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ABSTRACT: This paper focuses on topics from elementary number 

theory used by the author in the mathematical preparation of K-12 teacher 

candidates by juxtaposing concrete materials, digital technology, and 

formal reasoning. The topics include triangular numbers, their connection 

to trapezoidal numbers and extension to other figurate numbers. The 

paper shows how problem solving may be based on the integration of the 

modern-day approaches to mathematics supported by the creation of 

images, their numeric interpretation followed by algebraic generalization 

and computational verification of general statements in a symbolic form. 

Digital tools used in the paper include spreadsheets, Wolfram Alpha, and 

Maple. Solicited comments by teacher candidates about their use of the 

digital tools are shared. 
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1. Introduction 

Elementary number theory is one of the oldest branches of mathematics. It studies properties of 

natural numbers (e.g., primality[1]), their representations through other numbers (e.g., through the sums 

of cubes of integers[2]), or special behavior of number sequences under certain rules (e.g., the 3x + 1 

problem[3]). There are many number theory problems that, despite the ease of their formulation, are still 

unsolved. For example, although it is known from the time of Euclid (3rd century B.C.) that the number 

of primes is infinite, it is still unknown (as of the time of writing this paper) whether this is true for twin 

primes. Whereas some simple problems like impossibility of representing powers of two as sums of 

consecutive natural numbers can be proved by a high school student (see Section 6), it remains a puzzle 

for an elementary school student who can only discover this fact through trial and error in the context of 

special cases. All things considered, as Hardy[4] put it, “The elementary theory of numbers should be one 

of the very best subjects for early mathematical instruction. It demands very little previous knowledge, 

its subject matter is tangible and familiar; the processes of reasoning which it employs are simple, general 

and few, and it is unique among the mathematical sciences in its appeal to natural human curiosity.” 

More recently, a similar point of view was presented by Vavilov[5] who argued that number theory is 

comprised of ideas which can be taught at any level of learning mathematics, including even grade school. 

One enjoyable topic in elementary number theory, with little prerequisite knowledge, deals with 

polygonal (figurate) numbers. The representation of numbers as simple geometric figures goes back to 

the arithmetic of antiquity when certain numbers were recognized (most likely, contextually) to have 

different characteristics from others. As noted by Smith[6] in reviewing topics from the history of 

elementary mathematics, “being ancient even in Plato’s time ... [was the game of] guessing odd or even 

with respect to the number of coins or other objects held in hand”. Before arithmetic was conceptually 
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advanced to become the theory of numbers, people used simple visual patterns to portray numbers. The 

use of concrete materials for mathematical visualization has great educational significance. For example, 

billiard balls could be placed like pins in a bowling alley to form different triangles and in such a way the 

number becomes triangular. In much the same way, in a pre-college classroom, multicolored counters 

can form other geometric figures that represent numbers known as trapezoidal, square, pentagonal, 

hexagonal, etc. All these numbers, with genesis in geometry, have been studied in elementary number 

theory. Arithmetic and geometry are the two roots from which the whole mathematics had grown; their 

mutual relation and consequently the more general interrelation of all mathematical theories have been 

used both in the study and the teaching of the subject matter. 

This paper is written as an extension of an earlier collaborative work by the author on the use of 

multiple digital tools in the study of elementary number theory by prospective teachers of mathematics 

through numeric and graphic modeling[7]. This extension allows for the inclusion of more advanced 

technologies such as Wolfram Alpha and Maple capable of symbolic computations needed for a deeper 

inquiry into the properties of numbers. The paper reflects on several activities designed by the author for 

K-12 teacher candidates in order to demonstrate computational capabilities of the modern-day digital 

tools. The activities, motivated by mathematical situations arising in the context of using concrete 

materials, are aimed at investigating relationships among triangular and other polygonal numbers. Some 

of the activities can be described through the lens of TITE (technology-immune/technology-enabled) 

problem-solving[8], something that is supported by the interplay of formal mathematical reasoning that is 

at the core of computational thinking[9], tactile approaches to mathematical visualization[10], and digital 

symbolic computations, the use of which, in the words of Vygotsky[11], “immensely extends the 

possibilities of behavior by making the results of the work of geniuses available to everyone”.  Among 

those “everyone” are teacher candidates, the author’s students, whose solicited comments are shared as 

appropriate. The paper and the comments provide glimpse into experience of teaching and learning 

mathematics in the United States in the era of Common Core[12]. 

