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ABSTRACT: Quantum computers are recently being developed in wide 

varieties, but the computational results from quantum computing 

have been largely confined to constructing artificial assignments. The 

applications of  quantum computers to real-world problems are still an 

active area of  research. However, challenges arise when the limits of  scale 

and complexity in biological problems are pushed, which has affected 

drug discovery. The fast-evolving quantum computing technology has 

transformed the computational capabilities in drug research by searching 

for solutions for complicated and tedious calculations. Quantum 

computing (QC) is exponentially more efficient in drug discovery, 

treatment, and therapeutics, generating profitable business for the 

pharmaceutical industry. In principle, it can be stated that quantum 

computing can solve complex problems exponentially faster than 

classical computing. Here it is needed to mention that QC will not be able 

to take on every task that classical computers perform—at least not now. 

It may be classical and quantum-coupled computational technologies 

combined with machine learning (ML) and artificial intelligence (AI) will 

solve each task in the future. This review is an overview of  quantum 

computing, which may soon revolutionize the pharmaceutical industry 

in drug discovery. 
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1. Introduction 
The fundamentals of  the pharmaceutical industry are to formulate drug designs to treat or cure 

diseases. In 2020, the FDA has approved only 53 drugs, which is still higher in number than within the 
past 20 years[1]. It shows that there is a distinct lack of  “hit” drugs in these years. The drugs with their 
exceptional therapeutic properties are used for 93% of  global net drug spending growth as compared to 
small molecules in recent years[2]. Drug development takes approximately 13 and more years with an 
exceptionally high budget (£1bn) to develop a new drug[3]. Moreover, with many identified medicines in 
the lab, only one drug might be able to ever reach patients, while the others fail along the way. Once the 
search for a potential drug is over, it is developed to provide maximum benefit with minimal side effects 
for patients. Computational resources made the drug discovery process faster so that it could produce 
more effective drugs with fewer side effects in an accurate manner. 

Quantum computers use the laws of  quantum mechanics, such as superconducting loops (microwave 
radiation) or ions drifting in ion traps within electromagnetic fields (lasers). QC uses quantum behaviour 
to solve the problems. This “quantum advantage” helps and motivates organizations to solve problems 
that cannot be realistically solved by classical computers. So “universal quantum computing” is applied 
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with large fault-tolerant quantum computers or hybrid classical/quantum computers to do a wide range 
of  computational tasks[3]. 

Quantum Information Science and Technology (QIST) has been used to transform and develop 
novel algorithms using machine learning techniques for technological developments. Quantum 
computers have more advantageous features than classical systems for molecular simulations of  drug 
design and discovery[4]. Cloud computing, AI, and ML are using quantum computing to carry out 
efficient and remarkably less expensive calculations. Quantum algorithms provide exponential speedups 
as compared to their classical counterparts[5]. Modern quantum calculations are finding approximate 
solutions with the following methods, such as Ab initio methods[6], semi-empirical methods[7], density 
functional methods[8], density matrix methods[9], algebraic methods[10], quantum Monte Carlo methods[11], 
and dimensional scaling methods[12]. These systems are accurate only for larger systems and are quite 
expensive. It is anticipated that the exponential speedup of  quantum computers can complete the 
simulation tasks within only a polynomial amount of  time. Quantum computers use “qubits”, unlike 
classical computers, which use “bits”. Qubits can either be on or off, or both (superposition). The 
difference between classical bit and qubit is given in Table 1. Quantum gates operate on a system of 
qubits. Qubits and quantum gates are found to be the basic components of  any algorithm, as the basic 
components of  programming language are variables and functions. The combination of  great speed with 
probabilistic solutions to multiple calculations with higher accuracy at one time fits well in applications 
such as optimization, simulation of  chemicals, and AI. Today, quantum computers are known as “Noisy 
Intermediate Scale Quantum” (NISQ), which have limited computational resources. NISQ assists with 
the first level of  drug discovery, which involves molecular simulations, wave function optimization, and 
ML. It is observed that even smaller simulations result in accurate predictions of  potential drugs 
long before clinical trials, with reduced time and cost[4]. 

Table 1. Comparison between a classical bit and qubit. 

Classical bit Qubit 
State 0 or 1 |0⟩, |1⟩, or superposition. 
Measurement does not change the state of  the bit Measurement changes the system. 
Deterministic result Quantum state itself  remains the same and it is deterministic. 

Different results only occur with measurement when the quantum 
state collapses. 

