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Abstract: Energy detection is an important part of intelligent power consumption, and its key 

technology is non-intrusive load monitoring (NILM). In this study, an end-to-end model is 

proposed to realize the NILM of commercial power data using the autoencoder-based 

transformer method. Firstly, we measured the operating power of different electrical 

appliances across different modes and combined the operating modes of electrical appliances. 

Considering the relatively large number of industrial electrical appliances, to ensure 

accuracy, we used Autoencoder to recode and reduce the dimension of the combined coding. 

Secondly, the transformer model was used to train the translation of the total power 

consumption information sequence and the state sequence of electrical appliances. Through 

our model, the electrical signals to be decomposed can be translated into different electrical 

state codes so as to realize load energy decomposition. Finally, when our model was applied 

to the gas station field data, the accuracy was as high as 90.17%. 
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1. Introduction 

Climate warming is a global problem, and as the biggest environmental 
challenge in the 21st century, it has been widely regarded by society as one of the 
most important factors that may lead to human extinction [1]. A large amount of 
greenhouse gases produced by the thermal power generation of power plants is 
discharged into the atmosphere, which is one of the main reasons for climate 
warming. The power generation industry still accounts for the largest share of global 
greenhouse gas emissions because the main fuel for power plants in the process of 
thermal power generation is still fossil fuels. According to the latest research report 
on temperature and electricity [2], the total electricity consumption of society will 
increase with advanced ambient temperatures. Therefore, excessive energy 
consumption will trigger a series of chain reactions affecting the ecological 
environment. It is necessary to promote and carry out energy-saving work in an 
orderly manner to reduce energy consumption and improve energy utilization. 

With the development of related technologies [3], the smart grid can effectively 
achieve energy savings [4], and building an efficient and available load monitoring 
system can help promote the rapid development of smart grids. As an indispensable 
part of the smart grid, the load monitoring system [5] has been developed by more 
scholars in recent years, and it is mainly aimed at the electricity load of the family 
house. The purpose of load monitoring is to obtain power information such as power 
consumption, current, and voltage of the residential load and its changes through 
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smart meters so as to analyze the operation of the load and the power consumption 
[6]. This information can help power grid companies design effective and feasible 
algorithms to allocate resources [7], help users understand their own electricity 
consumption to improve their electricity consumption behavior [8], and identify 
malicious loads used by residents and prevent fires in advance [9]. 

Nonintrusive load monitoring (NILM) decomposes the power consumption data 
collected by the electricity meter, displays the usage of electrical appliances in real-
time, and provides technical support for the smart grid [10]. In this paper, we 
propose a method that combines the autoencoder and the transformer, which 
effectively solves the problem of the large number and complex states of industrial 
appliances while ensuring high performance. 

2. Related work 

The non-intrusive monitoring technology is an energy decomposition method 
proposed by Hurt in 1992. The non-intrusive monitoring method is used to collect 
data and decompose it to obtain the energy usage of the user’s electrical appliances 
[11]. After years of research, scholars have adopted different technologies based on 
the sampling frequency of non-intrusive monitoring data, mainly involving signal 
processing and machine learning. Previous studies [12–22] have conducted high-
frequency sampling of power consumption data and used signal processing 
technology to propose analysis methods such as transient event detection, template 
matching filtering, and sliding window, respectively, which achieve high energy 
decomposition accuracy, but it is not suitable for power grids. High requirements for 
data acquisition, transmission, and storage are put forward, and in practice have great 
limitations. In contrast, the decomposition of the collected low-frequency data is 
more conducive to the application of NILM technology in smart grids. Low-
frequency data does not have complete signal characteristics, and scholars have 
studied this topic through machine learning methods. 

The algorithms that have been involved include support vector machine (SVM 
[16], K-nearest neighbor (KNN) [17]) artificial neural network (ANN) [18], Hidden 
Markov models [19,20] and other methods. The above machine learning methods 
have made some progress in the decomposition of non-intrusive low-frequency data, 
but the overall accuracy of the algorithm needs to be improved. In order to improve 
the accuracy, Batra et al. implemented the combined the factorial hidden Markov 
model algorithm (factorial hidden Markov models, FHMM) and optimization (CO) 
method to improve the accuracy of non-invasive monitoring, and made a toolkit 
NILMTK as a comparison algorithm for non-invasive monitoring accuracy [21,22], 
but the computational efficiency of the combined model is low, and with an 
advanced number of household appliances, more complex models are difficult to 
train. Recently, Wittmann proposed mixed-integer linear programming (MILP) for 
NILM, which achieved high accuracy [22]. 

