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ABSTRACT: In nonparametric regression, the correlation of errors can 

have important consequences for the statistical properties of the 

estimators, but the focus is on the on the identification of the effect on 

Average Mean Squared Error (AMSE). This is performed by a Monte 

Carlo experiment where we use two types of correlation structures and 

examine them with different correlation points/levels and different error 

distributions with different sample sizes. We concluded that if errors are 

correlated, then the distribution of errors is important with correlation 

structures, but correlation points/levels have a less significant effect, 

comparatively. When errors are uniformly distributed, AMSE is the 

smallest, followed by any other distribution, and if errors follow the 

Laplace distribution, then AMSE is the largest, followed by other 

distributions. Laplace also has some alarming effects. More specifically, 

the kernel estimator is robust in the case of a simple correlation structure, 

and AMSEs attain their minimum when errors are uncorrelated. 
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1. Introduction 
In real life, various aspects of life, statistically known as variables, are interconnected. To examine the 

relationship among these variables, the most common tool is regression. In regression estimation, the 
relationship between response and explanatory variables is determined, while prediction is a central issue. To 
estimate the response, nonparametric regression can be applied when the model is unknown and the 
assumptions of the model are relaxed. For this purpose, a large sample size is required then compared to 
parametric methods. Nonparametric regression estimation methods are based on kernels, wavelets and 
splines[1]. Kernel regression is a nonparametric technique used to estimate response variables by conditional 
expectation. The purpose is to derive the nonlinear relation between the response variable and co-variate[1]. 
Ullah and Vinod[2] discussed different nonparametric kernel methods, i.e., Nadaraya-Watson (NW) kernel 
estimator[3,4], K-nearest neighbor (NN) estimator[5,6], Mack and Muller (MM) estimator[7], Ahmad Lin 
estimator[8] and Gasser-Muller (GM) estimator[9]. 

Like other theories, nonparametric regression estimation is also based on some assumptions, like that 
there is no measurement error, the mean of the disturbance term is zero, there is an equal variance of the 
disturbance terms, there is no autocorrelation, there is zero covariance between disturbance terms and 
explanatory variables, there is no perfect multicollinearity, etc. If these assumptions of the model are violated, 
then it may cause problems. If disturbance terms or errors are correlated, then the estimates will be biased[10]. 
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If the measurement error problem is present in the data, then the estimates are biased[11,12]. Similarly, if errors 
have unequal variance, then the estimates will still be unbiased but less efficient[13]. Also, it is difficult to 
calculate the standard deviation of the forecast errors; usually confidence intervals lie on extreme points; those 
become too wide or too narrow[14]. 

The main purpose of our study is to observe the effect of correlated errors when nonparametric regression 
estimation is applied. Altman[15] showed that the performance of nonparametric regression estimation is the 
same for both cases, whether errors are correlated or not. We are going to examine the effect of correlated 
errors on non-normality. There is vast literature that provides different estimators or methods to tackle 
correlated errors, and their performance is proven good theoretically and by simulation studies, i.e., Muller 
and Stadtmuller[16] focused only on a fixed design case. Their estimator was based on squared differences of 
various spans of the data, and Smith et al.[17] used a Bayesian method through which transformation of the 
dependent variable can be performed. Park et al.[14] provided an estimator that is simpler to apply because it 
does not require any information about the error correlation. Su and Ullah[18] used a pre-whitening 
transformation of the dependent variable, which is estimated from the data using the technique of local 
polynomials. Their new established estimator’s distribution had weak dependence conditions, and they showed 
that it was more efficient than the local polynomial estimator. Lee et al.[19] method is very efficient in many 
error structures because their proposed method is based on approximating the average squared of errors. 

Similarly, Chiu[20], Hart[21], Herrmann et al.[22], Opsomer et al.[23] and De Brabanter et al.[10] provided 
modifications in bandwidth selection methods in the presence of correlated errors, and they proved that, under 
some restrictions, the proposed methods provided strong, consistent results. 

Methods related to our work are presented in Section 2, and the finite sample properties of the estimators 
and their results and related discussions are summarized in Section 3. 

2. Materials and methods 
Consider a nonparametric regression model 

𝑌௜ = 𝑚(𝑋௜) + 𝜀௜ (1 ≤ i ≤ n) (1)
where Y is a dependent variable, X is explanatory variable, 𝑚(𝑥) is completely amorphous and 𝜀௜ is a 
normal and random error. To estimate nonparametric regression, Nadaraya-Watson kernel method is 
used. 

