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ABSTRACT: Due to a lack of  rational system design, an enormous 

amount of  energy and resources are wasted or ineffectively utilized in 

China’s rural areas. Therefore, it is crucial to develop a practical energy 

system that applies to rural areas. In this paper, a Stackelberg game 

model is established for optimization of  integrated energy systems (IES) 

in rural areas. As a leader, the new energy supplier (NES) develops a 

price strategy for electricity and heat, and the flexible users and biogas 

plant (BP) as followers receive price information and make energy 

consumption plans. Then NES adjusts equipment output based on 

followers’ feedback on energy loads. The objective of  our Stackelberg 

game is to maximize the profit of  NES while taking into account the 

costs of  followers. Furthermore, our study designs an improved 

differential evolutionary algorithm (DEA) to achieve Stackelberg balance. 

The optimization scheduling result shows that the proposed model can 

obviously increase the profit of  NES by 5.4% and effectively decrease the 

cost of  the biogas plant by 4.5%. 

KEYWORDS: integrated biogas energy system; Stackelberg game; 

improved differential evolutionary algorithm 

1. Introduction 

1.1. Background 

Energy is one of the most important bases for social economy operation. However, the continuous 
exploitation of energy has led to a rapid decline in fossil energy[1,2]. In order to address the problem of 
energy shortage, countries are actively researching new energy technologies, especially renewable energy 
sources such as solar energy, wind energy, and bioenergy[3]. Renewable energy is highly valued around 
the world due to the abundant resources, wide distribution, and less environmental pollution. Besides, 
renewable energy has the characteristics of geographical dispersion, discontinuous production, 
uncontrollability, etc. However, the centralized and unified management of the traditional power 
network is difficult to adapt to the requirements of large-scale use of renewable energy. Therefore, 
optimizing the energy system and improving the utility of new energy sources has become a crucial task 
for researchers and practitioners. Accordingly, integrated energy systems attract wide attention because 
they combine multiple energy sources and achieve collaborative management of different energies, 
effectively improving the utility of renewable energy. 

Integrated energy system (IES) is an innovative management model composed of multiple energy 
sources and various types of loads. It can realize the mutual conversion between various energy sources, 
such as electricity, heat, and natural gas, becoming an important part of the energy system. IES has been 
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widely studied and developed in recent years; it proves to be adapted to various areas, especially for rural 
areas. There are abundant types of energy in rural areas, but problems such as poor energy utilization 
and unreasonable energy structure persist, so it is of great importance to optimize the structure of rural 
energy system[4,5]. IES model integrates new energy sources that are widely distributed in rural areas into 
a unified power supplier, improving energy utilization in rural areas. 

The operation of IES relies on the synergistic cooperation of multiple stakeholders, and the basic 
problem to be solved is how to describe the large-scale complex system and the interaction between 
different stakeholders[6–8]. The Stackelberg game is one of the most important methods to solve the conflict 
of interests of different market players. It is a two-stage dynamic game with complete information, and 
the decision-making of the game is sequential. The main idea of the game is that both players choose 
their own strategies based on each other’s possible strategies to ensure maximum benefits. In this game 
model, the first player to make a decision is called the leader. After the leader, the remaining players 
make decisions based on the leader’s decision, which is called the followers. The leader then adjusts its 
decision based on the followers’ decision until Nash equilibrium is reached[9]. In practical application, 
how to solve the Stackelberg game and find the optimal results are still challenging problems. 

Researchers have spent much effort exploring methods to solve the Stackelberg game. Early 
Stackelberg games were solved by the classical method, which mainly transforms multiple objective 
functions into a single objective function. However, the main drawbacks of the classical method are high 
computational cost and poor convergence, which often fail to obtain the optimal result[10]. In this regard, 
the differential evolutionary algorithm (DEA) has been developed into a popular option for solving the 
Stackelberg game. The DEA is a stochastic search algorithm based on population, which is widely used 
in solving multi-objective optimization problems with high-dimensional data. Each individual in the 
population of DEA corresponds to a solution vector. The DEA has a unique evolutionary approach; it 
amplifies the differences between the individuals in the current population to construct a new variant and 
adopts crossover, mutation, and other operations to enlarge the range of the solution distribution. The 
DEA starts from a set of initial populations and generates new populations through mutation, where the 
worse individuals are eliminated and the better ones are retained[11]. After continuous elimination and 
updating, the optimal solution of the system is searched. However, the traditional DEA is easy to fall 
into the local optimum, and the algorithm has a long convergence time, which is difficult to meet the 
increasingly high needs for complex models. 

In 2022, China’s annual biomass power generation reached 163.7 billion kilowatt hours, accounting 
for 2% of the total power generation. Among them, biogas power generation had an annual power 
generation of 3.7 billion kilowatt hours, accounting for 2.3% of biomass power generation[12]. The great 
development of rural biogas power generation has brought significant economic, social, and ecological 
benefits. Biogas has the characteristics of wide distribution and diverse sources. Biogas plants (BP) can 
achieve the resourcefulness of biodegradable waste and improve the utilization rate of energy in rural 
areas. Currently, biogas plants have been established in many rural areas to improve the utilization of 
local organic material[13,14]. Biogas plants produce biogas through anaerobic fermentation using a large 
amount of organic matter from rural areas, and the biogas residue and slurry produced along with the 
biogas are biochemically processed to make organic fertilizers for sale. 

