
Intelligent Control and System Engineering 2024, 2(1), 1871. 

https://doi.org/10.59400/icse1871 

1 

Article 

Comparison of the elevator traffic flow prediction between the neural 

networks of CNN and LSTM 

Mo Shi1,2,*, Yeol Choi1 

1 School of Architecture, Kyungpook National University, Daegu 41566, Korea 
2 HaXell Elevator Co., Ltd., Shanghai 201801, China 

* Corresponding author: Mo Shi, shimo0204@outlook.jp 

Abstract: With urbanization rapidly increasing, the demand for efficient elevator systems is 

becoming ever more pressing, particularly in crowded urban centers where high-rise 

buildings are prevalent. To solve this issue, elevator traffic analysis and prediction have 

emerged as critical components for optimizing elevator control systems. The elevator traffic 

flow prediction not only ensures smoother operations during peak usage times but also 

significantly reduces waiting periods for passengers, thereby enhancing overall convenience. 

By leveraging neural networks, the performance of elevator control systems is expected to be 

improved, leading to more efficient and convenient elevator utilization in both residential and 

commercial environments. Over the past few decades, the rapid advancements in neural 

networks have provided valuable tools for predicting traffic flows. In this research, a total of 

655 actual ETF (Elevator Traffic Flow) data points from a typical office building on a 

weekday are utilized to analyze and predict traffic patterns using CNN (Convolutional Neural 

Networks) and LSTM (Long Short-Term Memory). The objective is not only to demonstrate 

the applicability of the neural networks in predicting elevator traffic flow but also to conduct 

a comparative analysis to identify which offers greater accuracy and suitability for the 

elevator traffic flow prediction. By enhancing the capabilities of elevator control systems 

through CNN or LSTM, this research seeks to improve not only the efficiency of elevator 

operations but also the overall living and working environment in urban cities. The findings 

from this research can inform subsequent research efforts, encouraging a deeper exploration 

of how synthetic predictions can further optimize elevator control systems, while the 

synthetic elevator control system is expected to lead to significant improvements in passenger 

experience, reducing wait times and increasing overall satisfaction in both residential and 

commercial buildings. Therefore, the insights gained from this research are expected to play a 

crucial role in shaping the future of smart buildings, aligning with the demands of modern 

urban living. 

Keywords: ETF (Elevator Traffic Flow); neural networks; CNN (Convolutional Neural 

Networks); LSTM (Long Short-Term Memory); prediction 

1. Introduction 

As urbanization continues to accelerate in contemporary society, an increasing 

number of people are moving into cities, including residential needs, creating 

significant challenges. The sheer size of urban populations has given rise to 

numerous social issues that require immediate attention, with traffic congestion 

emerging as one of the most pressing problems. To better understand and address 

traffic concerns, extensive research has been conducted over the years [1–6], 

emphasizing the importance of this issue and offering various analytical approaches 

to solve the traffic issues. In recent decades, with the rapid development of neural 
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network technology, traffic flow prediction methods have been developed, showing 

considerable promise in addressing traffic congestion. These predictive models have 

contributed significantly to reducing traffic jams, thus improving mobility and 

convenience for people in urban cities. 

According to the previous research of Zhao et al. [7], the LSTM (Long Short-

Term Memory) neural network was identified as a highly suitable tool for short-term 

traffic forecasting. Through a detailed comparison of various neural networks, the 

research discussions highlight the superior accuracy and robustness of the LSTM 

model, particularly when applied to traffic data. The analysis was conducted using 

three observation points within the traffic network of Beijing City, where the LSTM 

model consistently outperformed other neural network approaches. This research 

underscores the effectiveness of LSTM in addressing complex urban traffic 

prediction tasks, offering a reliable solution for managing short-term traffic 

conditions in urban cities. In addition, the previous research of Kang et al. [8] also 

emphasizes the application of the LSTM model in the field of traffic prediction. The 

research demonstrates that the LSTM model has significant potential in mitigating 

the growing problem of traffic congestion in urban cities. With the increasing 

complexity of traffic conditions in densely populated areas, the LSTM model offers 

an advanced approach to forecast traffic patterns and identify potential bottlenecks 

accurately. 

Moreover, the previous research of Lazaris et al. [9] also highlighted the 

extensive use of the LSTM model in network traffic prediction, owing to its ability 

to deliver highly accurate forecasts with minimal prediction errors. The research also 

explored several variations of the LSTM model, including vanilla LSTM, Delta 

LSTM, Cluster LSTM, and Cluster Delta LSTM, each of which offers unique 

advantages in modeling network traffic. These variants enhance the flexibility and 

precision of traffic modeling, making the LSTM family of models particularly 

suitable for managing the complexities of modern network systems. 

Referring to many previous research. the LSTM neural network model has 

applications beyond standard traffic prediction, as it is also being utilized in the field 

of ETA (Elevator Traffic Analysis). According to research by Zheng et al. [10], and 

Shi et al. [11], the LSTM model provides a promising solution to typical elevator 

traffic problems. By accurately forecasting elevator usage patterns, especially during 

peak periods such as mornings, lunch breaks, and evenings [12], LSTM-based 

systems are significantly expected to reduce elevator congestion in tall office 

buildings. By integrating LSTM models to predict and manage elevator traffic more 

efficiently, the overall accessibility and functionality of high-rise buildings are 

expected to improve, particularly for office spaces where elevator bottlenecks are 

most common. The LSTM model offers a practical method to enhance the daily 

operations of tall buildings, ensuring smoother vertical transportation during high-

demand periods. 

In addition to the widely recognized capabilities of LSTM networks in general 

traffic analysis and network traffic forecasting, CNN (Convolutional Neural Network) 

has established its presence across numerous domains throughout the decades [12–

16]. The integration of these neural network architectures not only enhances the 

accuracy of traffic predictions but also streamlines urban mobility [17–19]. Despite 
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the differences between LSTM and CNN, both models offer valuable approaches for 

predicting traffic patterns, ultimately contributing to more efficient and convenient 

urban dwellings and working environments. As cities continue to grow and face 

increasing transportation challenges, the application of LSTM and CNN models 

becomes ever more critical. These advanced technologies offer innovative solutions 

that facilitate smarter traffic management, ultimately contributing to the convenience 

and sustainability of urban living. 

