

(ϵ) -Kenmotsu manifold admitting Schouten-van Kampen connection

S. Girish Babu¹, R. Rajendra², P. Siva Kota Reddy^{3,*}, N. Pavani⁴

¹ Department of Mathematics, Siddaganga Institute of Technology, Tumkur 572103, Karnataka, India

²Department of Mathematics, Field Marshal K. M. Cariappa College, Madikeri 571201, Karnataka, India

³ Department of Mathematics, JSS Science and Technology University, Mysuru 570006, Karnataka, India

⁴Department of Mathematics, Sri Krishna Institute of Technology, Bangalore 560090, Karnataka, India

* Corresponding author: P. Siva Kota Reddy, pskreddy@jssstuniv.in

ARTICLE INFO

Received: 26 May 2023 Accepted: 2 July 2023 Available online: 10 July 2023

doi: 10.59400/jam.v1i2.113

Copyright © 2023 Author(s).

Journal of AppliedMath is published by Academic Publishing Pte. Ltd. This article is licensed underthe Creative Commons Attribution License (CC BY 4.0). https://creativecommons.org/licenses/by/ $4.0⁷$

ABSTRACT: The objective of this paper is to study some properties of quasi-conformal and concircular tensors on the (ϵ) -Kenmotsu manifold admitting the Schouten-van Kampen connection. Expressions of the curvature tensor, Ricci tensor, and scalar curvature admitting Schoutenvan Kampen connection have been obtained. Locally symmetric (ϵ) -Kenmotsu manifold admitting the Schouten-van Kampen connection and quasicon formally flat as well as quasi-conformally semisymmetric (ϵ) -Kenmotsu manifolds admitting Schouten-van Kampen connection are studied.

 $KEYWORDS: (ε)$ -Kenmotsu manifold; quasi-conformal curvature tensor; concircular curvature tensor; Schouten-van Kampen connection 2010 MSC CLASSIFICATION: 53C15; 53C25

1. Introduction

De and Sarkar^[1] introduced the concept of indefinite metrics on Kenmotsu manifolds, which are called (ϵ)-Kenmotsu manifolds. They studied conformally flat, Weyl semisymmetric, ϕ -recurrent (ϵ)-Kenmotsu manifolds. The Schouten-van Kampen connection has been introduced for studying nonholomorphic manifolds. It preserves, by parallelism, a pair of complementary distributions on a differentiable manifold endowed with an affine connection (see Bejancu and Farran^[2], Ianus^[3], Schouten and van Kampen^[4]). Then, Olszak^[5] studied the Schouten-van Kampen connection to adapt it to an almost contact metric structure. He characterized some classes of almost contact metric manifolds with the Schouten-van Kampen connection and established certain curvature properties with respect to this connection. Recently, Ghosh^[6] and Yildiz^[7] have studied the Schouten-van Kampen connection in Sasakian manifolds and f-Kenmotsu manifolds, respectively. Some related developments can be found in many other works^[8-33].

This paper is structured as follows: Section 2 gives a brief review of (ϵ) -Kenmotsu manifolds. In Section 3, we obtain the expressions of the curvature tensor, Ricci tensor, and scalar curvature, admitting the Schouten-van Kampen connection. In Section 4, we study locally symmetric (ϵ) -Kenmotsu manifold admitting Schouten-van Kampen connection. In Sections 5, we study quasiconformally flat and quasiconformally semisymmetric (ϵ) -Kenmotsu manifolds admitting Schouten-van Kampen connection. In Section 6, we prove (ϵ) Kenmotsu manifolds admitting Schouten-van Kampen connection satisfying $\overline{Z}(X, Y, \overline{S}(U, W)) = 0$ is an η -Einstein manifold.

2. Preliminaries

An almost contact structure on a differentiable manifold M^n is a triple (ϕ, ξ, η) , where ϕ is a tensor field of type $(1,1)$, η is a 1-form and ξ is a vector field such that

$$
\phi^2 = X_1 + \eta(X_1)\xi,\tag{1}
$$

$$
\eta(\xi) = 1, \ \phi\xi = 0, \ \eta\phi = 0 \tag{2}
$$

A differential manifold with an almost contact structure is called an almost contact manifold. An almost contact metric manifold is an almost contact manifold endowed with a compatible metric g . An almost contact metric manifold *M* is said to be an (ϵ) -almost contact metric manifold, if