In order to address the above challenges, this paper proposes a Stackelberg game for a rural 
integrated biogas energy system, which includes a new energy supplier (NES), a biogas plant (BP), and 
the user. At the same time, this paper designs a new mutation strategy that reduces the possibility of the 
algorithm falling into the local optimum and accelerates the convergence of the algorithm. 
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1.2. Literature review 

Biogas, which is produced by energy crops or biodegradable wastes, has the advantages of wide 
distribution and diverse sources. It can meet almost all the demands of rural microgrids; therefore, biogas 
is usually introduced into rural IES in previous studies. Temperature is a critical factor affecting biogas 
production, and biogas can be produced at a higher yield under suitable temperature. When the 
temperature of the biogas digester deviates from optimal, gas production will be significantly reduced. 
Currently, biogas plants (BP) usually adopt a medium-temperature fermentation process; the internal 
temperature of the biogas digester is controlled at about 35–40 ℃, which is the most economical 
temperature range for the operation of biogas digesters. Tan et al.[7] proposed increasing the biogas yield 
by injecting hot water into the digester; at the same time, a storage tank was set up outside the digester 
to ensure the reliability of the biogas supply. However, this method did not consider the effect of the 
uncertainty of ambient temperature on the system. Qin et al.[15] proposed a power supply system with 
complementary coupling of solar energy and biogas, which generated electricity through solar energy 
during the daytime and provided a stable power supply with biogas cogeneration in the evening. This 
system not only effectively reduced the total annual costs and carbon emissions but also improved the 
efficiency of energy use. In order to illustrate the significance of biogas digesters for energy systems, Wang 
et al.[16] proposed and established a two-layer optimization model of biogas integrated energy systems 
with natural gas price fluctuation, which improved the thermal comfort and energy efficiency of heat 
users. The above literatures demonstrate the operating conditions and important value of biogas digesters. 

With the development of energy markets, the behavior of users is gradually taken into account in 
the energy management of IES. In the energy trading process, the energy supplier prioritizes the price 
strategy based on the predicted load demand, and users adjust their energy consumption behavior based 
on the price information[17]. The Stackelberg game can effectively describe this kind of interactive 
behavior of IES. Huang et al.[18] proposed a two-stage energy management method of heat-electricity IES 
considering dynamic pricing based on the Stackelberg game. The model markedly enhanced renewable 
energy utilization and reduced the cost of both energy supplies and users. The Stackelberg game model 
can also be used for energy interconnection systems of multiple objectives. Li et al.[19] established a 
Stackelberg game optimization model for distributed integrated energy systems with hierarchical zoning, 
which fully considered the interaction of energy and interests between different communities. Wang et 
al.[20] proposed a model for optimal scheduling of electrical and thermal integrated energy systems based 
on the Stackelberg game, which aimed at maximizing the revenue of energy suppliers. 

Evolutionary algorithms are one of the most important methods for solving Stackelberg games, and 
in recent years much more studies have focused on the optimization and improvement of evolutionary 
algorithms. Traditional evolutionary algorithms are prone to fall into local optimal solutions when facing 
complex optimization problems due to insufficient population diversity and single variance vectors. In 
order to solve this problem, Jiang et al.[10] optimized the mutation strategy and increased the population 
diversity. They introduced a self-adaptive operator to ensure the diversity of the mutation strategy and 
reduce the probability of the algorithm falling into local optimal results. Youssef et al.[11] proposed an 
optimal stochastic mutation strategy, mutating certain genes of the optimal chromosome within the 
search range. The strategy provided the algorithm with a stronger exploration capability at a later stage 
of evolution in order to improve the ability to jump out of the local optimum. Zhang et al.[21], on the other 
hand, designed a collaborative initialization strategy to generate high-quality initial bi-populations to 
accelerate the evolutionary process, and they designed problem-specific evolutionary operators for each 
sub-population. This dual-cooperative model, which shares advantageous information among different 
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populations, accelerated the convergence of the algorithm. 

1.3. Work in the paper 

A Stackelberg game model is established in this paper for optimization of integrated energy systems 
(IES) in rural areas. The industrial user-biogas plant is first introduced into Stackelberg game-based IES 
and plays a critical role as a market player. Moreover, we present a novel DEA for solving the Stackelberg 
game, addressing the challenges faced by traditional algorithms. Our work is detailly described and listed 
as follows: 

(1) For the first time, industrial users are introduced into Stackelberg game-based IES. The processes 
in biogas plants are divided and transferred into different kinds of flexible loads, allowing industrial users 
to participate in games, which makes the model more practical and usable. 

(2) The Stackelberg game-based IES is solved by an improved differential evolutionary algorithm 
(DEA) in our study. The DE/rand2 strategy and the DE/best2 strategy are coupled into a composite 
mutation strategy to give our algorithm strong global-search ability in the early stage of iteration and 
better local-search performance at later times. 

In summary, the model proposed in this paper improves the accuracy and availability of energy 
scheduling in rural areas and provides a promising solving method for Stackelberg game-based IES. 

