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Abstract: Heavy traffic during peak hours, such as early mornings and late evenings, is a 

significant cause of delays for commuters. To address this issue, the prototype of a dual smart 

traffic light control system is constructed, capable of dynamically adjusting traffic signal 

duration based on real-time vehicle density at intersections, as well as the brightness of the 

streetlights. The system uses a pre-trained Haar Cascade machine learning classifier model to 

detect and count vehicles through a live video feed. Detected cars are highlighted with red 

squares, and their count is extracted. The vehicle data is then transmitted to an Arduino 

microcontroller via serial communication, facilitated by the pySerial library. The Arduino 

processes this information and adjusts the timing of the traffic lights accordingly, optimizing 

traffic flow based on current road conditions. A novel approach involves optimizing energy 

usage through real-time data integration with the power grid. Street lighting is then dynamically 

adjusted at night times—brightening during high-traffic periods and dimming during low-

traffic times. The brightness levels are set at 30%, 50%, 75%, and 100% based on the number 

of cars detected, with above 50% indicating the presence of cars. This adaptive control 

enhances energy efficiency by reducing energy consumption while maintaining road safety. 

The simulated and experimental results are provided. The former demonstrated a lower 

accuracy compared to the latter, particularly during the transition to the green light, across all 

traffic density levels. Additionally, the simulation was only capable of representing discrete 

lamp brightness levels of 0%, 50%, and 100%, in contrast to the experimental results, which 

showed a clear differentiation between 50%, 75%, and 100% brightness levels. Details of the 

model limitations are outlined with proposed solutions. The implications of the optimized 

system for auto insurance, liability coverage, and risk management are explored. These are 

areas that are rarely addressed in current research. 

Keywords: Arduino microcontroller; traffic density estimation; liability coverage; image 

sensor 

1. Introduction 

Despite the importance of road transportation, the story is quite sad and different 

within Africa, particularly sub-Saharan Africa. Its road safety performance is the worst 

globally [1], and as a result, road fatalities have become one of the leading causes of 

death on the continent [2,3], inflicting lifelong injuries and disabilities, as well as being 

responsible for thousands of deaths and economic losses. To worsen the situation, 

mobility structures and services are not safe or sustainable. These have a significant 

potential of stunting the economic growth of African countries. 

Vehicular networks, a key component of intelligent transportation systems, 

enable communication between vehicles, infrastructure, and other network entities to 
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enhance road safety, traffic management, and driving efficiency. These networks 

leverage wireless technologies such as Dedicated Short-Range Communications 

(DSRC) and cellular-based Vehicle-to-Everything (C-V2X) for real-time data 

exchange [4]. Research has explored routing protocols to improve data transmission 

reliability in dynamic vehicular environments, with position-based and cluster-based 

protocols being prominent solutions [5]. Security and privacy remain significant 

challenges, as vehicular networks are susceptible to cyber threats like eavesdropping 

and spoofing [6]. Integrating vehicular networks with edge and cloud computing has 

further enhanced their capabilities by enabling low-latency data processing and 

intelligent decision-making [7]. Machine learning techniques are increasingly being 

applied to optimize network performance, traffic flow prediction, and anomaly 

detection [8]. These advancements have paved the way for the development of smart 

traffic systems, which rely on vehicular networks to improve traffic efficiency, reduce 

congestion, and enhance urban mobility. 

Particularly in metropolitan regions, traffic congestion during peak hours has 

grown to be a serious problem, causing delays, higher fuel usage, and more pollution. 

Often, depending on set signal timings, traditional traffic control systems lack the 

flexibility to manage changing traffic patterns. In order to promote sustainable urban 

mobility, several studies have investigated creative ideas to maximize traffic flow, 

including microcontroller-based and machine learning-driven devices.  

Several researchers have developed smart traffic control systems using 

microcontrollers, such as the Atmega 32 and the Arduino Mega 2560. The ability of 

these microcontrollers to effectively control traffic as made evident in the simulation, 

shows their appropriateness for road traffic control [9]. Some of these microcontrollers 

can further be customized to detect traffic violators [10]. Additionally, Fadoro [11] 

highlighted that microcontrollers can serve as a “training kit in learning traffic light 

control system design and operation” and a “teaching aid in schools for various road 

users”. 