Elevator systems play a critical role in managing vertical transportation within 

buildings, significantly influencing the efficiency of traffic flow and the overall user 

experience. Prolonged waiting times and extended travel durations often frustrate 

passengers, leading to dissatisfaction and frequent complaints about an inconvenient 

living environment. Recognizing the importance of this issue, many researchers have 

directed their efforts toward optimizing elevator traffic management. For instance, 

Luo et al. [20] explored the use of LS-SVM (Least Squares Support Vector 

Machines) models for elevator traffic prediction. Their findings highlight the 

model’s ability to accurately predict elevator traffic, providing a foundation for 

improving the efficiency and reliability of these systems. 

In this research, both LSTM (Long Short-Term Memory) and CNN 

(Convolutional Neural Network) are applied to analyze typical elevator traffic flow, 

the whole day traffic flow in the typical office building on the weekdays upon the 

analytical results of Luo et al. [20]. To streamline the analysis, this research uses an 

elevator traffic dataset collected exclusively from a 14-floor office building, 

including a basement floor designated for parking. The detailed specifications of the 

four elevators are outlined in Table 1, and each elevator has a design capacity of 

1000 kg, with door opening and closing times set at 2.9 s and 3.3 s respectively. As 

Table 1 indicates, the elevators are designed to operate at a speed of 2 m/s and an 

acceleration of 0.8 m/s2. Furthermore, the home floor for all four elevators is the 1st 

floor as Table 1 emphasizes, serving as the default starting floor of the four elevators 

within the typical office building in this research. 

Table 1. Overview of the elevators. 

Number of Elevators 4 

Capacity 1000 kg 

Door Pre-opening Time 0 s 

Door Open Time 2.9 s 

Door Close Time 3.3 s 

Speed 2 m/s 

Acceleration 0.8 m/s2 

Jerk 1.2 m/s3 

Start Delay 0.5 s 

Home Floor 1 F 

Although the elevator traffic in a single typical office building helps reduce 

variables and complexity, this research acknowledges the inherent limitations of 

relying on data from a single source. Despite these constraints, the findings are 
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anticipated to provide valuable insights for future research. They are expected to 

serve as a foundational reference for studies involving multiple buildings or more 

diverse environments, aiming to improve the generalizability and applicability of 

elevator traffic flow models. This research focuses on predicting elevator traffic flow 

specifically on weekdays, as the volume and complexity of traffic during these days 

are significantly greater compared to weekends. Due to the increased variety in 

weekday elevator usage, which makes accurate prediction particularly challenging, 

elevator traffic data were collected from a typical office building, with samples taken 

every minute between 7:00 and 18:00, resulting in 655 data points recorded daily. 

Recognizing that raw data often contain noise, this research employed a database 

consisting of averaged traffic flow data over four weeks (one month) to ensure a 

more accurate and reliable analysis. 

This research leverages the unique characteristics of LSTM and CNN neural 

network models to examine the respective roles in ETA (Elevator Traffic Analysis) 

and ETP (Elevator Traffic Prediction). By comparing these neural network structures, 

the discussions of this research seek to identify how the differences influence 

elevator traffic prediction performance, highlighting the advantages each model 

offers in the prediction performance of the elevator traffic flow. Although 

minimizing elevator cycle time 𝑣(𝑡) remains a primary focus for ETA, incorporating 

neural networks provides new opportunities for improving elevator control systems 

[21,22]. As the research of Markos et al. [23] indicates, reducing acceleration, 

braking times, and dwell times at stations effectively shortens cycle times. Following 

by the previous theories of ETA, the research explores how neural networks (LSTM 

and CNN) can advance elevator traffic control systems through predictive 

capabilities. The findings from this research are expected to contribute to developing 

efficient prediction models that enhance elevator system functionality, especially in 

high-rise buildings. These advancements are expected to play a vital role in urban 

environments, where improving elevator efficiency can significantly reduce virticle 

transport time cost and enhance overall building accessibility, while the insights 

gained will support the creation of more convenient and efficient living and working 

spaces in densely populated cities. 

2. Discussion of the CNN and LSTM framework 

2.1. CNN framework 

Referring to much previous research, CNN (Convolutional Neural Network) is 

a type of deep learning algorithm composed of several key layers, including 

convolutional layers, pooling layers, and fully connected layers as Figure 1 

illustrates. Traditionally, CNN has shown exceptional performance in identifying 

patterns in images, making them highly effective for tasks such as object detection, 

classification, and recognition. Many previous research have demonstrated the 

ability of CNN to extract features from images and categorize them into specific 

classes or objects [24–26]. However, the applications of CNN extend far beyond 

image recognition. CNN is also employed in other areas such as NLP (Natural 

Language Processing) [27,28], time series analysis [29,30], and speech recognition 

[31–33]. 
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Figure 1. CNN framework. 

Referring to Figure 1, the core components of CNN of the convolutional and 

fully connected layers are critical to their deep learning architecture. Convolutional 

layers apply filters to input data from the embedding layer that highlight various 

important characteristics of the input, whether in images or other forms of data. 

Meanwhile, fully connected layers link each neuron from one layer to every neuron 

in the subsequent layer, allowing the network to make its final classification 

decisions based on the extracted features. This combination of feature extraction and 

classification is what enables CNN to be such a powerful and versatile tool across 

multiple domains. 

As illustrated in Figure 1, the framework of CNN is composed of distinct layers, 

each playing a specific role in the deep learning process. The visible layer consists of 

the embedding layer, fully connected layer, and output layer. These layers handle the 

mapping of input data, the transformation of learned features into final predictions, 

and the ultimate output of the network. On the other hand, the hidden layers are 

made up of convolutional layers and pooling layers, which are essential for feature 

extraction and dimensionality reduction. The convolutional layer applies filters to the 

input, capturing spatial relationships and features within the data, while the pooling 

layer reduces the dimensionality, preserving key information while making the 

model more computationally efficient. 