$$
g(\xi,\xi) = \pm 1 = \epsilon,\tag{3}
$$

$$
\eta(X) = \epsilon g(X, \xi), rank(\phi) = n - 1,\tag{4}
$$

$$
g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X)\eta(Y), \forall X, Y \in \Gamma(TM),
$$
\n(5)

where ξ is space-like or time-like but it is never a light like vector field. We say that (ϕ, ξ, η, g) is an (ϵ) -contact metric structure, if

$$
d\eta(X,Y) = g(X,\phi Y) \tag{6}
$$

In such case, M is an (ϵ) -contact metric manifold. An (ϵ) -contact metric manifold is called an (ϵ) -Kenmotsu manifold $[1]$, if

$$
\nabla X \phi Y = g(X, \phi Y)\xi - \epsilon \eta(Y)\phi X,\tag{7}
$$

where ∇ is the Riemannian connection of g. An (ϵ)-almost contact metric manifold is an (ϵ)-Kenmotsu manifold if and only if

$$
\nabla X\xi = \epsilon(X - \eta(X)\xi). \tag{8}
$$

The following conditions hold in an (ϵ) -Kenmotsu manifold^[1]:

$$
(\nabla_X \eta)(Y) = g(X, Y) - \epsilon \eta(X)\eta(Y), \tag{9}
$$

$$
\eta(R(X,Y,Z)) = \epsilon(g(X,Z)Y - g(Y,Z)X),\tag{10}
$$

$$
R(X,Y)\xi = \eta(X)Y - \eta(Y)X, R(\xi,X)Y = \eta(Y)X - \epsilon g(X,Y)\xi,
$$
\n(11)

$$
S(X,\xi) = -(n-1)\eta(X), Q\xi = -\epsilon(n-1)\xi,
$$
\n(12)

$$
S(\phi X, \phi Y) = S(X, Y) + \epsilon (n-1)\eta(X)\eta(Y). \tag{13}
$$

3. (ϵ) -Kenmotsu manifolds admitting Schouten-van Kampen connection

The Schouten-van Kampen connection $\bar{\nabla}$ associated to the Levi-Civita connection ∇ is given by

$$
\overline{\nabla}_X Y = \nabla_X Y - \eta(Y) \nabla_X \xi + (\nabla_X \eta)(Y) \xi \tag{14}
$$

for any vector fields
$$
X
$$
, Y on M (see Olszak^[5]). Using Equations (8) and (9) in the above equation

$$
\overline{\nabla}_X Y = \nabla_X Y - \epsilon \eta(Y) X - g(X, Y) \xi + 2\epsilon \eta(X) \eta(Y) \xi \tag{15}
$$

Putting $Y = \xi$ and using (8) in (15), we obtain

$$
\bar{\nabla}_X \xi = 0 \tag{16}
$$

Let R and \overline{R} denote the curvature tensor ∇ and $\overline{\nabla}$ respectively. Then

$$
\bar{R}(X,Y)Z = \bar{\nabla}_X \bar{\nabla}_Y Z - \bar{\nabla}_Y \bar{\nabla}_X Z - \bar{\nabla}_{[XY]} Z \tag{17}
$$

Using Equation (15) in Equation (17), we obtain

$$
\bar{R}(X,Y)Z = R(X,Y)Z + \epsilon g(Y,Z)X - \epsilon g(X,Z)Y +
$$
\n
$$
(18)
$$

$$
(1-\epsilon)\eta(X)g(Y,Z)\xi-(1-\epsilon)\eta(Y)g(X,Z)\xi
$$

Putting $Z = \xi$ and using (11) in (18), we obtain

$$
\bar{R}(X,Y)\xi = 0\tag{19}
$$

On contracting (18), we obtain the Ricci tensor \bar{S} of an (ϵ)-Kenmotsu manifold admitting Schouten-Van Kampen connection $\bar{\nabla}$ as

$$
\bar{S}(Y,Z) = S(Y,Z) + (\epsilon n - 2\epsilon + 1)g(Y,Z) - \epsilon (1 - \epsilon)\eta(Y)\eta(Z)
$$
\n(20)

This gives

$$
\overline{Q}Y = QY + (\epsilon n - 2\epsilon + 1)Y - (1 - \epsilon)\eta(Y)\xi
$$
\n(21)