Some studies have incorporated machine learning (ML) technology in their 

designs. For example, Bisen et al. [12] implemented ML in assisting ambulances to 

navigate through clogged traffic, while Balasubramanian et al. [13] introduced an 

accident alert sound system into their ML-based IoT Adaptive Traffic Management 

(ATM) architecture. Tiwari [14] provided a data-based ML solution drawn from 

transportation data and accounting for seasonality. The You Only Look Once (YOLO) 

model integrated with a single image processing via a neural network was developed 

by Khan et al. [15]. The type of vehicle (two-wheelers, four-wheelers, etc.), road 

width, and junction crossing time were some of the real-time parameters accounted 

for in their model. Other interesting constructions include the use of radio frequency 

identification, which was presented by Lanke and Koul [16] as a less expensive form 

of traffic control. The use of images and video-based information models focusing on 

a computer vision-based traffic control system was proposed by Abbas [17]. 

These solutions have greatly increased traffic efficiency and lowered energy 

usage, yet still there are gaps. Current designs ignore the possibility of maximizing 

streetlight brightness in concert with traffic control at night times, when proper 

illumination is absolutely essential for guaranteeing visibility and safety, particularly 

during intense traffic congestion. Moreover, the effects of improved traffic systems 
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for sectors such as risk management, liability coverage, and motor insurance have not 

gotten the needed attention in current studies.  

This work attempts to close these gaps by providing a two-fold contribution to 

the literature. First, we develop a prototype of a dual smart traffic light control system 

that combines dynamic streetlight brightness optimization with real-time traffic signal 

modification. Aside from enhancing the visibility for road users, the optimized 

streetlight brightness allows for pedestrians and cyclists to be more visible, reducing 

the risk of collisions in mixed-use traffic areas common in African cities. Second, we 

explore the implications of smart traffic systems for auto insurance, liability coverage, 

and risk management, providing a complete modern traffic management solution.  

The remaining part of the paper is as follows. Section 2 provides details of the 

material and methods used, while section 3 presents the diagrammatic flow. In section 

4, real-world tests and simulations are conducted. Section 5 presents the broader 

impacts for insurance and risk management, and we conclude in section 6. 

2. Material and methods 

This research work is based on the design and implementation of a smart traffic 

light circuit with a detection system made from the following materials: Arduino Uno, 

light-emitting diodes (LED), and a 74HC595 shift register. 

2.1. Arduino uno microcontroller 

The Arduino Uno microcontroller (Figure 1) receives data relating to the number 

of cars on a road from a pre-trained Haar Cascade classifier via the PySerial library in 

Python. Based on this information, it sends digital signals to control the traffic light 

LEDs and the shift register (74HC595), which drives the street lamps. The Arduino 

operates using a pre-programmed code written by Sobral [18] in the Arduino IDE. 

 
Figure 1. Arduino Uno microcontroller serving as the central processing unit. 

2.2. Configuration of the COMPIN 

Virtual COM port pairs (COM1 and COM2) were created using the virtual serial 

port tool application. The COMPIM component in Proteus was configured with the 
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following settings: a baud rate of 9600, 8 data bits for both physical and virtual 

communication, and COM2 as the physical port. This setup in Figure 2 allows the 

COMPIM component to receive car count data transmitted via the PySerial library in 

Python. For physical implementation, a USB 2.0 Type A to Type B cable was used to 

connect the system to the Arduino Uno. The COMPIM’s pins 2 (RXD) and 3 (TXD) 

were connected to pins 0 (RX) and 1 (TX) on the Arduino Uno, respectively, to 

facilitate data transmission. 

 
Figure 2. Virtual COMPIM port for simulation and hardware communication. 

2.3. Configuration of the 74HC595 shift register 

An 8-bit shift register is used to control the brightness of eight light bulbs, 

representing streetlights. A byte of data is sent to the Data Serial (DS) pin (Pin 14) of 

the shift register (Figure 3). The Serial Clock (SH_CP) pin (Pin 11) shifts in each bit 

of the byte sequentially. Once the entire byte is loaded, the Register Clock (ST_CP) 

pin (Pin 12) transfers the stored data to the 8-bit parallel output, illuminating the 

corresponding light bulbs. 

In Figure 3, we achieve a fade effect by utilizing the Output Enable (OE) pin 

(Pin 13). When OE is connected to 5V, it disables the outputs. By gradually reducing 

the voltage on the OE pin to zero, the brightness of the bulbs slowly increases, creating 

a fade-in effect. 