One of the key strengths of CNN lies in its flexibility. The convolutional and 

pooling layers can be repeated multiple times, allowing the model to build 

hierarchical representations of the input data. By increasing the depth of the network, 

CNN is capable of learning more complex patterns and achieving higher accuracy in 

their predictions. 

This research focuses on analyzing elevator traffic in a typical office building 

using CNN, leveraging data collected over a single weekday. A total of 655 data 

points are gathered, representing the traffic flow of the elevators throughout the day 

in the typical office building. To optimize the performance of the CNN model, the 

dataset is divided into two distinct parts as Figure 2 illustrates. The first 200 data 

points are used for the training process which represents the morning peak traffic 

rush, while the remaining 455 data points are designated for the testing process that 

corresponds to the noon peak and end-of-day traffic rush. For effective model 

training and testing, the first 10 data points are specifically used for initializing the 

learning process as depicted in Figure 2. This division of data provides a structured 
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approach to managing the input, ensuring that both training and testing are 

appropriately set up to reflect real-world traffic patterns. 

 

Figure 2. Dividing and inputting the data. 

As illustrated in Figure 3, the architecture of the CNN in this research 

comprises three convolutional layers, each paired with a normalization layer and a 

ReLU (Rectified Linear Unit) activation layer. These layers work in tandem to 

extract features from the input data and normalize them to improve the learning 

ability of the network. The kernel size for all convolutional layers is set to 3 × 1, 

ensuring that the CNN captures relevant features in a structured and efficient manner. 

As the network deepens, the number of feature maps increases: the first 

convolutional layer has 11 feature maps, the second layer has 22, and the third layer 

has 44. This progressive increase allows the model to detect more complex patterns 

as it processes the data, thereby improving its overall feature extraction capabilities. 

At the final stage of the network, the fully connected layer is designed to process the 

learned features and produce the output result. This layer takes the abstracted 

features from the convolutional layers and maps them to the final predictions, 

completing the learning process of CNN. 

 

Figure 3. Structure setting of CNN. 

Several critical parameters are configured to enhance the training performance 

of the model in the deep learning setup for the CNN as depicted in Figure 4. The 

Adam (Adaptive Moment Estimation) optimization algorithm is chosen for training, 

known for its efficiency and adaptive learning rate adjustments that lead to faster and 

more stable convergence. 
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Figure 4. Parameter setting. 

Referring to Figure 4, the maximum number of epochs is set to 300, allowing 

the network to go through extensive training iterations to thoroughly learn the 

underlying patterns in the data. The initial learning rate is configured at 0.01, which 

determines how quickly the model updates its weights during the learning process. 

To ensure that the model refines its learning over time, a piecewise learning rate 

schedule is implemented, while after the first 200 times for epochs, the learning rate 

is reduced by a factor of 0.1. The gradual reduction allows the model to fine-tune its 

parameters, promoting more precise learning as it nears completion. 

Throughout the entire training and testing process, data shuffling is employed to 

randomize the order of the data before each epoch. This step ensures that the CNN 

cannot memorize any fixed order in the dataset, leading to better generalization when 

tested on unseen data. The shuffle is applied at every epoch, which helps to reduce 

biases and prevents overfitting, improving both the training and testing performance. 

Table 2. Layer information of CNN. 

Layer Name Type 

1 
Image Input 

10×1×1 images with 'zerocenter' normalization 
Image Input 

2 
conv_1 

11 3×1×1 convolutions with stride [1 1] and padding [0 0 0 0] 
2-D Convolution 

3 
batchnorm_1 

Batch normalization with 11 channels 
Batch Normalization 

4 
relu_1 

ReLU 
ReLU 

5 
conv_2 

22 3×1×11 convolutions with stride [1 1] and padding [0 0 0 0] 
2-D Convolution 

6 
batchnorm_2 

Batch normalization with 22 channels 
Batch Normalization 

7 
relu_2 

ReLU 
ReLU 

8 
conv_3 

44 3×1×22 convolutions with stride [1 1] and padding [0 0 0 0] 
2-D Convolution 

9 
batchnorm_3 

Batch normalization with 44 channels 
Batch Normalization 

10 
relu_3 

ReLU 
ReLU 

11 
fc 

1 fully connected layer 
Fully Connected 

12 
regressionoutput 

mean-squared-error with response 'Response' 
Regression Output 
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In this research, the CNN framework is composed of a total of 12 layers as 

outlined in Table 2. Especially, these layers include convolutional layers which 

extract key features from the data, normalization layers which help standardize the 

data and improve model stability, and ReLU (Rectified Linear Unit) activation layers 

which introduce non-linearity into the model, enabling it to learn complex patterns. 

This multi-layered architecture provides the foundation for analyzing the 

elevator traffic flow in a typical office building over the course of a single weekday. 

By processing the data through these 12 layers, the CNN is able to capture intricate 

details in the elevator traffic flow, such as peak times and usage patterns. The 

combination of convolutional, normalization, and activation functions allows the 

model to progressively refine its understanding of the data, leading to more accurate 

predictions of elevator traffic behavior. 

2.2. LSTM framework 

Many previous studies indicate that the LSTM (Long Short-Term Memory) 

network emerges as a significant advancement in the realm of deep learning, 

particularly within the framework of RNN (Recurrent Neural Network) [34–36]. 

While RNN has proven effective in tasks that involve sequence prediction, it often 

faces challenges when it comes to long-term dependencies [37,38]. Traditionally, 

RNN can struggle to maintain relevant information over extended sequences, which 

limits its ability to learn complex patterns that unfold over time. In contrast, the 

LSTM network is designed to address this limitation by incorporating multiple 

specialized components within each LSTM cell, including the forget gate, input gate, 

and output gate [39,40]. These gates work together to manage the flow of 

information through the network. The forget gate selectively discards information 

that is no longer needed, the input gate controls which new information is added, 

while the output gate regulates the release of information from the cell. 

This unique architecture enables the LSTM network to maintain and update 

state vectors, allowing them to store and selectively modify information over long 

sequences. As a result, LSTM excels at identifying intricate patterns and 

dependencies that the conventional RNN might overlook. This makes them 

particularly well-suited for tasks such as time-series forecasting, speech recognition, 

and natural language processing, where retaining and understanding long-term 

relationships in data is critical. 

