connection 
The Schouten-van Kampen connection ∇‾  associated to the Levi-Civita connection ∇ is given by 

∇‾ 𝑌 = ∇𝑌 − 𝜂(𝑌)∇𝜉 + (∇𝜂)(𝑌)𝜉 (14)
for any vector fields 𝑋, 𝑌 on 𝑀 (see Olszak[5]). Using Equations (8) and (9) in the above equation 

∇‾ 𝑌 = ∇𝑌 − 𝜖𝜂(𝑌)𝑋 − 𝑔(𝑋, 𝑌)𝜉 + 2𝜖𝜂(𝑋)𝜂(𝑌)𝜉 (15)
Putting 𝑌 = 𝜉 and using (8) in (15), we obtain 

∇‾ 𝜉 = 0 (16)

Let 𝑅 and 𝑅‾  denote the curvature tensor ∇ and ∇‾  respectively. Then 
𝑅‾(𝑋, 𝑌)𝑍 = ∇‾ ∇‾ 𝑍 − ∇‾ ∇‾ 𝑍 − ∇‾ []𝑍 (17)

Using Equation (15) in Equation (17), we obtain 
𝑅‾(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝜖𝑔(𝑌, 𝑍)𝑋 − 𝜖𝑔(𝑋, 𝑍)𝑌 +

(1 − 𝜖)𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉 − (1 − 𝜖)𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉
 (18)

Putting 𝑍 = 𝜉 and using (11) in (18), we obtain 
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𝑅‾(𝑋, 𝑌)𝜉 = 0 (19)
On contracting (18), we obtain the Ricci tensor 𝑆‾ of an (𝜖)-Kenmotsu manifold admitting Schouten-

Van Kampen connection ∇‾  as 

𝑆‾(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + (𝜖𝑛 − 2𝜖 + 1)𝑔(𝑌, 𝑍) − 𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑍) (20)
This gives 

𝑄‾𝑌 = 𝑄𝑌 + (𝜖𝑛 − 2𝜖 + 1)𝑌 − (1 − 𝜖)𝜂(𝑌)𝜉 (21)
Contracting with respect to 𝑌 and 𝑍 in (20), we obtain 

𝑟‾ = 𝑟 + 𝑛(𝜖𝑛 − 2𝜖 + 1) − (1 − 𝜖), (22)
where 𝑟‾ and 𝑟 are the scalar curvatures admitting Schouten-van Kampen connection ∇‾  and the Levi-
Civita connection ∇, respectively. From the above discussions we state the following: 
Theorem 1. The curvature tensor 𝑅‾ , the Ricci tensor 𝑆‾ and the scalar curvature 𝑟‾ of an (𝜖)-Kenmotsu manifold 𝑀 

with respect to the Schouten-van Kampen connection 𝛻‾  are given by the Equations (18), (20), (21) and (22) 

respectively. Further, the curvature tensor 𝑅‾  of 𝛻‾  satisfies the following: 

(i) 𝑅‾(𝑋, 𝑌)𝑍 = −𝑅‾(𝑌, 𝑋)𝑍, 

(ii) 𝑅‾(𝑋, 𝑌, 𝑍, 𝑊) + 𝑅‾(𝑌, 𝑋, 𝑍, 𝑊) = 0, 

(iii) 𝑅‾(𝑋, 𝑌, 𝑍, 𝑊) + 𝑅‾(𝑋, 𝑌, 𝑊, 𝑍) = 0, 

(iv) 𝑅‾(𝑋, 𝑌)𝑍 + 𝑅‾(𝑌, 𝑍)𝑋 + 𝑅‾(𝑍, 𝑋)𝑌 = 0, 

(v) 𝑆‾ is symmetric. 

From Equation (20), the following result is immediate. 

Theorem 2. An (𝜖) -Kenmotsu manifold 𝑀  admitting the Schouten-van Kampen connection is Ricci flat 
admitting Schouten-van Kampen connection if and only if 𝑀 is an 𝜂-Einstein manifold with respect to Levi-Civita 
connection. 

Now, if 𝑅‾(𝑋, 𝑌)𝑍 = 0, then Equation (18) becomes 

𝑅(𝑋, 𝑌)𝑍 + 𝜖(𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌) + (1 − 𝜖)(𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉) = 0 (23)

Thus, we have the following theorem. 

Theorem 3. Let 𝑀 be a (𝜖)-Kenmotsu manifold admitting the Schouten-van Kampen connection. The curvature 
tensor of 𝑀 admitting Schouten-van Kampen connection vanishes if and only if 𝑀 with respect to the Levi-Civita 
connection is isomorphic to the hyperbolic space 𝐻(−1). 