 
Figure 3. 74HC595 shift register for output expansion. 
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2.4. Configuration of the traffic lights 

The red, yellow, and green traffic lights (LEDs) are connected to the digital 

output pins of the Arduino, where they receive digital signals to control their timing 

for traffic light simulation. The LEDs are based on Kirchoff’s Voltage Law (KVL), 

which quantifies how voltage varies around a loop in a circuit. We apply the loop laws 

to determine the values of their limiting resistors. From the data sheet on the Green, 

Red, and Yellow LEDs on Proteus, the voltage drop across the diode is 2.2 V, and the 

full drive current is 10 mA. Taking KVL around the loop, we have: 

10 × 10−3𝑅1 + 2.2 V = 5 V 

𝑅1 =
5 − 2.2

10 × 10−3
= 0.28 kΩ = 280 Ω 

Although the calculated resistor value is 280 Ω, a 220 Ω resistor was selected due 

to its availability in the market. This value is close enough to ensure proper operation 

while slightly increasing the LED brightness within safe limits. Figure 4 presents the 

diagrammatic representation. 

 
Figure 4. LED traffic light for smart traffic control circuit. 

The complete circuit diagram for the smart traffic light circuit is presented in 

Figure 5. 

 
Figure 5 Circuit diagram of the smart traffic system. 
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2.5. Performance evaluation metrics 

The four performance metrics used include (1) detection accuracy to assess the 

precision of vehicle, detection by the system’s sensors and algorithms; (2) streetlight 

energy efficiency to evaluate energy savings achieved through dynamic brightness 

optimization based on the real-time traffic data; (3) adaptability to different traffic 

conditions, which evaluates the system’s performance across various scenarios, such 

as peak hours and off-peak hours; and (4) system uptime to monitor the percentage of 

time the system operates without delay, failure, or downtime. 

3. Diagrammatic representations of the system 

3.1. Block diagram of the system 

The system block diagram is illustrated in Figure 6. The Haar cascade classifier 

model processes the video feed to determine the vehicle count. This data is then 

transmitted to the Arduino via the PySerial library in Python. The Arduino, in turn, 

controls the traffic light LEDs and adjusts the brightness of the street lamps using the 

74HC595 shift register, ensuring efficient traffic management and energy 

optimization. 

 

Figure 6. Block diagram showing system components and flow. 

3.2. Input/output flowchart 

The flowchart (Figure 7) illustrates the decision-making process of the smart 

traffic light system. It begins by initializing the Haar cascade model to process the 

video feed and detect car counts. The detected car count is sent to the Arduino via 

serial communication. Based on the car count, the Arduino determines the traffic light 

timing (red, yellow, green) and adjusts the street lamp brightness accordingly. The 

system uses the following brightness levels: 30% brightness when no car is detected, 

50% brightness when less than 10 cars are detected, 75% brightness when the number 

of cars falls between 10 and 20, and 100% brightness when there are more than 20 

cars detected. The logic ensures optimal traffic flow and energy efficiency, with 

varying brightness levels (mid-low, mid-high, bright) corresponding to the number of 

cars detected.  
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Figure 7. Flowchart of the dual smart traffic control process. 



Information System and Smart City 2025, 5(1), 2253.  

8 

4. Real-world data testing 

The system was tested on three pre-recorded traffic videos (www.pexels.com) 

with varying levels of traffic density (light, moderate, and heavy). The video feed was 

processed using a computer vision model designed for vehicle detection and counting. 

The model analyzed the pre-recorded video frames, identified vehicles, and quantified 

their presence in each frame. The extracted vehicle count data was transmitted to a 

microcontroller for further processing and analysis.  

The light traffic case (Figure 8a) had a high detection accuracy with minimal 

false positives. There was good detection accuracy for the moderate traffic scenario 

(Figure 8b), with some false positives in overlapping/shadowed regions. For the 

heavy traffic (Figure 8c), reduced accuracy was observed due to overlapping vehicles, 

occlusions, and reduced visibility. 

  
(a) (b) 

 
(c) 

Figure 8. (a) Video feed for low vehicle density; (b) moderate vehicle density; (c) 

and high vehicle density. 

4.1. A comprehensive overview of the procedure 

The procedural steps and computational considerations taken during the 

implementation of the test project are as follows. 



Information System and Smart City 2025, 5(1), 2253.  