2. Mathematical model 

2.1. Structure of IES 

Figure 1 illustrates the structure of our integrated energy system (IES). The electricity in our IES 
mainly comes from a new energy supplier (NES), of which wind turbines (WT), photovoltaic panels 
(PV), combined heat and power (CHP), and energy storage systems (ESS) are included. The equipment 
of the biogas plant (BP) consists of biogas digesters, gas boilers (GB), solar collectors (SC), thermal 
storage tanks (TST), and other digesters. Among this equipment, solar collectors generate heat by 
absorbing solar energy, gas boilers consume biogas to produce heat, and the digesters are kept warm by 
the water circulation from thermal storage tanks. Biogas residual and biogas slurry are regularly extracted 
from biogas digesters to produce green organic fertilizer and liquid fertilizer, which continuously creates 
revenue for BP. For the common user, flexible loads are introduced to decrease energy costs and reduce 
fluctuation of electrical loads. Moreover, the rural electricity and heat grid are additionally added in order 
to maintain the balance of electricity and heat in our IES. 

 
Figure 1. Structure of  the introduced IES. 
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2.2. Framework of the Stackelberg game 

A Stackelberg game is constructed to describe the rural IES where the participants deeply interact 
with each other, and an optimal result is eventually achieved through the game. NES, as the leader of the 
game model, prices energy and adjusts equipment output based on the load demand of followers. The 
objective of NES is to maximize its profit, which is the revenue from energy sales minus the operation 
costs of equipment. The objective of BP is also to maximize the profit, which is mainly realized by 
optimizing load distribution because of the high rate of energy cost in its total costs. The strategies of BP 
are as follows: 1) Adjust the output of the biogas boiler based on the time-of-use heat price. 2) Optimize 
the flexible load in different periods to decrease power costs on the premise of normally producing biogas 
and fertilizer. The user aims at maximizing its customer surplus by co-optimizing consumer satisfaction 
index (CSI) and flexible load. The structure and interconnection of our game are shown in Figure 2. 

 
Figure 2. Framework of  Stackelberg game. 

Stage 1: The NES first sets the electricity price and heat price for residential and industrial users, 
respectively. The price information is then transmitted to followers. 

Stage 2: BP and the user determine the energy consumption plants based on the price information 
from NES, so the optimal decision of the followers can be regarded as a function of the decision variables 
of the leader. 

Through the above description, we can find that the strategy of BP and the user are established on 
the pricing of NES, and their optimization results will in turn affect the pricing of NES. This kind of 
energy transaction process is in line with the situation of the Stackelberg game and can be expressed as 
follows: 

 (1)

where N is the number of participants, ρNES is the price strategy set by NES; δBP is the load demand of BP; 
δuser is the load demand of the user; FNES is the revenue of NES; FBP is the revenue of the biogas plant; Fuser 
is the consumer surplus of the user. 

NES BP user NES BP user{ ; ;{ }; ,{ }}G N F F F   ， ，
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The game reaches Stackelberg equilibrium when all followers make optimal responses according to 
the leader’s strategy and the leader accepts this response. If (𝜌୒୉ୗ

∗ , 𝛿୆୔
∗ , 𝛿୳ୱୣ୰ୱ

∗ ) is the equilibrium solution 
of our game, it needs to satisfy: 

 

(2)

Under this situation the Stackelberg game-based IES achieves balance. 

2.3. Description of the new energy suppliers (NES) 

2.3.1. Objective function of the NES 

The NES develops price strategy for energy and provides energy by operation of WT, PV, CHP and 
ESS. The objective function of NES is as follow: 

 (3)

 
(4)

 
(5)

 
(6)

 
(7)

The following equations show the energy sold to biogas plants and users by energy suppliers, as well 
as the cost of each item: 

𝐼sell-BP,௧ = (𝑃BP,௧𝑐BP,௧
௘ + 𝐻BP,௧𝑐BP,௧

௛ ) △ 𝑡 (8)

𝐼sell-user,௧ = (𝑃user,௧𝑐user,௧
௘ + 𝐻user,௧𝑐user,௧

௛ ) △ 𝑡 (9)

 
(10)

where, device = WT, PV, CHP, ESS. 

2.3.2. Constraints of the NES 

(1) Electricity balance constraint 

When NES provides electricity to BP and the user, the electricity balance in IES model should satisfy 
the below equation: 

 
(11)

(2) Heat balance constraint 

The constraint of heat balance is as follow: 
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(12)

(3) Equipment constraint 

Wind turbines (WT): Wind turbines are devices that convert the kinetic energy of wind to electrical 
energy. As a kind of clean renewable energy, wind energy has been paid much more attention by all 
countries in the world. The output power of WT can be calculated by the following equation[22]: 

 

(13)

where Vactual is the actual wind speed; Vrated is the rated wind speed; PWT
rated is the rated output power; NWT 

is the number of wind turbines. 

Photovoltaic panels (PV): PV can directly convert the solar energy to electrical energy through the 
photovoltaic effect of semiconductors. The cost of PV power has decreased markedly in recent years, 
which leads to a boom of PV installation in the whole world. The output power of PV can be calculated 
by the following equation[23]: 

 (14)

where PPV
rated is the rated output power of PV, GW is the radiation intensity at the working point; GPV

std  is 

the standard radiation intensity; ηPV
T  is the power temperature coefficient; Tb is the cell temperature at the 

working point; TPV
ref  is the reference temperature; NPV is the number of PV. 

Combined heat and power (CHP): CHP is biogas-fueled equipment through which the high-level 
heat energy generated from the combustion of biogas is converted to electricity and low-level heat energy 
is collected through a waste heat boiler (WHB)[24]. In this system, CHP mainly consumes biogas to output 
electrical power and heat for followers: 

 (15)

 (16)

 (17)

 (18)

where ηCHP,t
e  is the electricity generating efficiency of CHP; ә is the heat-electricity generation ratio of the 

CHP; ΔPdi, ΔPui are the upper and lower limits of the CHP ramp rate. 