2. Materials and methods 

Two types of materials have been used by the author when working on this paper. The first type 

included “mathematical action technologies”[13]—electronic spreadsheet, computational knowledge 

engine Wolfram Alpha developed by Wolfram Research (www.woframalpha.com; accessed on July 23, 

2023), Maple[14]—mathematics software for education and STEM fields, and multicolored counters 

available online.  

The second type of materials used by the author included teaching and learning mathematics 

standards[12,15] and recommendations for mathematics teacher preparation in the United States[16,17]. These 

materials recommend the appropriate use of technology in the classroom, provide expectations for 

mathematics teachers, and offer ideas for mathematics education courses. In full agreement with the 

above-mentioned documents, methods specific for mathematics education used in this paper include 

computer-based instruction, standards-based mathematics, and problem solving. In particular, those 

methods are conducive to presenting “teacher candidates with experiences in mathematics relevant to 

their chosen profession”[17]. These experiences are critical to enable teacher candidates’ professional 

development as they “use number-theory to justify relationships involving whole numbers”[15] and 

“connect the mathematical practices to mathematical content in mathematics instruction”[12]. The most 

important characteristic of such development in the context of teacher education courses is to provide 
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evidence of how “reasoning and proof ... is ... intellectually satisfying for all students ... [and how] can 

the proper use of technology make complex ideas tractable”[16]. 

Finally, problem-solving methods and conceptual methodology used in this paper follow the TITE 

(technology-immune/technology-enabled) framework introduced in the work of Abramovich[8]. As was 

mentioned in the introduction, the framework represents an interplay of cognitive and technological 

approaches to mathematics that are mutually complimentary in a sense that the accuracy of computations 

is dependent on the correctness of reasoning and the correctness of reasoning is verified through 

computations. Activities to which the TITE framework is applied are discussed in Sections 5 and 6. 

3. Mathematics education literature on triangular numbers 

Many mathematics education papers published around the world within the last two decades have 

been devoted to activities with triangular and square numbers. Canadian mathematics teacher 

educators[18] discussed the emergence of triangular numbers in the context of the so-called toothpicks, 

alternatively, matchsticks[19] problem. In the study of Pedemonte[20], Italian mathematics educators 

described their work with upper secondary school students (17–18 years old) towards finding and proving 

a general rule for the n-th triangular number by counting the number of dots in an equilateral triangle 

with n dots on a side representing a triangular number (see the top part of Figure 6 below). Researchers 

from Philippines[21], motivated by work of Asiru[22] in Nigeria, presented several summation formulas in 

the context of triangular numbers using the method of mathematical induction for their proof. Bütüner[23], 

in the context of the upper middle school in Turkey advocated for the use of history of mathematics and 

concrete materials in the teaching of formulas for the sums of natural, triangular, and square numbers. 

German mathematics educators[24] described how fourth graders were developing a formula for triangular 

numbers in the context of substantial learning environments[25]. A Spanish mathematics educator Plaza[26] 

demonstrated visual development of formulas, including the sum of triangular numbers, using the “proof 

without words” approach. Australian mathematics educators[27] worked with 10–11 years old pupils who 

used concrete materials (e.g., a fruit pyramid) and diagrams in connecting triangular and square numbers. 

Most recently, Demircioglu[28] expressed concern regarding low ability of Turkish future teachers of 

fourteen-age students in proving the (ready-made rather than mathematically derived) formula for the 

sum of triangular numbers using the method of mathematical induction. Despite their worldwide span 

and the diversity of contexts, none of the above-mentioned papers used digital technology in the context 

of triangular numbers and their generalizations to polygonal numbers, not to mention trapezoidal 

numbers. This may serve as a justification for writing the present paper in order to promote the use of 

commonly available digital (as well as tactile) tools enabling deeper inquiries into the arithmetic of 

integers. In no small part, the paper confirms the viewpoint “mathematics courses that explore 

elementary school mathematics in depth can be genuinely college-level intellectual experiences, which 

can be interesting for instructors to teach and for the teachers to take”[16]. 