9 

4.1.1. Video analysis using the Haar Cascade Classifier 

The video analysis was performed using the Haar Cascade Classifier model to 

detect vehicles in pre-recorded videos. The video stream for high-density traffic is 

shown in Figure 8c. In terms of detection performance, the model could identify cars 

successfully but could not detect motorcycles within the video frames. The detection 

accuracy faced challenges in regions where vehicles overlapped or where shadows 

were present, leading to a few false positives. The video was processed at an average 

rate of 5.65 frames per second (fps). This frame rate was chosen to balance the 

computational load while maintaining feasibility for real-time processing. Each video 

frame was converted to grayscale before detection, as shown in Figure 9. This step 

reduces the image data size and enhances edge and feature detection capabilities. 

 

Figure 9. Video feed of high-density traffic converted to grayscale. 

4.1.2. Data extraction and communication 

The data extraction and communication process involved two key components: 

vehicle count and serial communication. For vehicle counting, the Haar cascade 

classifier model was responsible for detecting and counting the number of cars in each 

frame. To ensure accuracy, minimal filtering was applied to the data to address 

overlapping detections. The vehicle count data was then transmitted to an Arduino 

Uno via serial communication, using the PySerial library. The configuration for this 

setup was a transmission path from COM1 (host) to COM2 (Arduino Uno). The 

communication operated at a baud rate of 9600 bits per second, with 8 bits per byte, 

no parity, and a single stop bit. Before transmission, the vehicle count data was 

converted to string format, as serial communication protocols typically use ASCII-

based data transmission. 

4.1.3. Arduino-base control logic 

For the prototype project, the Arduino Uno was physically connected to the 

computer via a type A/B USB cable on COM4, receiving serial data from the computer 

for processing. For virtual simulation, the compiled hex file from the Arduino IDE 

was uploaded to the blank hex file property field of the virtual Arduino Uno in Proteus. 

The COMPIM component linked the communication pin (COM2) to the TX and RX 

pins of the virtual Arduino. This setup allowed bidirectional data transfer between the 
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virtual Arduino and the host system, enabling the execution of the uploaded code on 

Proteus 8 simulation software. The Arduino processed the received vehicle count data 

as integers and used conditional statements to determine the operational parameters 

for the street lighting system and the time required for the green light. Based on the 

detected number of cars, the system adjusted its behavior, as shown in Table 1. 

Table 1. Operational parameters for the street lighting system based on vehicle 

density. 

Vehicle Count Lamp Brightness Time to Green light (s) 

0 ≤ Count < 10 50% 7 

10 ≤ Count ≤ 20 75% 5 

Count > 20 100% 4 

To control the brightness of the street lamps, the Arduino utilized Pulse Width 

Modulation (PWM) signals. These varying signals were sent to the OE pin of the shift 

register, enabling a change in lamp brightness based on the detected vehicle count. 

4.2. Results and discussions 

Simulated and experimental tests were conducted. The simulation was done on 

proteus simulation software while the experimental test was conducted using the 

Arduino uno microcontroller. The results in both cases are presented. 

4.2.1. Simulated results 

After acquiring the vehicle count data using the COMPIM module in Proteus 8 

simulation software and transmitting it to an Arduino Uno microcontroller, the traffic 

signals and street lamp brightness were then managed via the 74HC595 shift register. 

The circuit diagrams in Figures 10–12 reflect the dynamics of the smart traffic system 

under test. The low traffic density (Figure 10) shows the lamps operating at 50% 

brightness (section L1 of Figure 10). This is represented in the simulation by dimly 

radiating yellow lines around the lamp icons. Thus, this reduced illumination 

effectively simulated energy savings during periods of low traffic. 
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Figure 10. Low density traffic simulation on proteus simulation software. 

For the moderate traffic density (Figure 11), the street lamps functioned at 75% 

brightness. In the simulation, this was depicted as moderately bright yellow lines 

radiating from the lamp icons, visually distinguishing the condition from the low-

density scenario. A 100% street lamp brightness was observed for the high traffic 

density (Figure 12). This is indicated by intense yellow radiating lines in the 

simulation. This served as a clear representation of maximum illumination during high 

traffic volumes. It was, however, observed that the Proteus 8 simulation did not 

provide a clear distinction between the moderate and intense street light brightness 

levels.  

 
Figure 11. Moderate density traffic simulation on proteus simulation software. 
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Figure 12. High density traffic simulation on proteus simulation software. 