Can make a copy of  bi (eavesdrop) Cannot clone the qubit (security). 
One number for a string bit A qubit can represent a state vector with 2 degrees of  freedom; thus, 

it can store one complex number. 

2. Methods 
The pharmaceutical industry has developed molecular formulations to treat diseases in the form of  

drugs. The industry has made huge investments, which is more than 20% of  total R&D industries at the 
global level[3]. Various computational chemistry’s digital tools with AI have been opted to predict and 
simulate the structures, physicochemical and biological properties, pharmacokinetics, and 
pharmacodynamics of  drugs accurately. But either accuracy or speed are affected; force fields are 
quick but offer generalized answers, whereas the exact solution O(n!) is called factorially, n being the 
number of  electrons. These computational tools are not easily manageable by standard computers, and 
for atomic-level calculations, the methods used are not sufficiently accurate. QC can accurately predict 
the interactions at the atomic level. A quantum algorithm (quantum annealing) can shift the probability 
distribution of  the superimposed states so that the state or states corresponding to the global 
optimum become intensely probable on measurement[13]. Massive parallelism is an advantage of  QC that 
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can be attained by modelling many solutions simultaneously. As expected, the number of  simultaneously 
measured solutions doubles with the addition of  each additional quantum bit, or qubit. This allows for 
exponential scaling, which is not achieved by classical computers. The exponential scaling helps to search 
for and solve certain classes of  problems. 

Two computational methodologies have been used for drug discovery, which are (a) annealing-based 
quantum computation and (b) gate-based quantum computation. The larger problems are easily 
handled by the quantum computers. Currently, MD simulations and DFT approaches with computer-
assisted drug discovery (CADD) are used to predict the behaviour of  drug molecules. Quantum 
computers are used to shorten the screening time and make the CADD approach more effective so that 
the molecular properties of  drugs can be predicted accurately. The modelling process of  target-drug 
interaction can also be predicted in an effective way, as QC is capable of  searching multiple possible target 
structures from virtual screening from compound libraries in parallel[14]. The limitation of  classical 
approaches is the structural flexibility of  the target molecule due to a lack of  limited time and resources, 
which reduces the chance of  identifying the best drug candidates. Improvements in QC have substantially 
decreased the requirements for simulation. For example, in 2017, 200 million physical qubits at a 10–3 
error rate were reduced to 4 million physical qubits in 2020[3]. Several new theoretical tools have been 
developed to perform the simulations. Statistical methods and ML are used in drug discovery, estimation 
of  molecular and ADMET properties of  drugs, and prediction of  protein-ligand binding[13]. Deep neural 
networks are used to predict molecular interactions[14], secondary structure[15] and 3D protein structures[16] 
in structural biology. These computationally intensive models with general-purpose graphical processing 
units (GPUs) and exponentially faster algorithms speed up the calculations to train ML models. These 
ML models and various algorithms of  QC are used for applications in drug delivery. Variational quantum 
eigen-solver (VQE) methods enhanced with sophisticated state preparation methods and measurement 
reduction techniques are used to calculate the binding affinity between small active pharmaceutical 
ingredients (APIs) and a target receptor. Many quantum ML algorithms are used for quadratic or 
exponential speedup processes[16]. 

Several techniques are used to extract information from unlabelled datasets in unsupervised learning. 
Various ML tools are applied in next-generation sequencing (NGS) to extract and analyse the output data 
of  biomolecules[17] or annotate genomes[18]. Principal component analysis (PCA) is used to reduce the 
high-dimensionality datasets of  RNA microarray and mass spectrometry (MS) data[19] by searching for 
linear combinations of  features that maximize the variance[20]. In quantum computers, quantum 
algorithms are used to build the covariance matrix of  the data and use quantum phase estimation[20] to 
compute the eigenvectors in an exponential time span[21–24]. 

Supervised learning is used to predict the binding affinity of  a ligand to a protein[21] and computer-
aided disease diagnosis (CADD)[25]. Gaussian process (GP) regression[26] is used to build surrogate models, 
MD simulations, and predictions of  the drug properties of  quantitative structure-activity relationship 
(QSAR) models[27,28]. Another statistical method, hidden Markov models (HMM), is used for 
computational gene annotation and sequence alignment[27]. ML[28] and deep learning (DL) have been used 
for accurate contact prediction in proteins[17], precision medicine[29], molecular design[30], and 
simulation[30,31]. QC is extended to biomolecular[32] and biological systems as the quantum annealing (QA) 
method is used to investigate the coarse-grained folding landscape of  a six-amino acid peptide within a 
2D lattice framework[33]. QA is used to search for the transcription factor binding of  DNA sequence[34]. 
Quantum effects have the potential to accurately model energy transport (in photosynthetic complexes)[35–