As depicted in Figure 5, a memory cell in a typical LSTM network plays a 

central role in the processing and retention of sequential information. This cell not 

only utilizes the input data from the current timestamp but also incorporates memory 

from the previous timestamp to perform feature extraction. By combining these two 

sources of information, the LSTM is able to capture both the immediate and 

historical context of the sequence, which is essential for learning long-term 

dependencies. The processed information is stored in the memory cell (𝐶𝑡), which 

holds the relevant features extracted at the current time step. This memory (𝐶𝑡) is 

then passed forward to the next time step, ensuring that the LSTM network retains 

important information across multiple timestamps, enhancing its ability to learn 

patterns over time. 



Intelligent Control and System Engineering 2024, 2(1), 1871. 
 

9 

 

Figure 5. LSTM framework. 

In addition to updating the memory cell, the LSTM cell generates output data 

(ℎ𝑡) based on the current memory state (𝐶𝑡). This output represents the response of 

LSTM to the input at the specific time step, factoring in both the new input and the 

memory it has retained. As shown in Figure 6, this process of memory retention, 

feature extraction, and output generation is repeated at each time step, allowing the 

LSTM to effectively process sequences of data. 

 

Figure 6. Unrolled form of LSTM network. 

In the architecture of an LSTM memory block, three primary gates work 

together to control how information is stored, updated, and output. These gates are 

the forget gate, the input gate, and the output gate, each playing a crucial role in the 

flow of data within the LSTM cell. 

As depicted in Figure 5, the forget gate is represented by the blue part of the 

LSTM cell. This gate is responsible for deciding which parts of the existing memory 

(previously stored information) should be retained or discarded. It evaluates the 

current memory state and selectively forgets irrelevant or outdated information, 

allowing the LSTM to focus on important data while avoiding the buildup of 

unnecessary details. The blue part in Figure 5 illustrates the forget gate in the LSTM 

cell, and its mathematical process is explained by the equation provided below: 

𝑓 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥1] + 𝑏𝑓) (1) 

The input gate, shown in orange, manages the new input information entering 

the LSTM cell at the current time step. It determines which parts of this new input 

are relevant and should be added to the memory, ensuring that the network 

incorporates new information effectively without overwhelming the memory with 
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unimportant data. The orange part in Figure 5 illustrates the input gate in the LSTM 

cell, and its mathematical process is explained by the equations provided below: 

𝑖𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝐶̃ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (4) 

The output gate, represented by the green part of the LSTM cell, controls the 

generation of the output information (ℎ𝑡 ). After the forget and input gates have 

updated the memory state (𝐶𝑡), the output gate decides which portion of the memory 

should be used to generate the current output, which will be passed on to the next 

layer or time step in the sequence. The green part in Figure 5 illustrates the output 

gate in the LSTM cell, and its mathematical process is explained by the equations 

provided below: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ( 𝐶𝑡) (6) 

where, in Equations (4) and (6), ∗ denotes element-wise multiplication, while in 

Equations (1), (2), and (5), 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 represents the sigmoid function. In 

Equations (1)–(3), and (5), 𝑊  and 𝑏  are matrices corresponding to the learning 

parameters of LSTM. 

The LSTM memory cells provide neural networks with the ability to process a 

sequence of inputs, denoted as (𝑥1, 𝑥2, ..., 𝑥𝑡, ..., 𝑥𝑇), and generate corresponding 

timestamped outputs (ℎ1, ℎ2, ..., ℎ𝑡, ..., ℎ𝑇), where 𝑇 represents the total length of 

the input data sequence. At each time step 𝑡, the output ℎ𝑡 is generated based on all 

the input data received from time 1 to time 𝑡. This means that LSTM can accumulate 

knowledge over time, with each output reflecting the information processed up to 

that specific point in the sequence. 

For instance, at time step 1, the network generates ℎ1 based solely on the first 

input 𝑥1, while at time step 3, the output ℎ3 is influenced by the inputs 𝑥1, 𝑥2, and 𝑥3. 

As the network progresses through the sequence, each subsequent output is 

increasingly informed by the entire history of inputs. This ability to dynamically 

incorporate past inputs into the current output makes LSTM networks especially 

powerful for tasks involving time-dependent or sequential data. 

In alignment with the discussion on CNN, the same dataset representing 

elevator traffic in a typical office building, collected over the course of a single 

weekday, is also utilized for the LSTM model. This consistent use of data allows for 

a comparative analysis between the performance of CNN and LSTM in handling the 

prediction of elevator traffic flows. As described in Figure 2, the dataset consists of 

a total of 655 data points, which are divided into two parts: the first 200 data points 

are reserved for the training process, representing the morning peak traffic rush, 

where the highest volume of elevator usage typically occurs. The remaining 455 data 

points are allocated for the testing process, corresponding to the noon peak and the 

end-of-day traffic rush. By applying the same data division for both the CNN and 
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LSTM models, the research ensures a fair comparison of how these two deep-

learning architectures handle the task of elevator traffic prediction. 

As depicted in Figure 7, the LSTM architecture designed for this research 

features a structured deep-learning model comprising five distinct layers. The first 

layer in the LSTM architecture is the input layer, which is designed to handle a total 

of 10 input features. These input features represent the essential variables or data 

points that are fed into the network for analysis and prediction. The selection of 10 

features ensures that the LSTM model has sufficient information to learn from while 

avoiding excessive complexity that might hinder its performance. The second key 

component is the hidden unit within the LSTM layer, also set to 10 units. These 

hidden units are responsible for storing and updating the internal memory of the 

network over time, capturing both short-term and long-term dependencies within the 

sequence of input data. The 10 hidden units provide the capacity to model intricate 

patterns in the elevator traffic data while maintaining computational efficiency. 

Following the LSTM layer, the network incorporates a ReLU activation layer, and 

this allows the LSTM to handle more complex relationships between the input 

features and the predicted outcomes. The ReLU activation is connected to a fully 

connected layer that is tasked with generating a single prediction unit. This means 

that the output of the network at each time step is a single value, representing the 

predicted outcome based on the learned patterns. Finally, the architecture concludes 

with a regression layer, which serves as the last component of the LSTM structure. 