The adaptive response of the system successfully demonstrated the ability to 

adjust both traffic signal timings and street lamp brightness based on real-time vehicle 

density data. However, the host computer’s limited CPU resources caused delays in 

traffic light transitions. Specifically, the observed duration of the green ‘go’ light 

exceeded the programmed value, highlighting a discrepancy between simulation and 

theoretical design. These delays did not affect the system’s core functionality but 

emphasized the need for a more powerful host system for seamless performance. The 

simulation validated the feasibility of the proposed adaptive traffic control design, 

showcasing its potential for real-world applications in traffic and energy management. 

4.2.2. Experimental results  

The experiment featured two sets of LEDs—eight LEDs on the left-hand side 

represented the streetlights, while three LEDs on the right-hand side (arranged as red, 

yellow, and green) represented traffic lights (Figure 13). The streetlights, controlled 

by the 74HC595 shift register, varied in brightness based on traffic density. A 50% 

brightness for low traffic density is shown in Figure 13. Figure 14 displays the 75% 

brightness for the moderate traffic density, and Figure 15 shows the 100% brightness 

for the high traffic density. 

 

Figure 13. Demo of LED brightness with less than 10 cars detected. 
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Figure 14. Demo of LED brightness with less than 20 cars detected. 

 

Figure 15. Demo of LED brightness with over 20 cars detected. 

Comparing the experimental results with that of the simulations performed on 

Proteus 8 simulation software, it was observed that the experimental test project 

demonstrated higher accuracy compared to the simulation, particularly during the 

transition to the green light. In the experimental setup, the green light programmed 

delay for low traffic density was 7 s, and the Arduino accurately executed this timing 

due to its chip’s dedicated processing capability. While, in the Proteus simulation, the 

same transition took approximately 20 s. This discrepancy was attributed to the 

computational limitations of the host computer running the simulation, which caused 

delays in processing. This pattern was observed across all traffic density levels, where 

the Arduino consistently executed transitions with precise timing, while the simulation 

introduced notable delays. Additionally, although the street lamps in the simulation 

were configured for analog control, thereby allowing for varying analog values 

between 0 and 255, the simulation was only capable of representing discrete brightness 

levels of 0%, 50%, and 100%. In contrast, the experimental results demonstrated a 

clear differentiation between 50%, 75%, and 100% brightness levels, depicted by the 

LEDs and illustrated in Figures 13–15. The superior performance of the experimental 

setup highlights the efficiency of using a dedicated microcontroller for real-time traffic 

management systems. 

4.3. Limitations of the smart traffic light system 

The smart traffic light system designed in this project shows the potential for 

integrating computer vision and microcontroller-based automation. However, several 

limitations impact its performance and scalability.  

4.3.1. Limited general purpose input/output (GPIO) pins, single-core processing 

and universal asynchronous receiver-transmitter (UART) communication 

The microcontroller limitations include limited GPIO pins, and single-core 

processing, and UART communication. More specifically, the Arduino Uno provides 
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only 14 digital I/O pins and 6 analog input pins, which can become insufficient for 

handling the complex input and output requirements of the system, especially if 

additional sensors or actuators need to be integrated. Microcontrollers such as the 

ESP32, Raspberry Pi, or STM32, with significantly more GPIO pins, higher clock 

speeds, and advanced processing capabilities, could improve the scalability and 

efficiency of the system. Additionally, the Arduino Uno uses a single UART interface 

to receive data from the computer vision model. However, it cannot simultaneously 

read serial data while performing the time-critical tasks of controlling the traffic lights 

and adjusting the brightness of street lamps. The Arduino Uno can be replaced with 

an ESP32 microcontroller. The ESP32’s dual-core processor allows one core to handle 

serial communication with the computer vision model while the other core manages 

traffic light control and street lamp brightness.  

4.3.2. Limited computer vision model 

The computer vision model also poses some limitations. It is important to note 

that the Haar Cascade classifier, while effective for simple detection tasks, has several 

limitations. Environmental conditions significantly impact the performance of its 

vehicle detection capability. These include adverse weather conditions such as rain, 

fog, or snow, which degrade visibility and disrupt lighting consistency, leading to 

reduced detection accuracy. Similarly, nighttime detection is challenging in low-light 

environments and requires additional preprocessing techniques, such as histogram 

equalization, to enhance visibility and improve performance. Furthermore, in crowded 

scenes, overlapping cars often lead to misdetections or missed detections. The 

detection speed is also impacted as the Haar Cascade’s detection process, while 

relatively fast, struggles with real-time performance when scaled to larger resolutions 

or high-density scenes. Details of the vehicular detection challenges and proposed 

solutions are laid out. 