Nadaraya-Watson kernel estimator 

This method was proposed by Nadaraya[3] and Watson[4] to estimate the unknown function 𝑚(𝑥) as 
given in Equation (1). To do this, they proposed an estimator as given by: 

𝑚ෝ(𝑥) =
∑ 𝑘 ቀ

௫೔ି௫

௛
ቁ𝑦௜

௡
௜ୀଵ

∑ 𝑘 ቀ
௫೔ି௫
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where, k is a kernel and h is bandwidth. 

Different types of kernels, i.e., Epanechnikov, Gaussian, Tri-weight etc. are available and it is 
important to note that the choice of the kernel does not affect the Mean Squared Error[24]. 

We are using Gaussian kernel in this study as given by 

𝑘(𝑥) =
1

√2π
e
షభ

మ
௫మ , −∞ < 𝑥 < ∞ 
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Silverman[25] described that a kernel 𝑘(𝑥) is a weighting function and it is nonnegative integrable 
function. Kernels are used in kernel regression to estimate the conditional expectation of a random 
variable but must satisfy the following conditions; 

 ∫ 𝐾(𝑥)d𝑥 = 1
ାஶ

ିஶ
 

 𝐾(−𝑥) = 𝐾(𝑥)for all values of x. 

The smoothing parameter, window width, or bandwidth, denoted by h, is used to manage the 
roughness of the curve. Different methods of bandwidth are available in the literature, which can be 
categorized as classical or first-generation methods and plug-in or second-generation methods. Rule of 
thumb, least squares cross validation, biased cross validation, etc. are part of classical methods; similarly, 
the direct plug-in (DPI) method and solving the equation consist of plug-in method[26,27]. 

In our study, we have used the plug-in method for bandwidth selection. The basic idea behind the 
selection of bandwidth is to obtain a value of h that minimizes the mean integrated squared error. 

The effect of correlated errors is examined by different researchers in which they propose different 
methods to tackle this problem, like Kim et al.[28] and De Brabanter et al.[10] using a bimodal kernel 
technique, Su and Ullah[18] utilizing pre-whitening transformation, Lee et al.[19] approximating the 
squared error, etc. In our work, we examined the effect of correlated errors with four different error 
distributions on two different correlation structures with different correlation points. We include 
symmetric (normal, uniform, Laplace, and t) error distributions. 

To evaluate the performance of different correlation points, Average Mean Squared Error (AMSE) 
is used[1,29], i.e., given by 

AMSE =
𝐸൫𝑌௜ −𝑚ෝ(𝑥)൯

ଶ

𝑛
 

3. Monte Carlo experiment 
The main purpose of our study is to examine the effect of different correlated errors  on normal and 

independent co-variate. To perform this, the Monte Carlo experiment is conducted. Initially, we 
generated the error via uniform, t, normal and Laplace distributions when the co-variate is normally and 
independently distributed. We also compared the behavior of two different correlation patterns and 
discussed their results. For this work, two kinds of error models are considered: (i) structure given by 

Park et al.[14], i.e., 𝜀௜ାଵ = 𝜑𝜀௜ + (1 − 𝜑ଶ)
ଵ
ଶൗ 𝛿௜; where 𝛿௜ and 𝜀௜ are i.i.d. N(0, 1) and 𝜑 = −0.8, −0.5, −0.3, 

0, 0.3, 0.5, 0.8 and (ii) simple structure, i.e., 𝜀௜ାଵ = 𝜑𝜀௜; where 𝛿௜ and 𝜀௜ are i.i.d. N(0, 1) and 𝜑 = −0.8, 
−0.5, −0.3, 0, 0.3, 0.5, 0.8. Then we generate response variables and apply NW estimators, and the 
performance of the NW estimators is observed by AMSE. 

The performance of the estimator is evaluated over different sample sizes. We have used n = 25, 50, 
100, 200, 500, and 1000. For each distribution with various sample sizes, we repeat the original 
experiment 5000 times. 

The Monte Carlo study is outlined. 

3.1. The model 

𝑌௜ = 𝛽଴ + 𝛽ଵ𝑋௜ + 𝜀௜ 

where, 𝛽଴ = 0 and 𝛽ଵ = 1 and 𝑥௜~U(−1, 1). 
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The 𝜀௜ are generated from six distributions. The setup for the generation of 𝜀௜ is given by: 

 𝜀௜~N(0, 2.5)  Normally distributed with 𝜇 = 0 and 𝛿ଶ = 2.5. 
 𝜀௜~U(−1, 1) Uniformly distributed over the interval (−1, 1). 
 𝜀௜~t(12)  t-distributed with “12” degrees of freedom. 
 𝜀௜~Laplace(2, 3) Laplace distributed with α = 2 and β = 3. 