39] and electron transport (redox sites of  metalloproteins)[40] in biological molecules[41]. Various 
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combination methodologies are used for understanding the function of  the brain at the genetic level with 
global structural/functional networks[29]. The initial step in genetics and genomics is the sequence 
matching of  nucleotides and amino acids to the reference databases, for which various algorithms such 
as Needleman and Wunsch[42], Smith and Waterman[43] are used. In genomic read mapping, algorithms 
such as the Burrows-Wheeler transform are efficiently used to perform DNA sequence alignments[44]. The 
seed-based approaches[45] are used to confront the mapping of  RNA reads to the boundaries between 
exons separated by large genomic distances. Hidden quantum Markov models (HQMMs)[46–48] can 
simulate classical HMMs on quantum circuits[47], as well as develop model space beyond classical 
HMMs[45]. Possible models such as Bayesian Networks, Boltzmann Machines[49], and variational 
autoencoders (VAEs) are used to predict genetic risk for particular traits, which can be partitioned across 
“intermediate” phenotypes, leading to insights into disease etiology[50–52]. QC simulated systems[53] are 
used to study the active sites of  many enzyme-transition metal interactions[54]. 

These algorithms are useful to design drug[55–57], supervised learning (e.g., protein binding affinity), 
unsupervised learning (e.g., genome clustering), and generative modelling (e.g., de novo drug design). 
The problems related to protein structure prediction are now being tackled by gate-based quantum 
computers, as earlier optimisation studies were carried out by annealing methods[58]. The classical 
algorithms are able to provide solutions for the sampling of  the conformation space of  small proteins, 
whereas they cannot handle the intrinsic NP-hard complexity of  the problem, even if  it is reduced. 

QC can benefit the entire value chain, but its prime focus lies in the research and development process. 
The pharma value chain includes research and development, production, logistics and supply chain, and 
access to the commercial market and patients. The research includes the understanding of  disease and 
developing the hypothesis, target identification, hit generation and identification, lead generation, 
optimization of  drug candidates with ADMET prediction, and dose and solubility optimization. ML and 
AI techniques are used to find structure-property relationships and potentially predict the 3D structure 
of  target proteins. QC is able to create novel types of  drug-candidate libraries with peptides and antibodies. 
An advanced-level approach by QC can be used to automatically screen structurally relevant targets 
against drug-like molecules via next-generation sequencing (NGS) approaches. QC increases the 
modelling accuracy of  target-drug interactions, reduces the number of  development cycles, and increases 
the quality of  the optimized lead compounds. New molecules are synthesized, and their physicochemical 
and biological properties are predicted in a faster manner. QC can be used to reliably identify the 3D 
structure of  targets. Drugs are often developed without even knowing the structure of  a protein, accepting 
the risk of  a trial-and-error approach because of  their high commercial uses and profits in the 
pharma business. Researchers “Demis Hassabis” and “John Jumper” were recognized for creating the 
AI tool, which has easily predicted the 3D structures of  almost every known protein[59]. The prediction 
of  template-free protein structure is one major problem in molecular engineering and drug discovery. The 
folding funnel hypothesis assumes that the native state of  a protein corresponds to its free energy 
minimum under the solution conditions usually encountered in cells[60,61], although many 
counterexamples exist. The quantum computing focus is on the protein lattice model, where the peptide 
can be modelled by self-avoiding walking on a lattice[60]. The residue is correlated to each node of  the 
lattice, and the energy function is contributed by the interactions between spatial neighbours. Two main 
model schemes are used for protein structure prediction, among several other models. These are 
hydrophobic-polar model[62] (considering only two classes of  amino acids) and Miyazawa and Jernigan[63] 
(containing interactions for every pair of  residues). These models provide understanding for protein 
folding mechanism[64] and have been considered as a coarse-grained substitute to search conformational 
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space before further refinement[65,66] with a large number of  qubits. D-Wave quantum annealers and the 
Quantum Approximate Optimization Algorithm (QAOA) algorithm both share identical features for the 
protein lattice problem encoded as a Hamiltonian operator. Rotamer sampling in the Rosetta energy 
function[67] and conformer sampling[68] are performed by the quantum annealing method. QC-associated 
AI tools will be able to resolve the formation of  protein complexes, protein-protein interactions, and 
protein-ligand interactions. QC can apply a hit generation and validation approach to deliver optimized 
potential lead molecules with an easier and quicker approach. Other properties, such as ADMET 
properties, dose and solubility optimizations, and other safety issues, can be solved with QC. Using the 
ML algorithms, QC can generate a type of  fake data, which can be specifically useful where there is a 
scarcity of  data, such as in rare diseases, where the missing information through artificial data sets can be 
mitigated[3]. Here, QC will speed up the training of  ML models, the amount of  required initial data, and 
the accuracy level. The development includes patient identification and stratification, pharmacogenetic 
modelling, site selection, and side effects analysis for drugs used by the concerned patients. Recently, 
many features were studied for Alzheimer’s drug research[69] with ML applications, which has given 
insights to identify cancer treatment biomarkers from genomics data analysis. The application of  expected 
QC for hit generation, hit-to-lead, and lead optimization is given in Table 2. 