The above research methods did not consider the time-related characteristics of 
electrical signals. At the same time, with recent developments in deep learning 
technology, the transformer model proposed by Google has shined in both Natural 
Language Processing (NLP) and Computer Vision (CV) fields due to its good 
performance. Considering that the electrical signal data itself is time-series data, in 
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order to sufficiently utilize the time-series characteristics of electrical signals, a 
transformer method is proposed and introduced into our research. The whole 
network structure of Transformer is completely composed of the attention 
mechanism, which consists of self-attention and Feed Forward Neural Network [23]. 
It enables the network to better memorize the correlation information between the 
data before and after, thereby providing time scale features for load decomposition. 

The sequence translation realizes a one-to-one mapping, and the energy is 
decomposed into the mapping of a total signal to multiple electrical signals. In order 
to realize the application of the deep sequence translation model, firstly, the 
combined coding of each mode of the electrical appliance is performed, and all 
electrical appliances are represented by a state code, so as to realize the dimension 
reduction representation of the electrical appliance state. Different from previous 
studies, the research application scenario of this paper is industrial electricity rather 
than household electricity. The characteristics of industrial electricity include a large 
amount of electrical data and complex electrical status. In order to further ensure the 
accuracy of the method, at the same time, we introduce self-encoding to re-encode 
and learn the electrical state encoding. Finally, this paper uses real data from a gas 
station in a city in Gansu Province to verify the proposed method, and compares it 
with the existing algorithms, our proposed method has higher accuracy. 

3. Dataset acquisition and preprocessing 

3.1. Dataset acquisition 

Because there are few public data sets of non-invasive load decomposition in 
the industrial scene, we collected the power consumption data for each appliance in a 
gas station through a set of sensor devices. Considering that the Internet of things 
equipment cannot be installed directly in the operation area of the gas station, it is 
selected to be installed on the switch in the general distribution box close to the 
transmission end of the distribution room. It is different from the traditional non-
invasive load decomposition data acquisition method of installing acquisition 
equipment at the end of electrical equipment. In a realistic gas station scenario, 
where many appliances are on an assembly line and switches in the distribution box 
can control one or more electrical appliances depending on the business situation, 
our acquisition solution is realistic. 

We collected data on the 12 appliances in the gas station, these were canopy 
lights, freezer, canopy lights strip, oil-submerged pump, convenience store socket, 
central air-conditioning, kitchen socket, counter socket, integrated office socket, gas 
station outdoor advertising signage + inlet and outlet lightbox (OAS + IOLB), 
uninterrupted power supply (UPS), and lounge socket. 

The acquisition equipment uses a Snap-on current transformer, which is directly 
clamped on the power wire of the equipment. The acquisition equipment is shown in 
Figure 1. We collected data on the power consumption of each appliance at two gas 
stations in the same area, and each equipment generates a power consumption record 
every 15 min. The collection time is 8 months, and a total of 324,000 data are 
collected. The acquisition indicators include electric quantity, current, power factor, 
reactive power, active power, etc. In this paper, we use active power as the power 
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state index of consumers. 

  
Figure 1. Data acquisition equipment. 

We obtained the total power consumption data from the data center of the power 
company of Gansu Province. In order to detect the reliability and consistency of data 
acquisition, Figure 2 compares the data collected by the sensor with the data of the 
electricity meter. The trend and amplitude of the total power are consistent, which 
proves that the data collected by the sensor is effective. 

 
Figure 2. Comparison of collected power data and real power data. 

3.2. States code of electric device 

The working mode of electrical appliances used in gas stations is relatively 
stable. For example, the working state of electric submersible centrifugal pump can 
be basically divided into three working modes, and the electrical appliances have 
rated power under each working mode. Although there will be some fluctuations in 
the actual working process, through experimental analysis, under each working 
mode, the appliance can approximately obey Gaussian distribution, and the 
distribution variance is small enough. 

In order to obtain the power distribution of each working mode in the actual use 
of electrical appliances, this paper obtains the power value distribution of each 
electrical appliance by creating probability mass function (PMF) on the sampling 
data. The power distribution and electrical modes are divided correspondingly, and 
the mean value of power distribution under each electrical working mode is taken as 
the representation of the actual power under its working mode. The actual power of 
each appliance is constructed into an index table, as shown in Table 1. Figure 3 
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shows the PMF diagram of electrical appliances in different states. 

Table 1. Index diagram of electric device states and actual power. 