Contracting with respect to Y and Z in (20), we obtain

$$
\bar{r} = r + n(\epsilon n - 2\epsilon + 1) - (1 - \epsilon),\tag{22}
$$

where \bar{r} and r are the scalar curvatures admitting Schouten-van Kampen connection $\bar{\nabla}$ and the Levi-Civita connection ∇, respectively. From the above discussions we state the following:

Theorem 1. The curvature tensor \bar{R} , the Ricci tensor \bar{S} and the scalar curvature \bar{r} of an (ϵ) -Kenmotsu manifold M with respect to the Schouten-van Kampen connection \overline{V} are given by the Equations (18), (20), (21) and (22) respectively. Further, the curvature tensor \overline{R} of \overline{V} satisfies the following:

(i) $\overline{R}(X, Y)Z = -\overline{R}(Y, X)Z$,

(ii) $\bar{R}(X, Y, Z, W) + \bar{R}(Y, X, Z, W) = 0$,

(iii) $\bar{R}(X, Y, Z, W) + \bar{R}(X, Y, W, Z) = 0$,

(iv) $\bar{R}(X, Y)Z + \bar{R}(Y, Z)X + \bar{R}(Z, X)Y = 0$,

(v) \bar{S} is symmetric.

From Equation (20), the following result is immediate.

Theorem 2. An (ϵ) -Kenmotsu manifold $Mⁿ$ admitting the Schouten-van Kampen connection is Ricci flat admitting Schouten-van Kampen connection if and only if M^n is an η -Einstein manifold with respect to Levi-Civita connection.

Now, if $\overline{R}(X, Y)Z = 0$, then Equation (18) becomes

 $R(X, Y)Z + \epsilon(g(Y, Z)X - g(X, Z)Y) + (1 - \epsilon)(\eta(X)g(Y, Z)\xi - \eta(Y)g(X, Z)\xi) = 0$ (23) Thus, we have the following theorem.

Theorem 3. Let M^n be a (ϵ) -Kenmotsu manifold admitting the Schouten-van Kampen connection. The curvature tensor of M admitting Schouten-van Kampen connection vanishes if and only if M with respect to the Levi-Civita connection is isomorphic to the hyperbolic space $Hⁿ(-1)$.

4. Locally symmetric (ϵ) -Kenmotsu manifold admitting Schouten-van Kampen connection

Theorem 4. A locally symmetric (ϵ -Kenmotsu manifold M^n admitting Schouten-van Kampen connection \overline{V} is an -Einstein manifold.

Proof. Let M^n be a locally symmetric (ϵ) -Kenmotsu manifold admitting Schouten-van Kampen connection \overline{V} . Then $(\overline{V}_X R)(Y, Z)W = 0$. By contraction of the equation, we get

$$
(\bar{\nabla}_X \bar{S})(Z,W) = \bar{\nabla}_X \bar{S}(Z,W) - \bar{S}(\bar{\nabla}_X Z,W) - \bar{S}(Z,\bar{\nabla}_X W) = 0
$$
\n(24)

Putting $W = \xi$ in (24), we have

$$
\overline{\nabla}_X \overline{S}(Z,\xi) - \overline{S}(\overline{\nabla}_X Z,\xi) - \overline{S}(Z,\overline{\nabla}_X \xi) = 0
$$
\n(25)

Using (15) and (20) in (25) , we obtain

$$
S(X,Z) = Ag(X,Z) + B\eta(X)\eta(Y)
$$
\n(26)

where $A = -\epsilon(n-2) + 1$ and $B = -\epsilon(n-2) + n$. □

5. Quasi-Conformally flat (ϵ) -Kenmotsu manifold admitting Schouten van-Kampen connection

Theorem 5. A quasi-conformally flat (ϵ) -Kenmotsu manifold admitting Schouten van-Kampen connection is an η -Einstein manifold.