Table 2. Expected QC for hit generation, hit-to-lead, and lead optimization. 

CADD approaches Hit generation and hit-to-lead Lead optimization 
- Method (virtual 

screening/docking) 
Lead identification Optimize ADMET Optimize drug activity 

Multiomics - - - - 
Reverse 
protein blocking 

- - - - 

De novo modelling/ 
protein folding 

- - - - 

Comparative 
modelling 

- Grid-based pocket probes, 
surface alignment 

Supervised machine 
learning for ADMET 

- 

BE calculations Classical MD, quantum-
inspired SM, 
QM/MM approach 

Classical MD, absolute BE, 
thermodynamic integration, 
free-energy perturbations, 
QM/MM approach, 
fragmentation approaches 

Simulation methods Synthetic biology 
approaches, absolute BE 
calculations, 
thermodynamic 
integration, free-energy 
perturbations 

Conformational 
analysis 

- Classical MD, QM/MM 
approaches, fragmentation 
approaches 

- - 

Reaction path 
simulation/kinetic 
predictions 

- Fragmentation approaches 
with QM calculation 
(synthetic routes) 

- - 

QSAR Supervised and 
unsupervised ML 

Supervised ML to derive 
empirical evidence, 
fragmentation approaches 

Quantum-inspired 
ADME descriptor 
calculation, 
supervised ML for 
ADMET 

- 

Molecular docking - Fragmentation approaches - Classical MD, QM/MM 
approaches 

Automated 
retrosynthesis 

- Unsupervised ML with 
supervised ML (synthetic 
routes) 

- Supervised ML 

Abbreviations: CADD (computer aided drug design); MD (molecular dynamics); QM/MM method (quantum 
mechanics/molecular mechanics); QSAR (quantitative structure-activity relationship)[5]. 

3. Discussion 
The profile of  drugs is developed for a specific disease and selected for a specific protein target of  
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that disease. Further, all desired properties of  the drug are considered, such as specific protein binding 
sites, oral/IV insertion, brain permeability, dose usage, target group, similar and combination drugs, 
administration (timings and time span), package and delivery, marketing strategies, and so forth. Various 
databases can be created for these drugs, which can generate a large chemical space with a larger number 
of  molecules. Quantum algorithms such as the Quadratic Unconstrained Binary Optimization (QUBO) 
algorithm are used to search for specific properties of  the drug profile in a large chemical space[70]. These 
results can be used to filter the desired drugs and preferred binding site(s). Once the chemical space is 
reduced, it greatly reduces the extensive benchwork, which includes tests for toxicity, appropriate dosages, 
and potential costs, among many others. This shortened path eliminates inappropriate molecules and 
helps in the experimental design of  a few complexes, so that the production cost is also reduced. The 
clinical phase 1 trials took several months, with only 70% of  the initial passing of  the experimental drugs. 
QC can treat many more diseases in a smaller number of  cases as compared to a few years ago. QC will 
improve drug efficacy in cases of  drug shortages. QC will help find small drug molecules to improve 
delivery methods. QC can also help prepare asset portfolios that will have great potential as life-changing 
medicines in the future. These drugs, when obtained in the early stages, can shorten the production time 
at a later stage. The supply of  drugs will be faster with hybrid quantum computing incorporating 
developed methodologies such as cloud computing, AI, and ML. QC will also help in searching for the 
smallest possible drugs with the desired properties of  the selected drug profile, and simulations 
will become easier with QC. Further repurposing of  drugs becomes faster with pre-existing clinical data 
as the clinical trial phases 1, 2, and 3 take several years, with only 20%–30% of  drugs passing all three 
phases. QC brings great hope for drug discovery as it can reduce the time of  clinical trials, provide 
accuracy, and increase safety in an effective manner. In quantum technology, quantum annealers and 
“quantum-inspired” annealers will be used in much larger spaces to work for billions of  molecules if  and 
when needed. 