4. From triangular to polygonal numbers using the interplay of three 

approaches 

Triangular numbers 𝑡𝑛 are partial sums of natural numbers: 𝑡1 = 1, 𝑡2 = 1 + 2 = 3, 𝑡3 = 1 + 2 +

3 = 6, 𝑡4 = 1 + 2 + 3 + 4 = 10 , ..., 𝑡𝑛 = 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
. There are many interesting 

properties that triangular numbers satisfy. For example, the difference between two consecutive 

triangular numbers is the rank of the larger number (the top part of Figure 1) and the sum of two 

consecutive triangular numbers is a square of the rank of the larger number (the bottom part of Figure 1). 
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Using formula (1), the following two statements (the second one known since the 4th century A.D. as 

the theorem of Theon) can be immediately verified: 

𝑡𝑛 =
𝑛(𝑛 + 1)

2
 (1) 

𝑡𝑛 − 𝑡𝑛−1 =
𝑛(𝑛 + 1)

2
−

(𝑛 − 1)𝑛

2
= 𝑛, (2) 

𝑡𝑛 + 𝑡𝑛−1 =
𝑛(𝑛+1)

2
+

(𝑛−1)𝑛

2
= 𝑛2. (3) 

One can note that just as between the natural numbers m and n, n > m, there are n − m − 1 natural 

numbers, between the triangular numbers 𝑡𝑚 and 𝑡𝑛, there are (n − m − 1) triangular numbers (Figure 2, 

n = 7, m = 4). Put another way, the quantity of triangular numbers that one skips when moving from a 

triangular number to the next triangular number, is the same as the quantity of integers between the 

corresponding two ranks. That is, the quantity in question is the difference between the ranks decreased 

by one. Visually, as shown in Figure 2, there are two counters between seven and four counters 

representing the ranks of 𝑡7 and 𝑡4 . Formally, the statement about the quantity of integers between m and 

n can be proved by setting n = m + k and creating the list of integers m, m + 1, m + 2, ..., m + (k − 1), m 

+ k with k − 1 = n − m − 1 integers between m and m + k = n. To formally prove the statement about the 

quantity of triangular numbers between 𝑡𝑚 and 𝑡𝑛, one has to note that triangular numbers can be put in 

one-to-one correspondence with their respective ranks, so what is true for counting the ranks is true for 

counting their more complicated matches. The significance of this note is due to distinction between 

tactile (action) and computational (operation): at the bottom row of counters of Figure 2, one skips two 

counters when moving from four counters to seven counters but subtracts three (or adds three) to get from 

the number 7 to the number 4 (or from 4 to 7). As a 1st grade student was observed asking a question 

during a lesson on skip counting: Why do we call it skip counting by two when we skip one number only? 

 
Figure 1. Adding and subtracting two consecutive triangular numbers. 
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Figure 2. Between 𝑡𝑚  and 𝑡𝑛 there are (n − m − 1) triangular numbers (m = 4, n = 7). 

Leonhard Euler (1707–1783), father of all modern mathematics, found an explicit formula for 

numbers that are both triangular and square, called square triangular numbers[29]. Whereas this formula 

is rather complicated and can be generated by Wolfram Alpha as a solution (in positive integers) to the 

equation 
𝑛(𝑛+1)

2
= 𝑚2, the tool also provides a few examples of integer solutions (Figure 3) one of which 

(m = 6, n = 8) is shown in Figure 4. This is a classic number theory problem known from the time of 

Diophantus (3rd century A.D.). Connection between triangular and square numbers represented through 

relation (3) was used in the 18th century by a Dutch minister of church and mathematics teacher Élie de 

Joncourt to compute squares and square roots[30]. Figure 1 shows how a square (the bottom part) can be 

constructed from circular objects formed by two right isosceles triangles that differ by a leg of the larger 

triangle. 