4. Locally symmetric (𝝐)-Kenmotsu manifold admitting Schouten-van 
Kampen connection 
Theorem 4. A locally symmetric (𝜖-Kenmotsu manifold 𝑀 admitting Schouten-van Kampen connection 𝛻‾  is an 
𝜂-Einstein manifold. 

Proof. Let 𝑀  be a locally symmetric (𝜖) -Kenmotsu manifold admitting Schouten-van Kampen 
connection ∇‾ . Then (∇‾ 𝑅)(𝑌, 𝑍)𝑊 = 0. By contraction of the equation, we get 

(∇‾ 𝑆‾)(𝑍, 𝑊) = ∇‾ 𝑆‾(𝑍, 𝑊) − 𝑆‾(∇‾ 𝑍, 𝑊) − 𝑆‾(𝑍, ∇‾ 𝑊) = 0 (24)
Putting 𝑊 = 𝜉 in (24), we have 

∇‾ 𝑆‾(𝑍, 𝜉) − 𝑆‾(∇‾ 𝑍, 𝜉) − 𝑆‾(𝑍, ∇‾ 𝜉) = 0 (25)
Using (15) and (20) in (25), we obtain 

𝑆(𝑋, 𝑍) = 𝐴𝑔(𝑋, 𝑍) + 𝐵𝜂(𝑋)𝜂(𝑌) (26)
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where 𝐴 = −𝜖(𝑛 − 2) + 1 and 𝐵 = −𝜖(𝑛 − 2) + 𝑛. □ 

5. Quasi-Conformally flat (𝝐)-Kenmotsu manifold admitting Schouten 
van-Kampen connection 
Theorem 5. A quasi-conformally flat (𝜖)-Kenmotsu manifold admitting Schouten van-Kampen connection is an 𝜂-
Einstein manifold. 

Proof. An (𝜖)-Kenmotsu manifold admitting a Schouten van-Kampen connection is said to be quasi-
conformally flat if 

𝐶‾(𝑋, 𝑌)𝑍 = 0 (27)
The quasi-conformal curvature tensor 𝐶‾ admitting a Schouten van-Kampen connection is (see Yano[34]): 

𝐶‾(𝑋, 𝑌)𝑍 = 𝑎𝑅‾(𝑋, 𝑌)𝑍 + 𝑏(𝑆‾(𝑌, 𝑍)𝑋 − 𝑆‾(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄‾𝑋

−𝑔(𝑋, 𝑌)𝑄‾𝑌) −
𝑟‾

𝑛
ቀ

𝑎

𝑛 − 1
+ 2𝑏ቁ (𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌).

 (28)

In view of Equations (27) and (28), we have 

𝑎𝑅‾(𝑋, 𝑌)𝑍 = 𝑏(𝑆‾(𝑋, 𝑍)𝑌 − 𝑆‾(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑄‾𝑌 − 𝑔(𝑌, 𝑍)𝑄‾𝑋) +
𝑟‾

𝑛
ቀ

𝑎

𝑛 − 1
+ 2𝑏ቁ (𝑔(𝑌, 𝑍)𝑋

− 𝑔(𝑋, 𝑍)𝑌) 
(29)

Using Equations (18), (20), and (21) and taking inner product with 𝜉 in Equation (29) we obtain 
𝑎(𝑔(𝑅(𝑋, 𝑌)𝑍, 𝜉) + 𝜖𝑔((𝑌, 𝑍)𝑔(𝑋, 𝜉) − 𝜖𝑔(𝑋, 𝑍)𝑔(𝑌, 𝜉) + 
(1 − 𝜖)𝜂(𝑋)𝑔(𝑌, 𝑍)𝑔(𝜉, 𝜉) − (1 − 𝜖)𝜂(𝑌)𝑔(𝑋, 𝑍)𝑔(𝜉, 𝜉))) 

= 𝑏((𝑆(𝑋, 𝑍)𝑔(𝑌, 𝜉) + (𝜖𝑛 − 2𝜖 + 1)𝑔(𝑋, 𝑍)𝑔(𝑌, 𝜉)) − 𝜖(1 − 𝜖)𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝜉) 
−(𝑆(𝑌, 𝑍)𝑔(𝑋, 𝜉) + (𝜖𝑛 − 2𝜖 + 1)𝑔(𝑌, 𝑍)𝑔(𝑋, 𝜉) + 𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝜉)) 