At present, there are no commercial gate-based quantum computers that can support over 90 qubits 
to develop variational quantum Generative Adversarial Networks (GAN) algorithms, except for quantum 
annealers. However, a hybrid GAN using fewer qubits can be exploited for the benefits of  quantum 
computing[71]. 

Drug discovery with QC is fast, safe, and effective. It is anticipated that gate-based universal quantum 
computers, quantum annealers, and quantum-inspired digital annealers will be able to transform drug 
discovery in the future. Quantum methods are linear, and high-performance computing (HPC) is not cost-
effective. Supercomputers with many GPUs are slow, expensive, and not environment- and user-friendly. 
The threefold advantage of  QC is that it can solve larger problems, discover new drugs at a faster rate, 
and be used in multiple ways. These features will improve and transform drug discovery in the near future. 
Quantum algorithms using appropriate quantum hardware can solve significant problems. Quantum 
processors are built by including trapped ions[72], superconducting circuits[73] and photonic devices[74]. 
However, these processors face errors during computation, which can destroy the computational process. 
Though these errors can be reduced by quantum error-correcting codes, these codes demand a large 
increase in the number of  qubits, which further requires advanced methodologies. There are many other 
resources that affect quantum computing, such as decoherence. Small fluctuations can change the 
quantum gate to produce a different output than expected, and the imperfect control mechanisms will 
always cause some errors. With the maturity of  quantum computers, quantum circuits will be designed 
to solve meaningful problems in the future. The main challenge in QC is that designing quantum circuits 
on a small scale requires preparation for quantum algorithms. Though the cost and time for drug 
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discovery are reduced as compared to the traditional methods, with the testing of  a large number of  
molecules, it is reduced to a few to be synthesized and measured. QC is associated with significant risk, 
as quantum capabilities are important for the privacy of  information and national security. Extracting 
exact information from quantum computers is also very difficult. Though obtaining energy is simple, 
recovering the entire wave function is hard. So, these quantum computers are not fit for those chemical 
applications where the insights are taken from the electronic structure calculations. Still, quantum 
simulation will be one of  the useful applications of  QC[75]. 

Interestingly, the hybrid approach of  ML with quantum computing is now used as a powerful tool 
in predictive analysis. Although the reversibility of  the quantum gates is guaranteed, the lower power 
consumption is not a bonus that comes along with reversibility[76]. Only specific designs of  quantum 
circuits allow you to save some energy[77]. Quantum circuits perform quadratic, polynomial, or 
exponential tasks in a faster manner[78–80]. Hybrid quantum ML uses QC to perform ML algorithms or 
acquire the processing of  quantum information into ML[81–83]. It includes supervised[84], unsupervised[85], 
and RL[86] for drug discovery. An open-access quantum ML framework for Python by Google LLC is 
available to use hybrid quantum ML[87] for varied applications. Various hybrid-quantum MLs are likely 
to be released soon for pharmaceutical applications. 

4. Conclusion 
In theory, the QC algorithm with many qubits is powerful and fast. But whether the practical QCs 

in the next few decades can do so is still questionable. Various pharmaceutical companies or start-ups are 
collaborating to develop beneficial quantum computing-based drug development contracts. The 
recruitment of  skilled technicians and professionals is needed to develop QC-based algorithms to enhance 
pharmaceutical research in drug design and discovery. Currently, there are only a few examples of  proven 
quantum advantages, such as Shor’s algorithm[88]. In addition, there is a lack of  explanation as to why the 
accuracy level can be increased with QC. Multinational companies, such as IBM, are conducting various 
workshops on quantum computing interfaces. Qiskit and other alternative sources will be helpful in the 
development of  specialized programs internally to train the staff  in QC. QC in drug discovery is 
outperforming even the best supercomputers for certain tasks, promising to make difficult problems easy 
in the biological sciences. Though huge progress has been made on the hardware side, there are still 
limitations in scaling and implementing better-quality qubits. The smart players in QC have come up with 
excellent solutions to work with the noise. These improved and more noise-resilient algorithms have 
generated impact and are being adopted on a large scale. With the deeper collaboration of  pharma and 
QC companies, great creativity-enabling solution development will be seen in the future. Still, in its 
infancy, the capacity of  QC to drastically accelerate and optimize trials and predictions for the drug 
discovery space and the life sciences can flourish the pharma industry in the future. 
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