Energy storage system (ESS): ESS is introduced to store excess power and release it when needed, 
which achieves efficient use of new energy power. The capacity constraint of ESS is shown[25] in equation: 

 (19)

where σ denotes the energy loss coefficient of ESS; ηESS represents charging and discharging efficiency of 
ESS; and Δt denotes the time interval. 

The storage capacity of ESS is constrained by the below equations: 
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 (20)

 (21)

where Emax is the maximum capacity of ESS; Smax, Smin are the maximum and minimum storage 
coefficients of ESS, here Smax is 0.9, Smin is 0.1; E0 is the electric power stored by ESS at initial time; S0 is 
the storage coefficient of ESS at initial time[17]. 

The charging and discharging power constraints of ESS are shown in Equations (22)–(24). Because 
of the restriction of charging and discharging power, the electric power of ESS at time t and t − 1 is 
constrained by Equation (25): 

 (22)

 (23)

 
(24)

 (25)

where uch,t and udc,t are the charging and discharging power states of ESS, taking the value of 0 or 1; ΔEdi 
and ΔEui are the maximum downward and upward climbing rates of ESS, respectively. 

2.4. Description of biogas plant (BP) 

2.4.1. Objective function of the BP 

The BP obtains revenue from selling biogas and fertilizer, meantime it adjusts energy consumption 
distribution based on electricity price set by NES. The objective function of BP is shown below: 

 (26)

 
(27)

 
(28)

 
(29)

2.4.2. Constraints of the BP 

(1) Process of biogas plant 

The process of biogas plants is illustrated in Figure 3. The biogas plant produces biogas through the 
fermentation process in biogas digesters and regularly extracts biogas slurry and residue to prepare 
organic fertilizer. Based on the process characteristics, electrical loads in BP can be divided into fixed 
electrical loads and shiftable electrical loads. The electrical loads of digesters are fixed loads because 
biomass in digesters needs to be stirred continuously to ensure mixing evenly. The solid-liquid separation 
process of biogas residue and the crushing process of organic fertilizer usually run for a few hours, and 
these processes cannot be divided into sections; therefore, they are shiftable electrical loads. 
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Figure 3. Internal process of  biogas plant. 

The electrical loads in BP should satisfy the following constraints: 

 (30)

Let the shiftable period of crushing process be [tshift1−, tshift1+], and let the shiftable period of solid-
liquid separation process be [tshift2−, tshift2+]. The constraints of below equations should be satisfied[26]. 

 
(31)

 
(32)

Heat loads in BP are divided into fixed loads and shiftable loads. The fermentation process belongs 
to fixed heat load because the digesters need to be kept warm to maintain the fermentation rate at all 
times. The drying process of fertilizer usually lasts for several hours; it is a continuous process that cannot 
be divided into segments. Therefore, based on rational decision, BP arranges the drying process at a time 
period when the heat price is relatively low. The heat loads in BP should satisfy the following constraints: 

 (33)

Let the operating period of the shiftable heat load be [hshift−, hshift+], and let the constraint is described 
as equation when the load is shifted into the time period with τ as the starting time: 

 
(34)

where hshift is the total operating hours of drying process, yh is a state variable that determines whether the 
load is shifted or not, and takes the value of 0 or 1, yh = 0 denotes the load is not shifted. 

(2) Heat balance constraint 

The thermal model of a biogas plant is illustrated in Figure 4. The drying temperature of fertilizer is 
usually in the range of 60~80 ℃, and it is difficult for a thermal storage tank (TST) to reach this 
temperature through circulating water, so the required heat for the drying process is provided by CHP 
and GB. While the internal temperature of digesters is usually controlled at about 40 ℃, the use of TST 
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for heat retention can not only reduce temperature fluctuation in digesters but also decrease heat loss in 
the heat transfer process. 

 
Figure 4. Illustration of  thermal model of  biogas plant. 

The equations of heat balance of TST are as follows: 

 (35)

 (36)

 (37)

 (38)

 (39)

where ηBP is the heat transfer loss coefficient of the pipeline in BP, which is mainly determined by the 
material of the pipeline, heat transfer areas and fluid temperature. 

(3) Equipment constraints 

Biogas digester: 

Biogas digesters produce refined biogas for CHP to generate electricity and for the user’s daily needs. 
The internal temperature of the biogas digester is an important factor affecting biogas production, so it is 
necessary to keep the temperature in an optimal range. In our model, a thermal storage tank (TST) is 
applied to maintain the temperature of digesters through circulating water, which guarantees the 
continuous and efficient production of biogas. 

The biogas produced from digesters contains about 30 percent carbon dioxide and less than 1 percent 
sulfide. The high content of carbon dioxide will affect the combustion of biogas; moreover, the sulfide is 
able to cause corrosion of the equipment. Therefore, desulphurization and decarbonization are required 
to obtain usable biogas. 

If considering the daily biomass in IES a constant value and ignoring the effect of the concentration 
of biomass waste, the daily biogas production can be calculated by equation: 

 (40)
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them, γm is mainly related to the internal temperature of digesters when fermentation raw materials and 
bacteria remain basically unchanged. When the temperature in digesters remains stable, γm is nearly a 
constant value, and the biogas production is uniformly distributed throughout the day. 