In this experiment plugin bandwidth is used with Gaussian kernel. 

3.2. Nonparametric estimation with correlated errors with different errors 

To examine the effect of different correlated errors on AMSE, we have used four different 
distributions of errors and results are summarized in Tables 1 and 2. 

Table 1. AMSE for NW estimation varying sample sizes, correlation and distribution of errors—Case I. 

Distributions of errors Sample size 𝝋 = −0.8 𝝋 = −0.5 𝝋 = −0.3 𝝋 = 0.0 𝝋 = 0.3 𝝋 = 0.5 𝝋 = 0.8 

𝜀௜~𝑁(0, 2.5) 25 4.4018 2.3599 1.5229 1.2419 1.5039 2.4599 4.4502 

50 4.3491 2.2998 1.4999 0.9999 1.4898 2.3677 4.3891 

100 4.2512 2.2471 1.4329 0.9681 1.4337 2.2471 4.2349 

150 4.1524 2.1932 1.3979 0.9412 1.3986 2.1868 4.1578 

200 3.9916 2.1060 1.3366 0.9050 1.3334 2.0992 4.0129 

500 3.7140 1.9617 1.2381 0.8270 1.2387 1.9656 3.7567 

𝜀௜~𝑈(−1, 1) 25 0.6091 0.8598 0.9982 1.1980 0.9921 0.8999 0.6085 

50 0.5854 0.8428 0.9614 1.0144 0.9627 0.8516 0.5836 

100 0.5536 0.806 0.9122 0.9712 0.9107 0.8076 0.5540 

150 0.5377 0.7876 0.8876 0.9496 0.8847 0.7856 0.5392 

200 0.5132 0.7529 0.8469 0.9042 0.8450 0.7497 0.5122 

500 0.4722 0.6976 0.7812 0.8391 0.7852 0.7101 0.4722 

𝜀௜~𝑡(12) 25 1.0272 1.1008 1.1001 1.0404 1.0929 1.1234 1.2998 

50 1.0684 1.0667 1.0474 1.0172 1.0305 1.0696 1.1609 

100 1.0966 1.0181 0.9886 0.9680 0.9871 1.0180 1.0975 

150 1.1530 0.9938 0.9592 0.9434 0.9654 0.9922 1.0658 

200 1.3687 0.956 0.9202 0.9046 0.9231 0.9512 1.0270 

500 0.9402 0.8779 0.859 0.8372 0.8508 0.8783 0.9475 

𝜀௜~Laplace(2, 3) 25 12.1525 5.4988 2.7008 1.1451 2.7122 5.4011 12.3001 

50 12.0599 5.3973 2.5887 1.0113 2.5894 5.2780 12.1037 

100 11.6341 5.1285 2.4615 0.9681 2.4666 5.0830 11.6117 

150 11.3749 4.9941 2.3979 0.9465 2.4052 4.9855 11.3657 

200 10.9866 4.8644 2.3191 0.907 2.3049 4.8167 10.9550 

500 10.2591 4.4858 2.1580 0.8371 2.1233 4.5362 10.1988 

From Table 1, for correlation structure, 𝜀௜ାଵ = 𝜑𝜀௜ + (1 − 𝜑ଶ)
ଵ
ଶൗ 𝛿௜, which is adopted from Park et 

al.[14], AMSEs for all error distributions are decreasing as sample size increases, and when there is no 
correlation, the behavior of AMSE is almost stable for small and large sample sizes. Also, it has been 
noted that there is no effect on the direction of the correlation. 
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When errors are uniformly distributed, AMSEs are smaller than for any other distribution, whether 
there is a correlation or not. When there is no correlation, AMSEs are smaller and decrease with sample 
size. It is interesting to note that in our first case, an increase in the level of correlation (𝜑) results in 
decrease of AMSEs. 

When errors follow t-distribution, all AMSEs are very close to each other and it seems that our first 
correlation structure makes AMSEs robust against levels of correlation. Maybe it is due to large degrees 
of freedom. Like other distributions, the AMSEs have also shown a shown a decreasing trend. In the case 
of Laplace errors, AMSEs are very large and bear the same trend. 

Table 2. AMSE for NW estimation varying sample sizes, correlation and distribution of errors—Case II. 