This layer is responsible for transforming the output from the fully connected layer 

into a form suitable for regression tasks, it indicates predicting continuous variables 

like elevator traffic flow. The regression layer ensures that the LSTM model 

provides accurate numerical predictions, making it an essential part of the overall 

architecture. 

 

Figure 7. Structure setting of LSTM. 

The parameters of LSTM are configured similarly to those of the CNN in 

Figure 4. The Adam optimization algorithm is used, with a maximum of 300 epochs. 

The initial learning rate is 0.01, and a piecewise learning rate schedule reduces the 

rate by a factor of 0.1 after 200 epochs. 

Referring to Table 3, The architecture begins with the input layer, which 

receives and organizes the raw data into a format suitable for further processing by 

the network. Following this, the core of the architecture is the LSTM layer, which is 

responsible for handling the temporal dependencies within the data. Next, the 

network employs a ReLU activation layer, and this is crucial for enabling the 

network to learn complex relationships in the data, as the ReLU helps to avoid the 
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vanishing gradient problem commonly encountered in deep learning. The connection 

layer then links the LSTM outputs to the final processing stage, ensuring that the 

information flows smoothly through the network. Lastly, the regression layer is 

designed to generate the final predictions, which in this case involves forecasting 

elevator traffic patterns based on the learned data. 

Table 3. Layer information of LSTM. 

Layer Name Type 

1 
sequenceinput 

Sequence input with 10 dimensions 
Sequence Input 

2 
lstm 

LSTM with 10 hidden units 
LSTM 

3 
relu 

ReLU 
ReLU 

4 
fc 

1 fully connected layer 
Fully Connected 

5 
regressionoutput 

mean-squared-error with response 'Response' 
Regression Output 

By structuring the LSTM model with 10 input features, 10 hidden units, a 

ReLU activation layer, a fully connected layer, and a regression layer, the 

architecture is tuned to capture the complexities of time-series data while producing 

reliable, precise predictions for elevator traffic. 

3. Discussion of the prediction results 

3.1. Prediction results of CNN 

Regarding the elevator traffic flow prediction using the CNN model, the 

parameter settings include a total of 300 epochs as illustrated in Figure 8. The high 

number of epochs is designed to give the model ample opportunity to learn and 

adjust its parameters throughout the training process. 

 
(a) Result of RMSE. 

 
(b) Result of loss. 

Figure 8. Training progress of CNN. 
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Based on the data of the elevator traffic flow in this research, Figure 8 shows 

that the RMSE and loss function values stabilize after the first 50 epochs. This 

indicates that after 50 iterations, the model reaches a level of training stability, where 

further improvements become minimal. Essentially, the model has already learned 

the essential patterns in the data by this point, and additional training beyond 50 

epochs does not yield significant improvements in performance. The graphs in 

Figure 8 of the loss function and RMSE suggest that while 300 epochs were initially 

planned, 50 epochs may be sufficient to achieve optimal training. Continuing the 

training process beyond this point may only lead to marginal gains, making it less 

efficient in terms of time and computational resources. 

As shown in Figure 9, the training and testing results of the CNN are compared, 

demonstrating the ability of CNN to learn from the training data and predict elevator 

traffic flow with accuracy. The graph presents a side-by-side comparison between 

the actual elevator traffic data and the predictions generated by the CNN, allowing 

for a visual assessment of how well the model performs during both phases. 

  
(a) Training results (b) Testing results 

Figure 9. Comparison of training and testing results of CNN. 

The training results reflect the model’s learning capacity, showcasing how 

effectively the CNN captures patterns and relationships within the elevator traffic 

data. Meanwhile, the testing results illustrate the model’s predictive capacity, 

indicating how accurately it can forecast traffic patterns based on unseen data. Both 

sets of results demonstrate a high level of precision, reinforcing the reliability of the 

CNN in modeling elevator traffic flows. 

One of the key metrics used to evaluate the accuracy of the predictions is the 

RMSE (Root Mean Square Error), a widely accepted measure for assessing the 

quality of regression models. In Figure 9, the RMSE values are provided for both 

the training and testing results and the RMSE can also be explained with the 

equation below: 
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𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
⋅∑𝑤𝑖(𝑦𝑖 − 𝑦̑𝑖)

2

𝑛

𝑖=1

 (7) 

As illustrated in Figure 9a, the predicted results of CNN during the training 

phase for the morning traffic rush closely mirror the actual elevator traffic patterns. 

CNN exhibits high accuracy in its predictions, with a very small RMSE of 2.5056, 

indicating minimal deviation between the predicted and actual values. This low 

RMSE reflects the robust ability of CNN to learn the elevator traffic flow patterns 

during the training process, allowing it to produce reliable predictions for the 

morning elevator usage. 

Shifting the focus to Figure 9b, the testing results demonstrate the performance 

of CNN during the noon and end-of-day traffic rush. While the RMSE is higher 

compared to the training phase at 6.2139, CNN still manages to accurately predict 

the overall flow of elevator traffic during the testing phase. The increase in RMSE is 

not uncommon when comparing training to testing results, as the model is exposed to 

new, unseen data during testing. Nevertheless, the predicted results remain closely 

aligned with the actual elevator traffic flow, suggesting that CNN retains its 

predictive capacity despite the increase in error. 

3.2. Prediction results of LSTM 

The LSTM for elevator traffic flow prediction in this research follows the same 

parameter settings as designed in CNN, with a total of 300 epochs being utilized 

throughout the training process, as illustrated in Figure 10. 

 
(a) Result of RMSE 

 
(b) Result of loss 

Figure 10. Training progress of LSTM. 

Referring to Figure 10, the RMSE and loss function exhibit signs of stability 

after just the first 100 epochs, indicating that the performance of LSTM has 

converged and further training beyond 100 epochs may not yield significant 

improvements in accuracy. This observation suggests that, although the model was 
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initially designed to run for 300 epochs, the training process under the LSTM model 

could be effectively completed within the first 100 epochs. 