Organic fertilizer production process: 

Biogas is a kind of promising green energy without doubt, but production of biogas is always 
accompanied by the generation of biogas residue and slurry. Nowadays, biogas residue and slurry are 
proved to be able to be applied for producing organic fertilizer. 

Through the solid-liquid separation, biogas residue is separated and further transformed into solid 
organic fertilizer through a series of processes, including fermentation, crushing, and drying. After 
fermentation of biogas slurry, the liquid organic fertilizer is obtained by adding auxiliary materials. The 
fermentation process is similar to that of biogas digesters, which requires continuous stirring and optimal 
temperature. The production volume of fertilizer is deduced from the conservation of mass as shown in 
equation: 

 (41)

 (42)

where ρm is the density of biomass, ρgas is the density of biogas, and ρOF is the electricity consumption for 
producing a kilogram of fertilizer. 

Solar collector (SC): 

A solar collector is a device that converts the solar energy into heat energy. Generally, it consists of 
a concentrator and a receiver to complete the heat transfer process. The efficiency of SC can be calculated 
by the following equation: 

 
(43)

where m is the mass flow rate of the fluid flowing through the collector, cp is the specific heat capacity of 
the fluid, Tin and Tout are the average fluid inlet and outlet temperatures, A is the collector area of SC, GT 
is the solar flux received by SC, and ηSC is the efficiency of SC. 

Biogas boiler (GB): 

A biogas boiler is heat production equipment with high thermal efficiency in IES. BP will increase 
the output of GB when the operating cost of GB is lower than the heat price set by NES. The heat 
produced by GB is partly supplied to fixed heat loads and partly to shiftable heat loads. The power of GB 
is constrained by the following equation: 

 (44)

 (45)

 (46)

where ηGB,h is the heat production efficiency of the GB, and HGB,max is the rated power of the GB. ΔHdi, 
ΔHui are the maximum upward and downward climbing rates of GB, respectively. 

Thermal storage tanks (TST): 

OF gas BP OF( )mG m G R   
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


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GB, GB,h GB,t tH G
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A thermal storage tank is the equipment being able to store heat energy by raising the temperature 
of the storage water. The TST is used to maintain the temperature of digesters in BP, which has the 
advantages of accurate temperature control, small temperature fluctuation, and low heat loss. In the 
operation of BP, the solar collectors and biogas boilers provide heat for TST, and TST transfers heat to 
digesters through the circulating water. The heat balance of TST is constrained by the following equation: 

 (47)

 (48)

 (49)

where Hloss is the heat loss of TST; Twa is the temperature of the storage tank at different times; T0 is the 
ambient temperature; a1 is the coefficient of heat loss; it is closely related to the heat exchange area, 
material of TST, and so on. a2 is the heat loss in heat transfer lines. 

2.5. Description of the user 

2.5.1. Objective function of the user 

The flexible user purchases electricity and heat energy from NES and consumes biogas in daily life. 
The objective function of the user is maximizing the consumer benefit, which is the consumer satisfaction 
index (CSI) minus the energy costs[27]. The objective function of the user is shown in Equation (51), and 
CSI and energy costs can be calculated by Equations (52) and (53): 

 (51)

 

(52)

 
(53)

where ω is the parameter representing the user’s preference, which may take different values at different 
times of the day, 𝜎 is the predetermined parameter, and it takes the value in the range of (0, 1] and x is 
the amount of energy consumed by the user. 

2.5.2. Constraints of the user 

The electrical loads of the user are divided into fixed loads and transferable loads. The constraints 
of the electrical load of the user are shown as follows: 

 (54)

The transferable load represents a kind of load that can be transferred to a certain period of time, but 
the total load power before and after the transfer should keep the same. Let the time period of the 

transferable load be [ttrans
ି , ttrans

+ ] and the minimum transfer duration be Ttrans
min . The constraints on the 

transferable load and the minimum continuous operation time are shown in Equations (55) and (56): 

𝑧𝑃trans
min ⩽ 𝑃trans ⩽ 𝑧𝑃trans

max  (55)
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(56)

where Ptrans
min  Ptrans

max  are the minimum and maximum power values set for transferable load; z takes 0 to 
indicate that the load is not transferred, and 1 to indicate that the load is transferred. 

 

2.6. Differential evolutionary algorithms (DEA) 

A Stackelberg game model is constructed with three participants in this study. Each of the 
participants provides energy or information for others and optimizes their objective functions based on 
information they received. For these multi-objective optimization problems of large-scale 
multidimensional nonlinear systems, the traditional optimization algorithm—mixed-integer linear 
programming (MILP)—is no longer suitable and difficult to solve, so we adopt the improved differential 
evolutionary algorithm (DEA) to solve the problem. The improved DEA introduced in this paper has the 
advantages of easy implementation and high computational efficiency[28]. The flowchart of the algorithm 
steps is shown in Figure 5. The improvements of DEA in this paper are listed as below. 

 
Figure 5. Flowchart of  improved differential evolutionary algorithm. 

(1) Generation of initial population 

The random generation of the initial population for traditional difference algorithms may lead to a 
long convergence time for the algorithm. To overcome these drawbacks, this paper uses tent mapping to 
generate the initial population. The generated initial population, distributed uniformly in the value range, 

min
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effectively reduces the convergence time. The method of tent mapping is shown in equation: 
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(57)

where β is the control variable whose value range is (0, 1), and here β takes the value 1/2. 