Distributions of errors Sample size 𝝋 = −0.8 𝝋 = −0.5 𝝋 = −0.3 𝝋 = 0.0 𝝋 = 0.3 𝝋 = 0.5 𝝋 = 0.8 

𝜀௜~𝑁(0, 2.5) 25 4.3267 1.6343 0.5988 0.0042 0.5999 1.6045 4.1288 

50 4.1351 1.5970 0.5722 0.0040 0.5727 1.5971 4.0078 

100 3.8943 1.5166 0.5436 0.0032 0.5449 1.5187 3.8966 

150 3.8226 1.4764 0.5293 0.0021 0.5310 1.4795 3.8010 

200 3.6807 1.4107 0.5064 0.0020 0.5037 1.4203 3.6478 

500 3.4184 1.3257 0.4612 0.0016 0.4667 1.3252 3.4460 

𝜀௜~𝑈(−1, 1) 25 0.2132 0.0982 0.0301 0.0012 0.0389 0.0911 0.2220 

50 0.2095 0.0815 0.0292 0.0010 0.0301 0.0851 0.2179 

100 0.2048 0.0797 0.0284 0.0008 0.0284 0.0796 0.2048 

150 0.1984 0.0767 0.0272 0.0007 0.0272 0.0768 0.1982 

200 0.1892 0.0718 0.0253 0.0007 0.0252 0.072 0.1875 

500 0.1698 0.0651 0.0226 0.0006 0.0227 0.0653 0.1718 

𝜀௜~𝑡(12) 25 0.8001 0.2999 0.1199 0.0920 0.1267 0.2989 0.7825 

50 0.7765 0.2921 0.1110 0.0840 0.1107 0.291 0.7621 

100 0.7425 0.2893 0.1037 0.0732 0.1035 0.289 0.7449 

150 0.7255 0.2798 0.1001 0.0721 0.0999 0.2808 0.7261 

200 0.6938 0.2663 0.0937 0.0620 0.0937 0.2662 0.6897 

500 0.6373 0.2393 0.0853 0.0516 0.0854 0.2463 0.6267 

𝜀௜~Laplace(2, 3) 25 9.874 3.8868 1.3851 0.7420 1.3704 3.8604 9.8507 

50 10.533 4.1612 1.4765 0.6540 1.4787 4.122 10.6648 

100 11.022 4.3059 1.539 0.5432 1.5336 4.2805 11.0588 

150 11.277 4.3887 1.5747 0.5321 1.5792 4.3848 11.2318 

200 11.777 4.4866 1.6461 0.4820 1.6332 4.5698 11.5555 

500 12.019 4.5322 1.789 0.4216 1.6992 4.8001 11.7211 

It can be seen from Table 2 that, in the correlation structure; 𝜀௜ାଵ = 𝜑𝜀௜ , AMSEs for all error 
distributions are decreasing as sample size increases for both positive and negative correlation points, and 
the same is the case for zero correlation for all types of error distributions, whether they are normal or 
non-normal; moreover, there is no effect of the direction of the correlation. Whatever the distribution of 
errors, AMSEs decreased when the intensity of the correlation of errors increased. When errors are 
uniformly distributed, the AMSE is the smallest, followed by any other AMSE. In case when errors 
follow the Laplace distribution, AMSE are larger and the interesting thing is that there whatever the 
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distribution of errors, AMSEs decreased when intensity of correlation of errors increased. When errors 
are uniformly distributed, the AMSE is the smallest, followed by any other AMSE. In case when errors 
follow the Laplace distribution, AMSE are largest and the interesting thing is that there whatever the 
distribution of errors, AMSEs decreased when intensity of correlation of errors increased. When errors 
are uniformly distributed, the AMSE is the smallest, followed by any other AMSE. In cases where errors 
follow the Laplace distribution, AMSE is the largest, and the interesting thing is that there is an increasing 
trend with an increase in sample size. 

4. Conclusions 
From the above discussion, it is concluded that the higher values of correlation affect the 

performance of the smoother, and as the correlation approaches zero, the AMSEs are very low. The 
structure of correlation also matters a lot with the distribution of error. Non-normality also affects the 
performance of the estimator. When errors follow t and uniform distributions, the smoother performance 
is very good for high correlations and even supersedes the normal errors. This may lead to the utilization 
of t and normal errors in cases of correlated errors. The case of Laplace is very drastic, as the performance 
is very poor and the AMSEs are increasing with the increase in sample size and are not recommended 
for use. 
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