Occlusion due to vehicle alignment 

When vehicles are aligned successively behind one another, the computer vision 

model experiences occlusion, where some vehicles are partially or completely 

obscured. This results in undercounting, leading to an inaccurate estimation of traffic 

density as seen in Figure 16. To mitigate occlusion, the camera should be mounted at 

an elevated position, such as on top of the traffic light pole or a high vantage point, 

ensuring a clear field of view. Additionally, integrating depth sensors (LiDAR or 

stereo cameras) can enhance vehicle detection in occluded scenarios by providing 

three-dimensional spatial awareness. 
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Figure 16. Occlusion due to vehicle alignment. 

Lane misclassification 

The current model is trained solely for vehicle detection and does not incorporate 

lane segmentation. As a result, it fails to distinguish between vehicles in the traffic 

lane it controls and those in adjacent or returning lanes. This misclassification leads to 

an overestimation of vehicle count. For instance, in high-traffic density scenarios, 

Figure 17, the model detects 48 vehicles instead of the actual 24 due to miscounting 

vehicles from opposing lanes. Implementing a lane segmentation module using deep 

learning-based semantic segmentation (U-Net, DeepLabV3, etc.) or classical 

computer vision techniques (for instance, Hough Transform for lane line detection) 

will enable the model to accurately associate vehicles with their respective lanes. 

Additionally, integrating Region of Interest (ROI) filtering can ensure that only 

vehicles within the designated traffic lane are considered. 

 

Figure 17. Lane misclassification. 

Reduced accuracy in extreme lighting conditions 

Under bright sunlight, the model’s accuracy deteriorates due to overexposure and 

the presence of false positives, where trees, shadows, and reflective surfaces (e.g., car 
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windows) are mistakenly detected as vehicles. In high-traffic density conditions, 

Figure 18, this leads to significant overcounting—detecting 47 cars instead of the 

actual 30, representing a 56% reduction in model accuracy. In addition to challenges 

posed by bright sunlight, computer vision models often experience decreased accuracy 

during evening hours due to low-light conditions. This reduction in illumination can 

lead to increased noise and decreased contrast in images, making it difficult for models 

to accurately detect and classify objects. 

To enhance robustness against varying lighting conditions, a set of techniques 

can be employed. Adaptive exposure control involves adjusting camera exposure 

settings to balance brightness levels across different lighting conditions. Polarization, 

infrared filtering, and thermal imaging focus on using polarized lenses or infrared and 

thermal cameras to reduce glare and reflections. Data augmentation focuses on 

training the model with diverse lighting conditions using techniques such as brightness 

normalization, histogram equalization, and shadow-aware augmentation to improve 

generalization. Adaptive histogram equalization enhances image quality in low-light 

environments, while background subtraction methods effectively address detection 

issues caused by adverse weather effects. Post-processing enhancements can also be 

deployed with optical flow or tracking algorithms. This involves implementing object 

tracking (e.g., Kalman filters or SORT, DeepSORT) to reduce transient false detection 

caused by momentary reflections and shadows and improve detection consistency in 

consecutive frames. 

  
(a) (b) 

Figure 18. (a) Reduced accuracy in sunny conditions; (b) and in low lighting 

conditions. 

Other potential improvements in computer vision model limitations include using 

advanced machine learning models. Convolutional Neural Networks (CNNs), 

including models like YOLO [15] and Faster R-CNN, provide superior performance 

by effectively identifying objects in diverse scenarios. Pre-trained models, such as 

MobileNet or SSD, can also be employed for faster inference, particularly on hardware 

with limited computational capabilities [19,20]. Enhancements to preprocessing 

techniques can further improve detection under challenging conditions.  
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5. Implications for auto insurance, risk management and liability 

support 

In this section, suggestions are provided on how smart traffic systems can 

significantly improve the insurance industry. A few concrete examples are 

highlighted. 