Figure 11 presents a detailed comparison between the training and testing 

results of the LSTM used for elevator traffic flow prediction in this research. The 

predicted results during the training and testing phases are closely aligned with the 

actual elevator traffic data, underscoring the accuracy of the learning capacity of 

LSTM during training as well as its predictive capabilities during testing. This 

comparison offers insight into how effectively the LSTM has generalized from the 

training data to unseen data during the testing process. 

  
(a) Training results (b) Testing results 

Figure 11. Comparison of training and testing results of LSTM. 

As the discussion of CNN emphasized, the RMSE values reflect the magnitude 

of the error between the predicted and actual elevator traffic flow, providing a 

quantitative measure of the effectiveness of the neural networks. Both the training 

and testing RMSE values are illustrated in Figure 11, offering a clear understanding 

of the performance of LSTM during both phases. 

As depicted in Figure 11a, the training results for the LSTM highlight its 

performance during the morning traffic rush of elevator usage. The predicted results 

closely align with the actual elevator traffic flow, yielding a notably low RMSE of 

3.9871. This small RMSE value indicates that the model effectively learned the 

underlying patterns in the data during the training phase, showcasing its ability to 

make accurate predictions based on the available input. In contrast, Figure 11b 

illustrates the testing results for the LSTM, which pertain to more complex periods 

as noon and end-of-day traffic rushes. While the RMSE value during testing is 

slightly higher at 4.3575, the predictions still reflect a strong correlation with the 

actual elevator traffic flow. As the discussion regarding CNN indicates, the increase 

in RMSE compared to the training phase is not unexpected, as testing data introduces 

variability that the LSTM may not have encountered during training. Nevertheless, 

this result underscores the predictive capability of LSTM, demonstrating that it can 

still deliver reliable forecasts even when applied to new, unseen elevator traffic flow. 



Intelligent Control and System Engineering 2024, 2(1), 1871. 
 

16 

3.3. Comparison discussion 

The analysis of the prediction results for both the CNN and LSTM reveals 

distinct performance characteristics based on the RMSE values obtained during the 

training and testing phases. During the training process, the CNN demonstrates a 

smaller RMSE of 2.5056, indicating that it provides more accurate predictions 

compared to the LSTM, which has a higher RMSE of 3.9871. This suggests that the 

CNN is particularly adept at learning the underlying patterns within the training data, 

allowing it to make precise predictions regarding elevator traffic flow. 

In contrast, when examining the testing results, the performance dynamics shift. 

The LSTM exhibits a smaller RMSE of 4.3575, while the CNN records a higher 

RMSE of 6.2139. This indicates that, despite its comparatively lower accuracy 

during training, the LSTM is better equipped to generalize its predictions to unseen 

data during the testing phase. The ability of the LSTM to maintain a lower RMSE 

under testing conditions emphasizes its effectiveness in capturing complex patterns 

over time, especially in the elevator traffic flow where traffic dynamics may change. 

Beyond the RMSE, this research employs additional metrics to 

comprehensively evaluate the prediction capacity of both the CNN and LSTM neural 

networks. Specifically, this research incorporates the R2 (Coefficient of 

Determination), MAE (Mean Absolute Error), and MBE (Mean Bias Error), 

providing a multi-faceted assessment of the neural networks’ performance during 

both the training and testing processes. As summarized in Table 4, the R2, MAE, and 

MBE enrich the analysis by providing a broader perspective on the predictive 

capabilities of the CNN and LSTM in this research. 

Table 4. Error index. 

 CNN LSTM 

R2 
Training section 0.9931 Training section 0.9823 

Testing section 0.9873 Testing section 0.9936 

MAE 
Training section 1.9192 Training section 2.5993 

Testing section 4.0276 Testing section 3.0943 

MBE 
Training section 0.7817 Training section −0.0385 

Testing section 0.8952 Testing section −0.0723 

The value of R2 is a crucial metric that evaluates the performance of predictive 

neural networks, and it offers valuable insight into the extent to which the neural 

network explains the variance observed in the predicted outcomes. Specifically, R2 

quantifies the proportion of the total variability in the data that can be attributed to 

the predictions of the neural networks, making it a key indicator of the model’s 

explanatory power, and the mathematical equation of R2 can be expressed as follows: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 (8) 

In general, a higher R2 value suggests that the model is effectively capturing the 

underlying patterns in the data, meaning that a significant portion of the variability in 

the dependent variable is being explained by the independent variables included in 
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the model. Conversely, a lower R2 indicates that the model fails to account for a 

considerable amount of the variance, suggesting that there may be other influential 

factors not captured by the model or that the model is inadequately specified. 

In this research, the comparative analysis of the values of R2 reveals important 

insights into the predictive performance of the CNN and LSTM as presented in 

Table 4. During the training process, the CNN exhibits a slightly larger R2 value 

compared to the LSTM. This suggests that the CNN is more effective at capturing 

the relationships within the training data, thereby providing a more accurate 

prediction of elevator traffic flow during this phase. On the other hand, the results in 

Table 4 also illustrate a contrasting performance during the testing process. Here, the 

LSTM shows a slightly higher R2 value than the CNN, which indicates that the 

LSTM is more adept at generalizing its predictions to new, unseen elevator traffic 

flow. These findings are consistent with the former discussion on RMSE, where 

LSTM despite having a lower accuracy during training, proves its strength in 

prediction accuracy during testing. The overall results suggest that while the CNN 

may excel in learning from existing data, the LSTM’s architecture allows it to 

maintain accuracy even when confronted with new data patterns. 

The MAE is a vital metric in evaluating the performance of predictive models. 