Device Number of states A B C 

2ABC 3 0.17 1.85 3.28 

3ABC 2 0.04 3.73 - 

4C 2 0 1.11 - 

5A 1 0.67 - - 

5B 1 0.67 - - 

5C 1 0.67 - - 

6A 2 0 1.04 - 

6B 2 0 1.04 - 

7A 3 0.23 0.91 1.54 

7B 3 0.23 0.91 1.54 

7C 3 0.23 0.91 1.54 

8A4B8C 2 0 0.61 - 

 
Figure 3. The PMF of different device. 

The non-invasive monitoring method generates a decomposition signal through 
the total energy to restore the electrical energy signal. The energy consumption of 

each equipment is obtained by accumulating each electrical signal. For the time 𝑡, 
the expression of non-invasive monitoring is shown in Equation (1). 

𝑓(𝑋௧) = [𝑌௧
ଵ, 𝑌௧

ଶ, … , 𝑌௧
ெ] (1)

where 𝑋௧ is the total power consumption at time 𝑡, and 𝑌௧
௜ is the power value of the i-

th electrical appliance decomposed at time 𝑡 . The M is the number of electrical 

appliances, and 𝑓 is the NILM method. 
Electrical loads are divided into four basic categories: switching, continuous 

activity, continuous variable, and limited state [24]. Due to the limited operating 
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states of the appliance and the rated power in each operating state, Equation (1) can 
be transformed into Equation (2): 

𝑓(𝑋௧) = [𝑆௧
ଵ, 𝑆௧

ଶ, … , 𝑆௧
ெ] (2)

where 𝑆௧
௜ means the working states of the i-th appliance at time t. 

We can further define the working state code y of M appliances at some point as 
Equation (3): 

𝑦 = [𝑆ଵ, 𝑆ଶ, … , 𝑆ெ], 𝑆௜ ∈ {0,1, … , 𝑛௜ − 1} (3)

where 𝑆௜ is the working state of the i-th appliance and 𝑛௜ represents the number of 
working state of the i-th appliance. The total number of working state code is 

∏ 𝑛௜
ெ
௜ୀଵ . 

Finally, the NILM problem could be transformed into Equation (4). 

𝑦 = 𝑓(𝑋), 𝑦 ∈ {0,1, … , 𝑁 − 1} (4)

where X is the total power consumption data of the appliances, f is the NILM 
method, y is the state code and N is the working state code number. 

4. Method 

Our model composed of three parts: a states encoder, a total power consumption 
encoder and a state decoder. The state encoder is composed of a double-layer 
autoencoder, which is responsible for transforming the dense vector representing the 
state of electrical appliances into sparse vector. 

Total power consumption encoder and state decoder respectively represent the 
encoder and decoder modules in the transformer network, which is composed of N 
electric quantity encoders and state decoders. By encoding the total electric quantity 
and decoding the reduced dimension state vector, the process of non-invasive load 
monitoring is realized. 

4.1. Code the combined states code with autoencoder 

Previous tasks mainly focused on the scene of household appliances with a 
small number of appliances. In this paper, the gas station data we collected contains 
the power consumption status of 12 consumers in total. However, the total available 
power consumption data is only three data: total power consumption, total power, 
and total voltage. In order to solve the problem that the accuracy of the model is too 
low due to learning the law of dense encoded data from sparse encoded data, we 
introduce the Autoencoder to reduce the dimension of the state code of electrical 
appliances. The network topology of the autoencoder is shown in Figure 4. 

 
Figure 4. Structure of autoencoder. 
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The autoencoder (AE) is a neural network that uses the back propagation 
technique to make the output identical to the input value. It compresses the data into 
a latent space representation before reconstructing the output using this 
representation. 

Autoencoder consists of encoder and decoder. The encoder can compress the 
input into a latent space representation, which can be expressed as Equation (5): 

ℎ = 𝑓(𝑥) (5)

The decoder reconstructs the input from a possible spatial representation in part, 
which can be represented as Equation (6): 

𝛾 = 𝑔(ℎ) (6)

Therefore, the whole autoencoder can be described as Equation (7): 

𝑔൫𝑓(𝑥)൯ = 𝑟 (7)

where r is the same as x, and x is the original input. 
Copying the input to the output appears to be pointless, but usually we don’t 

care about the output of the decoder. On the contrary, what we want is to make h 
obtain useful features by training the autoencoder to copy the input. The autoencoder 
whose coding dimension is smaller than the input dimension is called incomplete 
autoencoder if one option to extract usable features from the autoencoder is to limit 
the size of h to be smaller than that of x. Learning the incomplete representation will 
force the autoencoder to capture the most significant features in the training data. 
The learning process is to minimize the reconstruction error (Equation (8)): 

𝐿 ቀ𝑥, 𝑔൫𝑓(𝑧)൯ቁ (8)

where L is a loss function used to calculate the mean square error between x and 

𝑔൫𝑓(𝑧)൯. 