5.1. Auto insurance 

5.1.1. Risk-based premium adjustment 

Smart traffic systems have the potential to transform the insurance industry, 

particularly in how premiums are calculated and risk is managed. A key area of 

application is in dynamic risk profiling, which leverages data collected from these 

systems—such as peak traffic times, accident hotspots, and congestion patterns—to 

provide insurers with valuable insights into risk-prone areas. With this information, 

insurers can adjust premiums based on the likelihood of accidents in specific areas or 

at particular times. This approach not only enhances the accuracy of risk assessment 

but also benefits drivers who frequent safer, less congested routes by offering them 

more favorable premium rates. 

Another significant innovation lies in the personalization of premiums. By 

utilizing real-time traffic data, insurers can account for individual driving habits, 

including driving frequency and preferred routes. For instance, a driver who regularly 

navigates through high-risk intersections may see a corresponding adjustment in their 

premium, reflecting the increased exposure to potential accidents. Conversely, drivers 

who consistently avoid high-risk areas, particularly during peak traffic hours, could 

benefit from lower premiums. Insurers might even incentivize safer driving practices 

by offering discounts to those who follow optimized routes, encouraging more 

responsible behavior on the roads. 

This is becoming a desired need with the rise in electric vehicles and self-driving 

cars. Such insights have been described by Balasubramanian et al. [21], who 

highlighted the future potential impact of artificial intelligence on the insurer. They 

describe a digital personal assistant who plans a route and shares it with the mobility 

insurer, which suggests an alternate route with reduced accident risk and lower 

chances of vehicle damage, along with the revised monthly premium.  

5.1.2. Improved claims processing 

The integration of smart traffic systems into insurance processes offers 

transformative opportunities for improving claims management and reducing fraud. 

One of the most impactful applications is in data-driven accident analysis. By 

leveraging traffic flow and video data from intersections, insurers can reconstruct 

accident scenarios with greater accuracy. Precise accident reconstruction is essential 

not only for understanding the circumstances surrounding such events but also for 

enhancing advanced driver assistance systems and improving various vehicle features 

where applicable [22]. Studies like Chen et al. [23]and Pádua et al. [24] have studied 

ways in which road traffic accidents can be reconstructed based on multiple scenarios. 

By incorporating data from smart traffic systems, more specific real-life scenarios can 

be investigated. This capability will significantly streamline claims investigations, 
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enabling faster and more precise determination of fault and assessment of damages. 

As a result, insurers can reduce the time and resources traditionally required for such 

investigations, improving efficiency and customer satisfaction. 

Besides enhancing accident analysis, smart traffic systems can play a critical role 

in fraud detection. The availability of real-time traffic data and vehicle density 

information allows insurers to verify the circumstances of a claimed accident. For 

example, claims of staged accidents or fabricated incidents can be cross-referenced 

against actual traffic patterns and video evidence from the time and location in 

question. This robust validation process helps mitigate instances of fraudulent claims, 

protecting insurers from financial losses while fostering trust and accountability within 

the system. 

5.1.3. Reduced loss ratios 

Smart traffic systems can play a significant role in reducing loss ratios for insurers 

by addressing some of the root causes of traffic accidents. By managing congestion 

more effectively, these systems help decrease the frequency of accidents, particularly 

in high-risk areas. Many accidents are caused by sudden braking, aggressive lane 

changes, or violations such as running red lights—all of which are more likely to occur 

in congested conditions. By optimizing traffic flow and reducing bottlenecks, smart 

traffic systems can mitigate these behaviors, leading to fewer accidents and, 

consequently, fewer insurance claims. This reduction in claims directly translates to 

lower loss ratios for insurers, improving their financial performance and enabling them 

to allocate resources more efficiently. 

Insurers can actively promote the adoption of smart traffic technology by offering 

incentives for safer driving areas. For instance, they might collaborate with local 

governments to implement these systems in accident-prone zones by providing 

community discounts or risk-based incentives. Such partnerships not only encourage 

the use of smart traffic solutions but also create a safer driving environment for all 

road users. The widespread adoption of these technologies benefits insurers by 

reducing claims and benefits drivers by fostering safer and more efficient road 

networks. 

5.1.4. Enhanced telematics programs 

The system could provide real-time data to usage-based insurance models, which 

typically rely on telematics to assess driver behavior [25,26]. Combined with 

telematics devices in cars, smart traffic systems could offer insurers even more 

granular data on driving conditions, helping to create more accurate risk profiles. 