It quantifies the average magnitude of errors in predictions, providing a clear and 

intuitive measure of accuracy. By expressing these errors in the same units as the 

predicted values, MAE allows for a direct comparison between the predicted 

outcomes and actual results. In general, a lower MAE indicates a better fit, as it 

suggests that the predictions of the model are closer to the actual values, while a 

higher MAE reveals a greater discrepancy, while the mathematical equation of MAE 

can be expressed as follows: 

𝑀𝐴𝐸 =
1

𝑛
⋅∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (9) 

In this research, the analysis of predictive accuracy is further elucidated through 

the MAE presented in Table 4. During the training process, the MAE indicates that 

the CNN outperforms the LSTM, showcasing a lower MAE value. This result 

emphasizes the effectiveness of CNN in accurately learning from the training data, 

capturing underlying patterns and trends more efficiently than the LSTM. The lower 

MAE suggests that the predictions generated by the CNN are generally closer to the 

actual outcomes, highlighting its capacity for precise model fitting during training. 

However, in the phase of the testing, the LSTM exhibits a lower MAE compared to 

the CNN, which underscores its superior ability to generalize predictions to new, 

unseen data. This finding suggests that while CNN excels in the training phase, 

LSTM is better equipped to handle variations and complexities in data that it has not 

encountered before. The contrasting performance of the two models, as revealed by 

the MAE values, reinforces earlier discussions concerning the RMSE and the R2. 

In addition to the evaluation metrics of RMSE, R2, and MAE, this research 

incorporates the MBE to provide a deeper understanding of the predictive 

performance of CNN and LSTM as detailed in Table 4. The MBE serves as a crucial 

metric that assesses the bias inherent in the predictions made by CNN and LSTM in 
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this research. Specifically, it indicates whether the predictions of CNN and LSTM 

tend to overestimate or underestimate the actual values, and the mathematical 

equation of MBE can be expressed as below: 

𝑀𝐵𝐸 =
1

𝑛
⋅∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 (10) 

Based on the equation above, a positive MBE suggests that the model generally 

overestimates the outcomes, while a negative value indicates a tendency to 

underestimate them. 

The analysis of the MBE results presented in Table 4 offers valuable insights 

into the predictive behaviors of both the CNN and LSTM. The positive MBE values 

associated with the elevator traffic flow predictions of CNN during both the training 

and testing phases suggest a consistent overestimation of outcomes. This bias 

indicates that while CNN may effectively capture trends in the training data, it does 

so at the cost of inflated predictions, potentially leading to inaccuracies in actual 

applications. In contrast, the LSTM displays negative MBE values, indicating a 

tendency to underestimate the actual outcomes during both training and testing. This 

underestimation suggests that while the LSTM may not capture the full extent of the 

variations present in the data, it is at least leaning toward a more conservative 

approach, which can be beneficial in certain predictive contexts. 

The proximity of the MBE values to 0 serves as an important marker of 

accuracy, with values closer to 0 indicating that the predictions are more reliable and 

aligned with actual outcomes. The consistent findings across MBE, along with other 

metrics like RMSE, R2, and MAE, reinforce the narrative that CNN excels during the 

training phase. However, the LSTM demonstrates a superior ability to generalize its 

predictions to unseen data, effectively managing the complexities and variations that 

were not part of its training set. Notably, the MBE results further emphasize that the 

LSTM is more accurate than the CNN in predicting elevator traffic flow in this 

research, regardless of whether the predictions are being made during training or 

testing. The closer MBE values from the LSTM to 0 highlight its reliability, 

suggesting that it may be a more suitable approach for actual applications where 

accurate predictions are crucial. 

4. Summarization 

Figure 12 presents a comprehensive comparison between the actual ETF 

(Elevator Traffic Flow) and the predicted results generated by both CNN and LSTM. 

By reflecting on the actual ETF, Figure 12 reveals three distinct peaks in elevator 

traffic, each corresponding to key times during the workday. 

Referring to Figure 12, the first significant peak appears during the morning 

rush, between 7:00 and 9:00, as employees arrive at work. This period is typically 

the most concentrated, with a surge in demand for elevator services as building 

occupants converge in the morning hours. The second peak is observed around noon, 

between 11:00 and 13:00, likely due to lunch breaks, during which employees exit 

and re-enter the building for dining or other mid-day activities. The final peak occurs 
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in the evening, from 16:00 to 18:00, as employees finish their workday and leave the 

office building, creating a high demand for elevator usage. 

  
(a) Prediction results of CNN (b) Prediction results of LSTM 

Figure 12. Prediction results comparison. 

These three peaks are clearly reflected in the actual ETF trends, underscoring 

the typical elevator traffic behavior observed in office buildings. The actual ETF 

trends not only highlight the periods of high elevator demand but also serve as a 

benchmark for evaluating the accuracy of the predictive results in this research. Both 

CNN and LSTM models aim to predict these traffic flow patterns, and their ability to 

capture the peaks accurately is a measure of their effectiveness. 

Figure 12 highlights the predictive ability of both CNN and LSTM in 

forecasting elevator traffic flow. The prediction results showcase the ability of the 

neural networks to capture the weekday daily traffic patterns within a typical office 

building. This emphasizes the potential of neural networks as effective tools for 

predicting elevator traffic flow, which is essential for optimizing elevator systems 

and improving building management. The accurate predictions made by CNN and 

LSTM suggest that neural networks can play a key role in developing more efficient 

and responsive elevator traffic control systems. 

While CNN and LSTM demonstrate impressive predictive capabilities, a closer 

analysis of the prediction results reveals that the LSTM may provide slightly more 

accurate predictions compared to CNN. This observation can be drawn from the 

visual comparison between Figure 12a,b, which illustrate the performance of each 

neural network. The predictions of the LSTM appear to align more closely with the 

actual ETF curve, particularly in areas where small deviations are critical, such as 

the peaks and valleys in elevator traffic. 

This conclusion is further supported by the comparison of difference rates in 

Table 5, which provides a more detailed quantitative analysis of the performances. 

According to Table 5, the difference rates of the prediction results reveal that 

the maximum actual traffic is 115 people for elevator traffic flow during the morning 

rush. Regarding the morning rush, CNN predicts a flow of 116 people, while LSTM 

predicts 114 people, and this yields a difference rate of 0.87% for both models, 
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highlighting their relative accuracy in forecasting elevator traffic flow under the 

training phase. One extra person predicted by CNN and one less by LSTM reflects 

the discussion regarding MBE. Specifically, it indicates the positive MBE associated 

with the CNN suggests that it generally overestimates the actual elevator traffic flow, 

reflecting a slight inflation in the predictions. Conversely, the negative MBE from 

the LSTM indicates a tendency to underestimate elevator traffic, which may lead to 

insufficient resource allocation during peak times. 