Proof. An (ϵ) -Kenmotsu manifold admitting a Schouten van-Kampen connection is said to be quasiconformally flat if

$$
\bar{C}(X,Y)Z = 0 \tag{27}
$$

The quasi-conformal curvature tensor \bar{C} admitting a Schouten van-Kampen connection is (see Yano^[34]):

$$
\bar{C}(X,Y)Z = a\bar{R}(X,Y)Z + b(\bar{S}(Y,Z)X - \bar{S}(X,Z)Y + g(Y,Z)\bar{Q}X \n-g(X,Y)\bar{Q}Y) - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)(g(Y,Z)X - g(X,Z)Y).
$$
\n(28)

In view of Equations (27) and (28), we have

$$
a\bar{R}(X,Y)Z = b(\bar{S}(X,Z)Y - \bar{S}(Y,Z)X + g(X,Z)\bar{Q}Y - g(Y,Z)\bar{Q}X) + \frac{\bar{r}}{n}\left(\frac{a}{n-1} + 2b\right)(g(Y,Z)X - g(X,Z)Y)
$$
\n(29)

Using Equations (18), (20), and (21) and taking inner product with ξ in Equation (29) we obtain $a(g(R(X, Y)Z, \xi) + \epsilon g((Y, Z)g(X, \xi) - \epsilon g(X, Z)g(Y, \xi) +$

$$
(1 - \epsilon)\eta(X)g(Y, Z)g(\xi, \xi) - (1 - \epsilon)\eta(Y)g(X, Z)g(\xi, \xi)))
$$

= $b((S(X, Z)g(Y, \xi) + (\epsilon n - 2\epsilon + 1)g(X, Z)g(Y, \xi)) - \epsilon(1 - \epsilon)\eta(X)\eta(Z)g(Y, \xi)$
 $- (S(Y, Z)g(X, \xi) + (\epsilon n - 2\epsilon + 1)g(Y, Z)g(X, \xi) + \epsilon(1 - \epsilon)\eta(Y)\eta(Z)g(X, \xi))$
+ $g(X, Z)(g(QY, \xi) + (\epsilon n - 2\epsilon + 1)g(Y, \xi) + (1 - \epsilon)\eta(Y)g(\xi, \xi))$
- $g(Y, Z)(g(QX, \xi) + (\epsilon n - 2\epsilon + 1)g(X, \xi) + (1 - \epsilon)\eta(X)g(\xi, \xi)$
+ $\frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)(g(Y, Z)g(X, \xi) - g(X, Z)g(Y, \xi))$ (30)

Putting $X = \xi$ and using Equations (3), (4), (11) in Equation (30) we obtain $S(Y, Z) = Cg(Y, Z) + D\eta(Y)\eta(X),$ (31)

where

$$
C = \frac{1}{\epsilon b} \left((1 - \epsilon)(a + 2b) + \epsilon \frac{\bar{r}}{n} \left(\frac{a}{b(n-1)} + 2b \right) \right)
$$

and

$$
D = \frac{1}{\epsilon b} \bigg((1 - \epsilon)(a + 2b) - \frac{\bar{r}}{n} \bigg(\frac{a}{b(n-1)} + 2b \bigg) \bigg) \Box
$$

6. Quasi-Conformally semisymmetric (ϵ) -Kenmotsu manifold admitting Schouten van-Kampen connection

Theorem 6. A quasi-Conformally semisymmetric (ϵ) -Kenmotsu manifold admitting Schouten van-Kampen connection is ann-Einstein manifold.

Proof. An (ϵ) -Kenmotsu manifold admitting a Schouten van-Kampen connection is said to be quasiconformally semisymmetric if

$$
\bar{R}(\xi, Y) \cdot \bar{C}(U, V)W=0
$$
\n(32)

which implies that

 $\bar{R}(\xi, Y)\bar{C}(U, V)W - \bar{C}(\bar{R}(\xi, Y)U, V)W - \bar{C}(U, \bar{R}(\xi, Y)V)W - \bar{C}(U, V)\bar{R}(\xi, Y)W = 0$ (33) In view of Equation (18) in Equation (33), we have

$$
(1 - \epsilon)g(Y, \bar{C}(U, V)W)\xi - \epsilon(1 - \epsilon)\eta(Y)\eta(\bar{C}(U, V)W)\xi -(1 - \epsilon)g(Y, U)\bar{C}(\xi, V)W + \epsilon(1 - \epsilon)\eta(Y)\eta(U)\eta(\bar{C}(\xi, V)W -(1 - \epsilon)g(Y, V)\bar{C}(U, \xi)W + \epsilon(1 - \epsilon)\eta(Y)\eta(V)\eta(\bar{C}(U, \xi)W -(1 - \epsilon)g(Y, W)\bar{C}(U, V)\xi + \epsilon(1 - \epsilon)\eta(Y)\eta(W)\bar{C}(U, V)\xi = 0
$$
\n(34)