5.2. Risk management 

Smart traffic systems provide transformative capabilities in the realm of risk 

management, offering a proactive approach to monitoring, planning, and response. 

One of the key applications lies in traffic and infrastructure monitoring. By collecting 

and analyzing data on traffic flow and density, these systems can predict and manage 

risks associated with infrastructure wear and tear. This insight allows for the 

development of more effective maintenance schedules, reducing the likelihood of 

sudden failures such as road collapses or signal malfunctions. This can complement 

other road safety protocols, such as the Traffic Accidents Reduction Strategy for 
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Vehicular Ad Hoc Networks developed by Aldegheishem et al. [27]. Proactive 

infrastructure management not only enhances safety but also minimizes disruptions to 

transportation networks. 

The data generated by these systems also support data-driven policy and 

insurance adjustments. Traffic patterns can reveal areas with high accident 

probabilities, enabling targeted interventions and informing risk-based insurance 

premiums. Such insights allow insurers and policymakers to optimize strategies for 

managing risks across transportation networks, fostering safer and more reliable 

mobility. 

In the context of resilience planning and recovery, smart traffic systems prove 

invaluable during emergencies, such as hurricanes, floods, earthquakes, or large public 

gatherings. By adapting to real-time traffic patterns, these systems can dynamically 

reroute vehicles and manage flow to support emergency plans. This reduces risks 

related to overcrowding or infrastructure strain in critical areas, enhancing the overall 

safety and efficiency of response efforts. Bhavana and Praveen [28] proposed an 

Internet of Things (IoT)-based intelligent traffic navigation to address emergency 

situations. Their technological design can also be connected to receive a data feed from 

a smart traffic system. Insurers, too, benefit from this data, as it allows them to assess 

risks in impacted areas and develop coverage options tailored to catastrophic events, 

further strengthening risk management frameworks. 

Finally, smart traffic systems play a pivotal role in post-event claim efficiency. 

After major traffic incidents or disasters, the system’s detailed records of traffic 

patterns and densities provide insurers with a reliable source of information to handle 

a surge in claims. This speeds up claim resolutions, improves customer satisfaction, 

and reduces the administrative burden on insurers.  

5.3. Liability and litigation support 

Smart traffic systems have significant potential to improve liability and litigation 

support by offering accurate data and reducing the risk of traffic-related incidents. One 

major benefit is enhanced liability determination. By providing precise records of 

vehicle density, signal timing, and traffic flow, these systems enable more accurate 

assessments of liability in traffic accidents occurring at monitored intersections. 

MAPFRE [22] noted that insurance companies significantly depend on accurate 

accident assessment information to determine liability and provide fair compensations. 

This detailed information serves as reliable evidence for litigation or settlements, 

offering clarity on the conditions during an incident. As a result, disputes can be 

resolved more efficiently, reducing the time and costs associated with legal 

proceedings. 

Another advantage is the reduction of liability for municipalities. Poor traffic 

management and unsafe intersections are often cited as contributing factors in claims 

against local governments. By implementing smart traffic control systems, 

municipalities can address these issues by reducing accident frequency and improving 

road safety. This proactive approach minimizes the likelihood of liability claims, 

ultimately benefiting both municipalities and their insurers. Over time, the reduction 
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in claims could lead to lower municipal insurance premiums, allowing resources to be 

redirected toward further improving urban infrastructure. 

6. Conclusion 

This work presents a complete solution to solve traffic congestion and energy 

efficiency issues in metropolitan regions through a twin smart traffic light control 

system. The system dynamically changes traffic light lengths depending on real-time 

vehicle density by using machine learning under a pre-trained Haar Cascade classifier 

and merging it with Arduino-operated adaptive traffic signals. Dynamic streetlight 

brightness management, depending on traffic patterns at night, offers a fresh method 

of energy optimization while preserving road safety. 

This method illustrates the possibility for multidisciplinary uses in addition to 

improving traffic flow and lowering gasoline use. Examining the effects on motor 

insurance, liability coverage, and risk management expands the scope of smart traffic 

systems and prepares the ground for more study on their social and economic effects. 

Future research could investigate how to increase vehicle identification accuracy 

by integrating innovative deep learning models such as convolutional neural networks 

or YOLO. Furthermore, improving the system’s adaptability might include weather 

conditions, pedestrian activity, and other environmental elements. This study shows 

the viability and possibilities of using technology and creativity to provide smart 

traffic control systems for contemporary cities. 
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