+𝑔(𝑋, 𝑍)(𝑔(𝑄𝑌, 𝜉) + (𝜖𝑛 − 2𝜖 + 1)𝑔(𝑌, 𝜉) + (1 − 𝜖)𝜂(𝑌)𝑔(𝜉, 𝜉)) 
−𝑔(𝑌, 𝑍)(𝑔(𝑄𝑋, 𝜉) + (𝜖𝑛 − 2𝜖 + 1)𝑔(𝑋, 𝜉) + (1 − 𝜖)𝜂(𝑋)𝑔(𝜉, 𝜉) 

+
𝑟‾

𝑛
ቀ

𝑎

𝑛 − 1
+ 2𝑏ቁ ൫𝑔(𝑌, 𝑍)𝑔(𝑋, 𝜉) − 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝜉)൯ 

(30)

Putting 𝑋 = 𝜉 and using Equations (3), (4), (11) in Equation (30) we obtain 
𝑆(𝑌, 𝑍) = 𝐶𝑔(𝑌, 𝑍) + 𝐷𝜂(𝑌)𝜂(𝑋), (31)

where 

𝐶 =
1

𝜖𝑏
൭(1 − 𝜖)(𝑎 + 2𝑏) + 𝜖

𝑟‾

𝑛
൬

𝑎

𝑏(𝑛 − 1)
+ 2𝑏൰൱ 

and 

𝐷 =
ଵ

ఢ
ቆ(1 − 𝜖)(𝑎 + 2𝑏) −

‾


ቀ



(ିଵ)
+ 2𝑏ቁቇ. □ 

6. Quasi-Conformally semisymmetric (𝝐)-Kenmotsu manifold admitting 
Schouten van-Kampen connection 
Theorem 6. A quasi-Conformally semisymmetric (𝜖) -Kenmotsu manifold admitting Schouten van-Kampen 
connection is an𝜂-Einstein manifold. 

Proof. An (𝜖)-Kenmotsu manifold admitting a Schouten van-Kampen connection is said to be quasi-
conformally semisymmetric if 

𝑅‾  (𝜉, 𝑌)⋅𝐶‾(𝑈, 𝑉)𝑊=0 (32)
which implies that 
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𝑅‾(𝜉, 𝑌)𝐶‾(𝑈, 𝑉)𝑊 − 𝐶‾(𝑅‾(𝜉, 𝑌)𝑈, 𝑉)𝑊 − 𝐶‾(𝑈, 𝑅‾(𝜉, 𝑌)𝑉)𝑊 − 𝐶‾(𝑈, 𝑉)𝑅‾(𝜉, 𝑌)𝑊 = 0 (33)
In view of Equation (18) in Equation (33), we have 

(1 − 𝜖)𝑔(𝑌, 𝐶‾(𝑈, 𝑉)𝑊)𝜉 − 𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝐶‾(𝑈, 𝑉)𝑊)𝜉

−(1 − 𝜖)𝑔(𝑌, 𝑈)𝐶‾(𝜉, 𝑉)𝑊 + 𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑈)𝜂(𝐶‾(𝜉, 𝑉)𝑊

−(1 − 𝜖)𝑔(𝑌, 𝑉)𝐶‾(𝑈, 𝜉)𝑊 + 𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑉)𝜂(𝐶‾(𝑈, 𝜉)𝑊

−(1 − 𝜖)𝑔(𝑌, 𝑊)𝐶‾(𝑈, 𝑉)𝜉 + 𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑊)𝐶‾(𝑈, 𝑉)𝜉 = 0

 (34)

Replacing 𝑌 = 𝑈 and taking inner product with 𝜉 in (34), we have 

𝜖𝑔(𝑈, 𝐶‾(𝑈, 𝑉)𝑊) − 𝜂(𝑈)𝜂(𝐶‾(𝑈, 𝑉)𝑊) − (𝑔(𝑈, 𝑈) − 𝜖𝜂(𝑈)𝜂(𝑈))𝜂(𝐶‾(𝜉, 𝑉)𝑊) 
−(𝑔(𝑈, 𝑉) + 𝜖𝜂(𝑈)𝜂(𝑉)𝐶‾(𝑈, 𝜉)𝑊) − (𝑔(𝑈, 𝑊) − 𝜖𝜂(𝑈)𝜂(𝑊))𝜂(𝐶‾(𝑈, 𝑉)𝜉) = 0 

(35)

provided (1 − 𝜖) ≠ 0. 