(2) Mutation strategy 

Among the mutation strategies of traditional difference algorithms, the DE/rand1 and DE/rand2 
strategies have excellent global search performance but lack the memory for local better solutions. The 
DE/Best1 and DE/Best2 strategies have better local optimization performance but poor global-searching 
ability, which usually leads the algorithm into local optimum. For this reason, we introduce the 
exponential mutation rate (MR) that varies in the iteration process: 

 (58)

When the random number is not larger than MR, the DE/Best2 strategy is executed, when the 
random number is larger than MR, the DE/Rand2 strategy is executed. 

In the initial stages of iteration, the value of MR is quite small, and the algorithm mainly performs 
DE/Rand2 strategy, avoiding the algorithm falling into local optimum in the early stage. As the iteration 
process proceeds, the value of MR gradually increases, leading to the growing probability of executing 
the DE/Best2 strategy. This kind of composite strategy provides the algorithm with better global-
searching ability in the early stage and excellent local-searching performance at a later time. 

(3) Fitness function 

Most of the fitness functions of traditional differential algorithms are single objective functions. They 
only consider the benefits of the leader in the Stackelberg game and do not take into account the interests 
of other participants. However, in this paper the fitness function is constructed by the leader’s profit and 
the follower’s energy cost, which ensures the multiple interests in the Stackelberg game. The fitness 
function is shown in the following equation: 

 (59)

The steps of the algorithm are as follows: 

1) Set the population size and basic parameters of the algorithm. 
2) Generate initial populations through tent mapping. 
3) NES transmits information about the initial population to BP and the user. 
4) BP and the user optimize their energy consumption plans and equipment output based on the 

information they received, aiming at maximizing the total profit (or consumer surplus). Thus, the 
operation condition of equipment and load distribution at different times are obtained, and then the 
information is transferred to NES. 

5) NES adjusts the output of the equipment based on the load distribution of followers. First of all, 
NES should keep the energy balance of the system and guarantee the energy demand is met at all 
periods. On this premise, NES further optimizes the operation condition of equipment to save its 
total costs. 

6) Calculate the fitness function, output, and record the best individual whose fitness value is the 

(iter/itermax)
min max minM (M )R MR * R / MR

NES BP-c user-c0.5* 0.3* 0.2*tF F F F  
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largest. 
7) The new population with higher fitness is generated through the processes of mutation, crossover, 

and selection. The mutation strategy is the composite strategy introduced above. 
8) Repeat the process until equilibrium. 

3. Simulation and analysis 

3.1. Parameter setting 

An actual rural IES in south China is selected as the test system to verify the effectiveness of the 
model we proposed. The IES consists of a variety of distributed new energy sources, and they are fully 
utilized by PV, WT, CHP, SC, and other energy conversion devices. The economic and technical 
parameters of devices in our IES are shown in Table 1. The parameters of flexible loads of BP and the 
user are shown in Table 2. The time-of-use prices of energy from the grid at different times are listed in 
Table 3. Electricity and heat price of the grid at different times are shown in Table 4. 

Table 1. Economic and technical parameters of  the equipment. 

Equipment Technical parameters Operation and maintenance cost/￥10,000 

Wind turbine - 0.10 

Photovoltaic panel η = 0.004 0.10 

Combined heat and power η = 0.3, φ = 2.1 0.20 

Energy storage system σ = 0.01, η = 0.98, Smax = 0.9, Smin = 0.1 0.10 

Biogas digester γ = 0.30 m3/kg 0.05 

Solar collector η = 0.30 0.10 

Biogas boiler η = 0.95 0.10 

Thermal storage tanks a1 = 10, a2 = 0.02, ηBP = 0.98 0.02 

Table 2. Flexible load parameters. 

Flexible load Parameters 

Shiftable electrical load-1 [tshift1-, tshift1+]=[5, 22]; ts=3 h 

Shiftable electrical load-2 [tshift2-, tshift2+]=[5, 22]; ts=2 h; 

Shiftable heat load [hshift-, hshift+]=[5, 22]; hs=3 h; 

Transferable electrical load [ttrans
- , ttrans

+ ]=[5, 22]; Tmin
tran=2 h; [Pmin

trans,Pmax
trans]=[8, 26.7] 

Table 3. Pricing strategy of  NES at different time. 

Time period Price range 

Industrial electricity price Peak time [0.63, 2.40] 

Flat time [0.42, 1.60] 

Valley time [0.21, 1.20] 

Residential electricity price Peak time [0.60, 1.20] 

Flat time [0.40, 0.80] 

Valley time [0.20, 0.60] 

Heat price Peak time [0.60, 1.20] 

Flat time [0.40, 0.80] 

Valley time [0.30, 0.60] 
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Table 4. Electricity and heat price of  grid at different times. 

Time period Price 

Electricity sell price Peak time 1.2 

Flat time 0.8 

Valley time 0.6 

Electricity purchase price  Peak time 0.6 

Flat time 0.4 

Valley time 0.2 

Heat sell price Peak time 0.6 

Flat time 0.4 

Valley time 0.3 

Heat purchase price Peak time 1.2 

Flat time 0.8 

Valley time 0.6 

3.2. Experimental analysis 

The pricing strategies of NES for the initial price and optimized price of electricity are shown in the 
figure above. The upper limit of energy price is the sale electricity price of grid, and the lower limit is the 
purchase electricity price of grid. Figures 6 and 7 show the time of use price of residential electricity, 
industrial electricity price, and heat energy, respectively. It can be easily found that there is an obvious 
difference between the optimal price and initial price, which indicates that the improved DEA effectively 
optimizes the decision-making of the NES, making the system operation more economical and practical. 