Automatic coder is generally used for data dimensionality reduction or feature 
learning, which is similar to PCA, but automatic coder is much more flexible than 
PCA, because it can represent both linear transformation and nonlinear 
transformation. 

Therefore, by training the autoencoder, we can reduce the dimension and copy 
the state combination data of consumers. In this paper, we take the power 
consumption data of a day as a batch and collect the data every 15 min, so the data of 
a batch is 96-time nodes. As shown in Figure 4, the combined code of the state of 
the consumer for one day of input data. Through the autoencoder, we obtain a new 6-
dimensional code, and the code dimension is consistent with the input data 
dimension. 

4.2. Transformer for NILM 

This section provides background information on transformer, which serves as 
the foundation for our model. The scaled dot-product attention is the foundation of 

transformer. Therefore, we’ll start there. Given a query 𝑞௜ ∈ ℝௗ from all T’queries, a 

set of keys 𝑘௧ ∈ ℝௗ  and values 𝑣௧ ∈ ℝௗ where t = 1, 2, ..., T, the weighted sum of 
values vt produced by the scaled dot-product attention is decided by the dot-products 
of query q and keys kt. In practice, we use the matrices K = (k1, ..., kT) and V = 
(v1, ..., vT) to record kt and vt. Equation (9) shows the attention output for query q: 
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𝐴(𝑞௜, 𝐾, 𝑉) = 𝑉
exp൫𝑘்𝑞௜ ∕ √𝑑൯

෍ exp ൫𝑘௧
்𝑞௜ ∕ √𝑑൯

்

௧ୀଵ

 (9)

The multi-head attention is made up of H paralleled scaled dot-product attention 
layers termed “head”, each of which is a separate dot-product attention layer. The 
following is the outcome of multi-head attention (Equations (10) and (11)): 

𝑀𝐴(𝑞௜, 𝐾, 𝑉) = 𝑊ை ൭
headଵ

…
headு

൱ (10) 

Head௝ = 𝐴(𝑊௝
௤

𝑞௜, 𝑊௝
௄𝐾, 𝑊௝

௏𝑉) (11) 

where 𝑊௝
௤

, 𝑊௝
௄ , 𝑊௝

௏ ∈ ℝ
ౚ

ಹ
×ௗ  are the independent head projection matrices, j = 1, 

2, ..., H, and 𝑊ை ∈ 𝑅𝑑 × 𝑑. 
This is a very wide expression of attention. for example, when the query is the 

decoder’s hidden states, and both the keys and values are all the encoder’s hidden 
states, it reflects common cross-module attention. Another example of multi-head 
attention is self-attention, in which the queries, keys, and values all come from the 
same hidden layer (see also in Figure 5). 

 
Figure 5. Transformer with n-layer encoder and n-layer decoder. 

Transformer network is a machine translation-based encoder-decoder model. 
Multi-head attention and a pointwise feed-forward layer are the foundations of 
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transformer [23]. The input from the multi-head attention layer is sent via two linear 
projections with ReLU activation before being passed through the pointwise feed-
forward layer. Two convolution layers with kernel size one can be seen as the feed-
forward layer. Transformer’s encoder and decoder are made up of numerous such 
building units with the same number of layers. Each layer’s decoder receives input 
from its own encoder as well as the output of the lower layer decoder. Both the 
encoder and the decoder use self-attention. Cross-module attention is also used 
between the encoder and the decoder. To keep the auto-regressive property, the 
decoder’s self-attention layer can only pay attention to the current and prior 
positions. All input and output layers have a residual connection [25]. All layers are 
also subjected to normalization layer [26] (NormLayer). One layered transformer is 
used in this article. 

5. Experiments and result 

The input data is the total power consumption data of the gas station provided 
by the State Grid of Gansu Province, in which the data quality of total power 
consumption, total power, and total voltage meet the requirements of the laboratory. 

The input data set is formed by noise reduction processing: 𝑋 = {𝑄, 𝑃, 𝑉, 𝑇}, Q = (q1, 
q2, …, q1), P = (p1, p2, …, p1), V = (v1, v2, …, v1), T = (t1, t2, …, t1). Where Q, P, V 
and T represent electric quantity, power, voltage, and acquisition time respectively, 
At the same time, our data are collected every 15 min, so i = 96 in the data every day. 