Table 5. Difference rate of ETF. 

 6:30–9:00 11:00–13:30 16:00–18:00 

 (Person) (Person) (Person) 

Actual ETF 115 137 109 

CNN 116 126 125 

LSTM 114 127 109 

Difference Rate-CNN 0.87% 8.03% 14.68% 

Difference Rate-LSTM 0.87% 7.30% 0.00% 

Moreover, Table 5 also illustrates the actual elevator traffic flow reaches a 

maximum of 137 people in the lunch rush period. The CNN predicts 126 people, 

leading to a difference rate of 8.03%, while the LSTM predicts 127 people, with a 

smaller difference rate of 7.30%. This indicates that the LSTM model is more 

accurate than CNN in predicting elevator traffic flow during the noon rush based on 

the testing phase. This phenomenon is also observed during the end-of-day rush, 

where the prediction of CNN deviates significantly from the actual elevator traffic 

flow, showing a larger difference rate of 14.68%. On the other hand, the LSTM 

model demonstrates exceptional accuracy, as there is no difference between its 

predictions and the actual elevator traffic flow. These findings suggest that the 

LSTM consistently provides more reliable predictions across different elevator 

traffic rush, making it a better choice for modeling elevator traffic flow in office 

buildings, especially during high-demand periods. 

5. Conclusion 

In this research, the elevator traffic flow of a typical office building during a 

weekday serves as the basis for the analysis and prediction process, utilizing CNN 

(Convolutional Neural Networks) and LSTM (Long Short-Term Memory). By 

employing 655 actual ETF (Elevator Traffic Flow) data points, this research aims to 

assess the predictive accuracy and overall capacity of both neural networks. Through 

a comparative analysis of CNN and LSTM, this research highlights the distinct 

characteristics of each neural network, exploring how CNN and LSTM handle 

elevator traffic flow prediction differently. By identifying strengths and limitations 

in the performance of CNN and LSTM, this research provides valuable insights into 

optimizing elevator traffic control systems in office buildings, ultimately 

contributing to better efficiency and user convenience. This comparative approach 

also aims to broaden the understanding of how neural networks can be applied in 
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practical situations like elevator traffic management, showcasing their potential to 

improve urban infrastructure. 

The prediction results of this research demonstrate that both CNN and LSTM 

are capable of accurately forecasting elevator traffic flow. Both CNN and LSTM 

consistently align with the actual ETF trends, showcasing their effectiveness in 

reflecting real-world elevator usage patterns. This research emphasizes that, given 

their ability to predict elevator traffic flow with high accuracy, CNN and LSTM can 

both be considered suitable tools for elevator traffic flow prediction work. Moreover, 

the accuracy of CNN and LSTM provides valuable insights that can be used to 

optimize elevator control systems, particularly in urban settings where efficient 

elevator utilization is essential. By integrating the predictive capabilities of CNN and 

LSTM, elevator systems can be better managed during peak usage times, reducing 

wait times and enhancing the overall experience for passengers. 

In evaluating the effectiveness of the CNN and LSTM for predicting elevator 

traffic flow, this research delves into the significance of performance metrics of 

RMSE, R2, and MAE. The findings indicate that while the CNN demonstrates lower 

RMSE, higher R2, and lower MAE during the training phase, and LSTM consistently 

outperforms in the testing phase with even lower RMSE, higher R2, and lower MAE 

values. This discrepancy highlights the superior ability of LSTM to generalize and 

maintain predictive accuracy when faced with new, unseen elevator traffic flow. The 

overall results suggest that, despite the strengths of CNN in learning from existing 

data, the architecture of the LSTM is better suited for the dynamic nature of elevator 

traffic flow predictions. The capability of LSTM is enabled to effectively capture 

temporal dependencies and adapt to variations in traffic patterns makes it a more 

reliable choice for real-world elevator traffic flow prediction. 

Additionally, the MBE serves as a vital metric for evaluating the accuracy of 

predictions, with values that are closer to zero indicating higher reliability and 

alignment with actual traffic flows. The analysis reveals that the LSTM consistently 

produces MBE values nearer to zero, reinforcing its effectiveness in predicting 

elevator traffic flow. This accuracy is particularly crucial in urban settings where 

precise forecasts can lead to improved operational efficiency. Furthermore, the CNN 

model presents a positive MBE, suggesting that it tends to overestimate actual 

elevator traffic flow. Conversely, the negative MBE of LSTM indicates a tendency 

to underestimate traffic, showcasing a more conservative forecasting approach. This 

conservativeness can be advantageous, particularly in high-demand situations, as it 

may help avoid overloading systems and reduce user wait times. 

Through an in-depth comparison of CNN and LSTM models, this research 

demonstrates the superiority of LSTM in predicting elevator traffic flow. It not only 

highlights the advantages of LSTM but also lays the foundation for future research 

exploring the integration of advanced neural network models into elevator traffic 

analysis. The findings in this research hold significant potential for transforming 

elevator control systems, a critical need as urban environments face growing 

demands. While traditional methods like increasing elevator capacity, speed, and 

acceleration aim to reduce elevator cycle time 𝑣(𝑡), such remodeling projects are 

often constrained by financial or other limitations. Instead, advancements in elevator 

control systems, particularly through GCS (Group Control Systems) and DDS 
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(Destination Dispatching Systems) offer a more feasible and impactful solution [41–

44]. Including CNN and LSTM, the prediction methods by neural networks provide 

an opportunity to revolutionize traditional elevator control systems, enabling smarter 

and more efficient elevator operations. Based on the findings in this research, by 

integrating LSTM-based predictive models with systems like GCS and DDS, this 

research envisions significant improvements in traffic flow management, leading to 

enhanced elevator operational efficiency and a seamless passenger experience. These 

advancements are particularly critical in addressing the vertical traffic issues of 

modern high-rise buildings, ensuring that elevator systems remain capable of 

satisfying the demands of increasingly dense urban environments. 
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