(a) (b) 

Figure 6. (a) Time of  use price of  residential electricity; (b) and industrial electricity. 

 
Figure 7. Time of  use price of  heat energy. 
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Figure 8 shows the electricity balance of IES. The WT provides electricity at all time periods in a 
typical day. The PV provides electricity during 6–19 h due to the restriction of sunlight intensity. The 
ESS is charged at 1–3 h, 9–10 h, 14–15 h, and 24 h, and discharged at 10 h, 12 h, and 17–20 h, which 
effectively mitigates the waste of power and reduces the cost of purchasing power from the grid. To 
address the problem of unstable output of new energy, CHP, which is driven by the purified biogas, is 
applied to provide power for users. The power generated by NES and purchased from the grid is able to 
meet the demand of BP and the user in this case. 

 
Figure 8. Electricity balance of  IES at different time. 

The heat balance of IES is shown in Figure 9. The heat energy is supplied steadily throughout the 
whole period by CHP, which satisfies the needs of BP and the user. Moreover, the excess heat energy is 
provided to the grid for benefits. The biogas boiler has no heat output in 11–15 h due to the lower heat 
price compared to the cost of the biogas boiler. The shiftable heat load is evenly distributed in 11–13 h, 
and comparing the time of use heat price in Figure 7, it can be found that the heat price set by NES is the 
lowest in this time period. During the whole time period, the thermal storage tank continuously supplies 
heat to BP in order to keep the internal temperature of digesters, so the heat loss exists in the whole day. 

 
Figure 9. Heat balance of  IES at different time. 

As can be seen from Figure 10, the shiftable electrical load-1, which represents the process of 
fertilizer crushing, is distributed in 12–14 h, and the shiftable electrical load-2, which stands for the 
process of solid-liquid separation, is distributed in 21–22 h. The optimization of flexible load distribution 
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not only results from cost savings but also takes into account the process characteristics in BP. As can be 
seen in Figure 10, the transferable electrical load is unevenly distributed in a typical day. Combined with 
the residential electricity price, it can be found that the transferable load is larger in flat time and valley 
time and smaller in peak time. The rearrangement of flexible loads can not only reduce the energy cost 
but also alleviate the power shortage in peak time, playing the important role of peak shaving and valley 
filling. 

(a) (b) 

Figure 10. (a) electrical load distribution of  BP; and (b) the user. 

In Figures 11 and 12, initial results come from the best individual of the initial generation. As can 
be seen above, the cost of NES is slightly reduced after optimization, while the total cost of BP obviously 
decreases by 4.5% in this case. Besides, the profits of NES and BP grow by 5.4% and 4.0% after 
optimization, respectively. A certain increase in the energy cost of the user can be observed in Figure 11, 
which is the result of a higher electricity price in peak time after optimization. The case results prove that 
the IES model introduced in this paper is able to improve the profits of leaders and consider the interests 
of followers, making our game model more applicable for the market. 

 
Figure 11. Comparison of  total costs of  NES, BP and the user. 
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Figure 12. Comparison of  profits of  NES, BP and the user. 

In Figure 13, the iteration process and the iteration results of the three different strategies are 
compared. The composite strategy used in this paper shows similar convergence speed compared to the 
DE/Best2 strategy, but the fitness value of the composite strategy is noticeably higher than that of the 
DE/Best2 strategy. This indicates that the DE/Best2 strategy is more likely to fall into a local optimum, 
while the composite strategy avoids this drawback. Compared with the DE/Rand2 strategy, the 
composite strategy exhibits significantly faster convergence speed and better fitness values in the iteration 
process. It demonstrates that our composite strategy has both stronger global-searching ability and local-
searching ability compared to the traditional mutation strategy, leading to shorter convergence times and 
better equilibrium solutions. 

  
Figure 13. Comparison of  best fitness value of  three strategies in iteration. 

4. Conclusion 
This paper constructs a muti-participant Stackelberg game model for rural integrated energy systems 

(IES), where the interests of the leader and follower are both considered. The profit of NES is increased 
by 5.4% and the cost of BP is decreased by 4.5% after optimization, proving that our Stackelberg game-
based IES is able to balance the interests between the leader and follower. Moreover, we develop an 
improved differential evolutionary algorithm (DEA) to solve the Stackelberg game. As a comparison, our 
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improved DEA shows much higher convergence speed than the algorithm using the DE/rand2 strategy 
and exhibits better equilibrium solutions than the DE/best2 strategy. The conclusions are summarized 
hereafter: 

(1) In 2022, industrial electricity accounts for 67% of the national electricity consumption in China; 
thus, industrial users are a significant participant in the electricity market. In this study, industrial users—
biogas plants—are first introduced into IES, and the load of BP is divided into different types of flexible 
loads according to their process characteristics so that they can participate in the Stackelberg game 
together with common users. The game model and solution method in our study provide reliable and 
practical reference information for electricity industry participants so that they can find better methods 
to coordinate relationships between energy suppliers, industrial users, and the common user. 

(2) This paper establishes an improved DEA to solve the Stackelberg game with multiple participants 
and multiple variables, which has faster convergence speed and better equilibrium results than traditional 
DEA, markedly reducing the computational cost of the model. Moreover, our improved DEA provides 
ideas for the development of new algorithms. Applying different mutation methods at different stages 
under the control of a specific operator can effectively combine the advantages of different methods and 
avoid their disadvantages. 