Replacing $Y = U$ and taking inner product with ξ in (34), we have

$$
\epsilon g(U, \bar{C}(U,V)W) - \eta(U)\eta(\bar{C}(U,V)W) - (g(U,U) - \epsilon\eta(U)\eta(U))\eta(\bar{C}(\xi,V)W) \n-(g(U,V) + \epsilon\eta(U)\eta(V)\bar{C}(U,\xi)W) - (g(U,W) - \epsilon\eta(U)\eta(W))\eta(\bar{C}(U,V)\xi) = 0
$$
\n
$$
\text{provided } (1-\epsilon) \neq 0. \tag{35}
$$

Putting $U = \xi$ and using Equations (28), (18), (20) and (21), we obtain

$$
S(V, W) = Eg(V, W) + F\eta(V)\eta(W)
$$
\n(36)

where

$$
E = -\frac{1}{b} \Big[a(1 - 3\epsilon) + b(\epsilon n - 2\epsilon + 1) + 2b(1 - \epsilon) - \frac{\bar{r}}{n} \Big(\frac{a}{n-1} + 2b \Big) \Big]
$$

and

$$
F=-\frac{1}{b}\Big[-a\varepsilon(1-\epsilon)+b(n-1)-b\varepsilon(\epsilon n-2\varepsilon+1)-b(1-\epsilon)-\frac{\bar{r}}{n}\Big(\frac{a}{n-1}+2b\Big)\Big]\Box
$$

7. (ϵ)-Kenmotsu manifold admitting Schouten van-Kampen connection satisfying

$$
\bar Z(X,Y\cdot \bar S(U,W))=0
$$

Theorem 7. An (ϵ) - Kenmotsu manifold admitting Schouten van-Kampen connection satisfying $\overline{Z}(X, Y \cdot$ $\overline{S}(U, W)$ = 0 is an η -Einstein manifold.

Proof. An (ϵ) -Kenmotsu manifold admitting Schouten van-Kampen connection satisfies.

$$
\bar{Z}(X, Y, \bar{S}(U, W)) = 0 \tag{37}
$$

which implies that

$$
\bar{S}(\bar{Z}(\xi, Y)U, W) + \bar{S}(U, \bar{Z}(\xi, Y)W) = 0
$$
\n(38)

The concircular curvature tensor \bar{Z} admitting Schouten van-Kampen connection is given by (see $Yano^[35]$

$$
\bar{Z}(X,Y)Z = \bar{R}(X,Y)Z - \left(\frac{\bar{r}}{n(n-1)}(g(Y,Z)X - g(X,Z)Y)\right)
$$
\n(39)

In view of Equations (3), (4), (18), (38), and (39), we have

$$
\bar{S}R(\xi, Y)U, W) + \epsilon g(Y, U)\bar{S}(\xi, W) - \eta(U)\bar{S}(Y, W) + (1 - \epsilon)g(Y, U)\bar{S}(\xi, W)
$$

$$
-\epsilon(1 - \epsilon)\eta(Y)\eta(U)\bar{S}(\xi, W) - \left(\frac{\bar{r}}{n(n-1)}\right)g(Y, U)\bar{S}(\xi, W) + \epsilon\left(\frac{\bar{r}}{n(n-1)}\right)\eta(U)\bar{S}(Y, W)
$$

$$
+\bar{S}(U, R(\xi, Y)W) + \epsilon g(Y, W)\bar{S}(\xi, U) - \eta(W)\bar{S}(Y, U) + (1 - \epsilon)g(Y, W)\bar{S}(\xi, U)
$$

$$
-\epsilon(1 - \epsilon)\eta(Y)\eta(W)\bar{S}(\xi, U) - \left(\frac{\bar{r}}{n(n-1)}\right)g(Y, W)\bar{S}(\xi, U) + \epsilon\left(\frac{\bar{r}}{n(n-1)}\right)\eta(W)\bar{S}(Y, U) = 0.
$$
\n(40)

Using Equation (20) and putting $U = \xi$ in Equation (40), we obtain

$$
S(Y, W) = Gg(Y, W) + H\eta(Y)\eta(W), \qquad (41)
$$

where

$$
G = -\frac{1}{2} \left(\epsilon (n-1) + (1-\epsilon) + (\epsilon n - 2\epsilon + 1) \left(\frac{\bar{r}\epsilon}{n(n-1)} - 1 \right) \right),
$$

and

$$
H=-\frac{1}{2}\Biggl(-\epsilon(1-\epsilon)-\epsilon(1-\epsilon)\Bigl(\frac{\bar{r}\epsilon}{n(n-1)}-1\Bigr)\Biggr)\,\square
$$