The sequence dimension of electrical appliance status label is n * i dimension. 
Where n = 12 is the number of electrical devices, i = 96 in the data every day. The 
neurons number in the two layers of self encoder is 10 and 6 respectively, with 
dropout rate is 0.1, learning rate is 10−4, and Adam for optimization. The dimension 
of the power on state sequence is reduced from the encoder to 6 dimensions, and 
then used as the input of the state decoder in the transformer. The data set contains 
196 days of data, of which 80% is used as training set and 20% is used as test set. 

As in previous studies, we used accuracy and mean absolute error (MAE) to 
evaluate the model [27–29]. Several state-of-the-art architectures were used to 
compare with our model, including BiLSTM and BiGRU [28] as well as a seq2seq 
model [30], which were modified to have the same input length and maximum 
hidden size as our model and used the same training strategy. Table 2 shows the 
results of the comparison on our dataset. We compared the predicted output of the 
refrigerator with the sampling graph of the real label, where the blue represents the 
actual power of the refrigerator at different times, and the orange represents the 
predicted result. As shown in Figure 6, our model has a better fitting effect 
compared to other commonly used deep learning models. 
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Table 2. Model performances on different device with different mothed. 

Device Model ACC MAE 

Submersible pump 

BiGRU 0.78 40.2 

BiLSTM 0.78 41.2 

Seq2seq 0.79 35.2 

Ours 0.86 30.5 

UPS power supply 

BiGRU 0.92 27.6 

BiLSTM 0.98 35.4 

Seq2seq 0.97 36.4 

Ours 0.99 34.9 

Light belt 

BiGRU 0.97 21.8 

BiLSTM 0.97 17.5 

Seq2seq 0.98 18.5 

Ours 0.98 18.5 

 
Figure 6. Sample output of refrigerator. 

Figure 7 compares the different models with a sample of the refrigerator and 
the graph shows that our model is more accurate as well as stable. 
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Figure 7. Real and predicted power distribution of different devices. 

The results show that the average performance of our model is better than other 
models and is superior on most devices. 

Our model is an end-to-end model and has good performance. As shown in 
Table 3, NILM accuracy of our method on industrial electrical equipment reaches 
90.17%. Among them, the accuracy of equipment 6AB: Lounge Socket & OAS + 
IOLB is relatively low, mainly due to the irregular electricity consumption law of 
these equipment and inconvenient to collect.  

Table 3. Model performances on different appliance. 

Device Device Accuracy 

2A2B2C Oil-submerged pump 0.86 

3A3B3C Central air-conditioning 0.89 

4C Canopy lights strip 0.96 

5B Kitchen socket 0.99 

5C Integrated office socket 0.99 

6B OAS + IOLB 0.76 

5A UPS 0.99 

6A Lounge socket 0.76 

7A Counter socket 0.88 

7B Convenience store socket 0.88 

7C Freezer 0.88 

8A4B8C Canopy lights 0.98 

Total accuracy  0.901666667 

In Figure 7, we present the distribution of real power consumption data and 
predicted data of four devices with different accuracy rates. Where the orange and 
blue lines represent the predicted power distribution, and the actual power 
distribution respectively. 
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As we suspected, 4C and 8ABC electricity consumption laws are relatively 
standard, so the prediction accuracy is higher. Meanwhile, the prediction accuracy of 
2ABC and 6B is relatively low. 

6. Conclusion 

In this paper, a method of applying the sequence translation model composed of 
an autoencoder and transformer to the non-invasive load decomposition problem is 
proposed, which makes full use of the correlation between the amplitude 
characteristics of the power signal and the operation mode on the time scale to 
achieve the load energy decomposition. Verified by real industrial data, the proposed 
method achieves high accuracy. 
a) For the low-frequency monitoring data collected, the NILM method to construct 

deep sequence translation can make full use of the correlation between the 
amplitude characteristics of the data and the operation mode on the time scale. 

b) By combining the operation modes of electrical appliances into state codes, a 
reduction in sequence mapping is realized, which eliminates the redundancy of 
the load decomposition model and reduces the time of training. At the same 
time, the dimension reduction of the autoencoder can effectively solve the 
problem of the high dimension of multi-device state combination code. 

c) The depth sequence translation model proposed in this paper has good 
scalability. When the number of electrical devices to be decomposed increases, 
the proposed method can still decompose the load data. 
We were able to properly adapt the architecture for energy disaggregation; 

therefore, the autoencoder and transformer model is effective for NILM tasks. Future 
research could concentrate on developing a lightweight autoencoder-based 
transformer model to speed up training and inference, as well as a more efficient 
optimization procedure to enhance prediction quality on multi-staged appliances and 
unbalanced datasets. 
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