(3) In previous studies, most results of the Stackelberg game-based model focused on increasing the 
benefit of the leader but ignored the benefit of other players. However, the Stackelberg game result in this 
paper not only improves the leader’s profit but also takes into account the interests of the followers, 
avoiding the situation of “single winner” in the traditional game model. The game result of our model 
can be a meaningful sample for decision-makers in the electricity market to balance interests between 
different stakeholders, showing more practical value and reference significance. 

As the trend of interactive behaviors in the energy market becomes more and more obvious, the 
Stackelberg game-based IES proposed in this paper can help to analyze the interaction process between 
different decision-making bodies and find the optimal equilibrium strategy, which can provide important 
reference information for decision-makers in the market and the government. 
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Abbreviations 
IES Integrated energy system PCHP,t

e  Electrical energy produced by CHP at time t 

NES New energy supplier PCHP,t
g  Gas consumption of CHP at time t 

BP Biogas plant PCHP,t
h  Heat power produced by WHB at time t 

DEA Differential evolutionary algorithm PCHP,max
e Rated power of CHP 

WT Wind turbines EESS,t Electric power stored by ESS at time t 
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PV Photovoltaic panels PESS,t Charging and discharging power at time t 

CHP Combined heat and power Pmax,t Maximum charging and discharging ability of ESS 

ESS Energy storage system FBP-r Total revenue of BP 

GB Gas boilers FBP-c Energy cost of BP 

SC Solar collectors FBP-o Operating cost of equipment in BP 

TST Thermal storage tanks Isell,t
 g  Revenue generated from selling biogas 

CSI Consumer satisfaction index Isell,t
 ୓୊  Revenue generated from selling organic fertilizer 

WHB Waste heat boiler Ce,t Cost of purchasing electricity of BP from NES 

Parameters Ch,t Cost of purchasing heat of BP from NES 

N Number of participants CSC,t Operating cost of solar collector at time t  

ρNES Price strategy set by NES CGB,t Operating cost of biogas boiler 

δBP Load demand of BP PBP,fix Fixed electrical load of BP 

δuser Load demand of the user PBP,shift1 Shiftable electrical load of crushing process 

FNES Revenue of NES PBP,shift2 Shiftable electrical load of solid-liquid separation process 

FBP Revenue of the biogas plant τ1/τ2 Starting time of shiftable loads 

Fuser Consumer surplus of the user tshift1 Total operating hours of crushing process 

FNES-r Total revenue of NES tshift2 Total operating hours of solid-liquid separation process 

FNES-c Fuel cost of NES yh1/yh2 State variable that determines whether or not load has been 
shifted 

FNES-o Operation cost of equipment of NES hshift Total operating hours of drying process 

Inet,t Electricity grid cost HBP
 fix Fixed heat load 

Isell-BP,t Revenue derived from BP HBP
 shift Shiftable heat load 

Isell-user,t Revenue derived from user HGB,t
 fix  Heat power produced by GB for fixed heat load at time t 

GCHP,t Amount of biogas used by CHP HCHP,t
 fix  Heat power produced by CHP for fixed heat load at time t 

CCHP,t Operating cost for CHP at time t HSC,t Heat power generated by solar collector at time t 

CWT,t Operation cost of WT at time t Hloss,t Total heat loss of TST at time t 

CPV,t Operation cost of PV at time t Htank,t Heat power received by TST at time t 

CESS,t Operating cost for ESS at time t Hwa-loss Decrease of heat caused by circulating water 

PBP,t Electric power sold by NES to BP at 
time t 

Htank-loss Heat loss through metal tank 

HBP,t Heat power sold by NES to BP at time 
t 

HGB,t
 sft  Heat power produced by GB for shiftable heat load at time t 

Puser,t Electric power sold by NES to user at 
time t 

HCHP,t
 sft  Heat power produced by CHP for shiftable heat load at time t 

Huser,t Heat power sold by NES to user Hbuy,t Total heat energy BP purchased from NES 

pbuy,t Price of electricity purchased from grid Hout Heat of circulating water output from TST 

psell,t Price of electricity sold to grid Hin Heat of circulating water input to TST 

Pbuy,t Electric power purchased from grid GBP Daily biogas production of BP 

Psell,t Electric power sold to grid GOF Daily production of organic fertilizer 

Pdevice,t Output power of device at time t ROF Organic fertilizer content of biogas residue 

Pe-net,t Electric power exchanged with grid at 
time t 

POF Total electricity consumed by fertilizer production process 

PWT,t Electric power provided by WT at time GT Solar flux received by SC 
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t 

PPV,t Electric power provided by PV at time t HGB,t Heat power production of GB at time t 

PCHP,t Electric power provided by CHP at 
time t 

GGB,t Gas consumption of GB at time t 

PESS,t
ch  Charging power of storage system U Consumer satisfaction index 

PESS,t
dis  Discharging power of storage system Ibuy,t

e /

Ibuy,t
h /

Ibuy,t
g  

Costs of purchasing electricity, heat and biogas 

HCHP,t Heat power produced by CHP at time t ꞷ Parameter representing user’s preference 

Hnet,t Heat power sold to heat grid at time t Ptrans Transferred load power 

Vcut,i Cut-in wind speeds Zj,k j-th chaotic variable in population 

Vcut,o Cut-out wind speeds Ft Fitness function 
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