Author contributions

Conceptualization, SGB, RR, PSKR and NP; methodology, SGB, RR and PSKR; validation, SGB, RR, PSKR and NP; formal analysis, SGB and NP; investigation, SGB, RR, PSKR and NP; resources, SGB, RR and PSKR; data curation, SGB, RR and PSKR; writing—original draft preparation, SGB, RR and PSKR; writing—review and editing, RR and PSKR; visualization, RR and PSKR; supervision, RR and PSKR. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. De UC, Sarkar A. On (ϵ)-Kenmotsu manifold. Hadronic Journal 2009; 32(2): 231–242.
- 2. Bejancu A, Farran HR. Foliations and Geometric Structures. Springer; 2006.
- 3. Ianus S. Some almost product structures on manifolds with linear connection. Kodai Mathematical Seminar Reports 1971; 23(3): 305–310. doi: 10.2996/kmj/1138846369
- 4. Schouten JA, van Kampen ER. On the embedding and curvature theory of nonholonomic entitie (German) Mathematische Annalen 1930; 103: 752–783. doi: 10.1007/BF01455718
- 5. Olszak Z. The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure. arXiv 2013; arXiv:1402.5796. doi: 10.2298/PIM1308031O
- 6. Ghosh G. On Schouten-van Kampen connection in Sasakian manifolds. Boletim da Sociedade Paranaense de Matematica 2018; 36(4): 171–182. doi: 10.5269/bspm.v36i4.33105
- 7. Yildiz A. *f*-Kenmotsu manifolds with the Schouten–van Kampen connection. Publications de L'institut Mathématique 2017; 102(116): 93–105. doi: 10.2298/PIM1716093Y
- 8. Alghamdi MA, Bahadir O. Some characterizations in Kenmotsu manifolds with a new connection. $arXiv$ 2020; arXiv:1804.10020. doi: 10.48550/arXiv.1804.10020
- 9. Angadi PG, Shivaprasanna GS, Somashekhara G, Reddy PSK. Ricci-Yamabe solitons on submanifolds of some indefinite almost contact manifolds. Advances in Mathematics: Scientific Journal 2020; 9(11): 10067-10080. doi: 10.37418/amsj.9.11
- 10. Angadi PG, Shivaprasanna GS, Somashekhara G, Reddy PSK. Ricci solitons on (LCS)-manifolds under Dhomothetic deformation. Italian Journal of Pure & Applied Mathematics 2021; 46: 672–683.
- 11. Angadi PG, Reddy PSK, Shivaprasanna GS, Somashekhara G. On weakly symmetric generalized (k, µ) space forms. Proceedings of the Jangjeon Mathematical Society 2022; 25(2): 133–144.
- 12. Mert T, Atceken M, Uygun P. Semi-symmetric generalized Sasakian space forms on some special curvature tensors. Konuralp Journal of Mathematics 2022; 10(2): 240–249.
- 13. Mert T, Atceken M, Uygun P. Semi-symmetric almost $C(\alpha)$ -manifold on some curvature tensors. Gulf Journal of Mathematics 2023; 14(2): 101–114. doi: 10.56947/gjom.v14i2.1179
- 14. Mert T, Atceken M, Uygun P. Normal paracontact metric space form on w_0- curvature tensor. Journal of Amasya University the Institute of Sciences and Technology 2023; 4(1): 53–64. doi: 10.54559/jauist.1312242
- 15. Murthy BP, Naveen Kumar RT, Reddy PSK, Venkatesha. On N(k)-contact metric manifold endowed with pseudo-quasi-conformal curvature tensor. Advances in Mathematics: Scientific Journal 2021; 10(4): 1969–1982. doi: 10.37418/amsj.10.4.11
- 16. Murthy BP, Naveen Kumar RT, Reddy PSK, Venkatesha. Extended Pseudo projective curvature tensor on (LCS)n-manifold. Proceedings of the Jangjeon Mathematical Society 2022; 25(3): 347–354.
- 17. Nagaraja HG, Kumari D, Reddy PSK. Submanifold of (κ, μ) contact metric manifold as a Ricci soliton. Proceedings of the Jangjeon Mathematical Society 2021; 24(1): 11–19. doi: 10.17777/pjms2021.24.1.11