Putting 𝑈 = 𝜉 and using Equations (28), (18), (20) and (21), we obtain 

𝑆(𝑉, 𝑊) = 𝐸𝑔(𝑉, 𝑊) + 𝐹𝜂(𝑉)𝜂(𝑊) (36)
where 

𝐸 = −
1

𝑏
𝑎(1 − 3𝜖) + 𝑏(𝜖𝑛 − 2𝜖 + 1) + 2𝑏(1 − 𝜖) −

𝑟‾

𝑛
ቀ

𝑎

𝑛 − 1
+ 2𝑏ቁ൨ 

and 

𝐹 = −
ଵ


ቂ−𝑎𝜖(1 − 𝜖) + 𝑏(𝑛 − 1) − 𝑏𝜖(𝜖𝑛 − 2𝜖 + 1) − 𝑏(1 − 𝜖) −

‾


ቀ



ିଵ
+ 2𝑏ቁቃ □ 

7. (ϵ)-Kenmotsu manifold admitting Schouten van-Kampen connection 
satisfying 

𝑍‾(𝑋, 𝑌 ⋅ 𝑆‾(𝑈, 𝑊)) = 0 
Theorem 7. An (𝜖)- Kenmotsu manifold admitting Schouten van-Kampen connection satisfying 𝑍‾(𝑋, 𝑌 ⋅

𝑆‾(𝑈, 𝑊)) = 0 is an 𝜂-Einstein manifold. 

Proof. An (𝜖)-Kenmotsu manifold admitting Schouten van-Kampen connection satisfies. 
𝑍‾(𝑋, 𝑌. 𝑆‾(𝑈, 𝑊)) = 0 (37)

which implies that 
𝑆‾(𝑍‾(𝜉, 𝑌)𝑈, 𝑊) + 𝑆‾(𝑈, 𝑍‾(𝜉, 𝑌)𝑊) = 0 (38)

The concircular curvature tensor 𝑍‾ admitting Schouten van-Kampen connection is given by (see 
Yano[35]) 

𝑍‾(𝑋, 𝑌)𝑍 = 𝑅‾(𝑋, 𝑌)𝑍 − ൬
𝑟‾

𝑛(𝑛 − 1)
(𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌)൰ (39)

In view of Equations (3), (4), (18), (38), and (39), we have 
𝑆‾𝑅(𝜉, 𝑌)𝑈, 𝑊) + 𝜖𝑔(𝑌, 𝑈)𝑆‾(𝜉, 𝑊) − 𝜂(𝑈)𝑆‾(𝑌, 𝑊) + (1 − 𝜖)𝑔(𝑌, 𝑈)𝑆‾(𝜉, 𝑊) 

−𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑈)𝑆‾(𝜉, 𝑊) − ൬
𝑟‾

𝑛(𝑛 − 1)
൰ 𝑔(𝑌, 𝑈)𝑆‾(𝜉, 𝑊) + 𝜖 ൬

𝑟‾

𝑛(𝑛 − 1)
൰ 𝜂(𝑈)𝑆‾(𝑌, 𝑊) 

+𝑆‾(𝑈, 𝑅(𝜉, 𝑌)𝑊) + 𝜖𝑔(𝑌, 𝑊)𝑆‾(𝜉, 𝑈) − 𝜂(𝑊)𝑆‾(𝑌, 𝑈) + (1 − 𝜖)𝑔(𝑌, 𝑊)𝑆‾(𝜉, 𝑈) 

−𝜖(1 − 𝜖)𝜂(𝑌)𝜂(𝑊)𝑆‾(𝜉, 𝑈) − ൬
𝑟‾

𝑛(𝑛 − 1)
൰ 𝑔(𝑌, 𝑊)𝑆‾(𝜉, 𝑈) + 𝜖 ൬

𝑟‾

𝑛(𝑛 − 1)
൰ 𝜂(𝑊)𝑆‾(𝑌, 𝑈) = 0. 

(40)

Using Equation (20) and putting 𝑈 = 𝜉 in Equation (40), we obtain 
𝑆(𝑌, 𝑊) = 𝐺𝑔(𝑌, 𝑊) + 𝐻𝜂(𝑌)𝜂(𝑊), (41)

where 



Journal of AppliedMath 2023; 1(2): 113. 

6 

𝐺 = −
1

2
൭𝜖(𝑛 − 1) + (1 − 𝜖) + (𝜖𝑛 − 2𝜖 + 1) ൬

𝑟‾𝜖

𝑛(𝑛 − 1)
− 1൰൱, 

and 

𝐻 = −
ଵ

ଶ
ቆ−𝜖(1 − 𝜖) − 𝜖(1 − 𝜖) ቀ

‾ఢ

(ିଵ)
− 1ቁቇ □ 
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