- 18. Naveen Kumar RT, Reddy PSK, Venkatesha, Alloush KAA. (LCS)_n-manifold endowed with torse forming vector field and concircular curvature tensor. International Journal of Mathematical Combinatorics 2022; 3: 38– 47.
- 19. Siddiqi MD, Bahadir O. η-Ricci solitons on Kenmotsu manifold with generalized symmetric metric connection. arXiv 2018; arXiv:1809.00485. doi: 10.22190/FUMI2002295S
- 20. Somashekhara G, Pavani N, Reddy PSK. Invariant sub-manifolds of LP-Sasakian manifolds with semisymmetric connection. Bulletin of Mathematical Analysis and Applications 2020; 12(2): 35–44.
- 21. Somashekhara G, Babu SG, Reddy PSK. C-Bochner curvature tensor under D-homothetic deformation in LP-Sasakian manifold. Bulletin of the International Mathematical Virtual Institute 2021; 11(1): 91–98.doi: 10.7251/BIMVI2101091S
- 22. Somashekhara G, Babu SG, Reddy PSK. Indefinite Sasakian manifold with quarter-symmetric metric connection. Proceedings of the Jangjeon Mathematical Society 2021; 24(1): 91–98.
- 23. Somashekhara G, Reddy PSK, Pavani N, Manjula GJ. η-Ricci-Yamabe solitons on submanifolds of some indefinite almost contact manifolds. Journal of Mathematical and Computational Science 2021; 11(3): 3775–3791.
- 24. Somashekhara G, Babu SG, Reddy PSK. Conformal Ricci soliton in an indefinite trans-Sasakian manifold. Vladikavkaz Mathematical Journal 2021; 23(3): 45–51. doi: 10.46698/t3715-2700-6661-v
- 25. Somashekhara G, Babu GS, Reddy PSK. Ricci solitons and generalized weak symmetries under Dhomothetically deformed LP-Sasakian manifolds. Italian Journal of Pure & Applied Mathematics 2021; (46): 684–695.
- 26. Somashekhara G, Babu SG, Reddy PSK. Conformal η-Ricci solitons in Lorentzian para-Sasakian manifold admitting semisymmetric metric connection. Italian Journal of Pure & Applied Mathematics 2021; 46: 1008– 1019.
- 27. Somashekhara G, Reddy PSK, Shivashankara, Pavani N. Slant sub-manifolds of generalized Sasakian-spaceforms. Proceedings of the Jangjeon Mathematical Society 2022; 25(1): 83–88.
- 28. Somashekhara G, Reddy PSK, Pavani N. Semi-invariant submanifolds of generalized Sasakian-space-forms. International Journal of Mathematical Combinatorics 2022; 2: 47–55.
- 29. Somashekhara G, Babu SG, Reddy PSK, Shivashankara. On LP-Sasakian manifolds admitting generalized symmetric metric connection. Proceedings of the Jangjeon Mathematical Society 2022; 25(3): 287–296.
- 30. Somashekhara G, Rajendra R, Shivaprasanna GS, et al. Generalised Sasakian-space-form in submanifolds. International Journal of Mathematical Combinatorics 2022; 3: 69–81.
- 31. Somashekhara G, Babu SG, Reddy PSK, *n*-Ricci solitonin an indefinite trans-Sasakian manifold admitting semi-symmetric metric connection. Boletim da SociedadeParanaense de Matemática 2023; 41: 1-9. doi: 10.5269/bspm.51358
- 32. Somashekhara G, Rajendra R, Shivaprasanna GS, Reddy PSK. Pseudo parallel and generalized Ricci pseudo parallel invariant submanifolds of a generalized Sasakian space form. Proceedings of the Jangjeon Mathematical Society 2023; 26(1): 69–78.
- 33. Somashekhara P, Naveen Kumar RT, Reddy PSK, et al. Pseudo projective curvature tensor on generalized Sasakian space forms. Proceedings of the Jangjeon Mathematical Society 2023; 26(3): 243–251.
- 34. Yano K, Sawaki S. Riemannian manifolds admitting a conformal transformation group. Journal of Differential Geometry 1968; 2(2): 161–184.
- 35. Yano K. Concircular geometry. I. Concircular transformations. Proceedings of the Imperial Academy Tokyo 1940; 16(6): 195–200. doi: 10.3792/pia/1195579139