 

Figure 3. Wolfram Alpha generates the first six pairs satisfying 
𝑛(𝑛+1)

2
= 𝑚2. 
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Figure 4. A triangular square. 

The context of triangular numbers provides mathematics teacher education with many opportunities 

for developing skills in formal reasoning. With this in mind, note that whereas any natural number is 

either a multiple of three or is smaller or greater by one than a multiple of three, any triangular number 

which is not a multiple of three (e.g., 10) is greater by one than a multiple of three (i.e., 9). Indeed, if the 

triangular number 
𝑛(𝑛+1)

2
 is not a multiple of three, then neither n nor n + 1 is a multiple of three implying 

that three divides n + 2 and, therefore, 
𝑛(𝑛+1)

2
− 1 =

𝑛2+𝑛−2

2
=

(𝑛−1)(𝑛+2)

2
 is a multiple of three. One can 

demonstrate the last property by diminishing the sum 1 + 2 + 3 + ... + n (assuming it is not a multiple of 

three) by one so that the sum 2 + 3 + ⋯ + 𝑛 (a trapezoidal number[31] with n – 1 rows; in other words, the 

sum of n – 1 terms of an arithmetic progression with the first term two and the difference one) being equal 

to 
(𝑛+2)(𝑛−1)

2
 is divisible by three. 

Triangular numbers which are multiples of three go in pairs which are separated by multiples of 

three increased by one. The last statement can be demonstrated numerically by using a spreadsheet 

(Figure 5; numbers of the latter type are marked with the symbol @). Also, because “technology ... 

without connection to mathematical reasoning, can take up precious course time without advancing 

learning”[16], the statement can be proved algebraically by considering four consecutive triangular 

numbers 
𝑛(𝑛+1)

2
,

(𝑛+1)(𝑛+2)

2
,

(𝑛+2)(𝑛+3)

2
,

(𝑛+3)(𝑛+4)

2
, and noting that if n is divisible by 3 then the last two 

numbers are divisible by 3 and the second number 
(𝑛+1)(𝑛+2)

2
=

𝑛(𝑛+3)

2
+ 1 (that is, a multiple of 3 plus 1); 

if n + 1 is divisible by 3, then the first two and the fourth numbers are divisible by three and the third 

number 
(𝑛+2)(𝑛+3)

2
=

(𝑛+1)(𝑛+4)

2
+ 1 (that is, a multiple of 3 plus 1). As mentioned by one of the author’s 

students in the context of joint use of reasoning and computation, “It is important to make connections 

between experimental and theoretical knowledge in order to deepen one’s understanding of the material”. 
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Figure 5. Two out of three consecutive triangular numbers are divisible by three. 

Furthermore, an appropriate (tactile) use of counters allows teacher candidates to notice with a 

relative ease that any triangular number is a sum of a multiple of three and another triangular number. 

Indeed, as shown in Figure 6, 

10 = 3 × 3 + 1, 15 = 3 × 4 + 3, 21 = 3 × 5 + 6. 

What might go unnoticed though is that such representations may not be unique for a triangular 

number. For example,  

55 = 3 × 18 + 1 = 3 × 15 + 10 = 3 × 9 + 28. 

 

Figure 6. Triangular numbers as sums of a multiple of three and a triangular number. 

Teacher candidates, especially at the elementary level, do not have much experience with questions 

allowing for more than one correct answer. At the same time, they are expected to “tailor instruction in 

ways that build on what students understand and consistently encourage students to stretch their 

mathematical thinking”[17]. However, among such multiple representations there is always a 

representation in which the number repeated three times is one smaller than the rank of the triangular 

number being represented; alternatively, the difference between two triangular numbers located between 

the represented one and the addend in the right-hand side of the relation in question. For example, in the 

representation of the 5th triangular number 15 the number 4 is the rank of the triangular number 10 and, 

according to relation (2), the equality 4 = 10 − 6 holds true. That is, one can write 15 = 3 × (10 − 6) +

3. In the representation 21 = 3 × 5 + 6 of the 6th triangular number 21 the number 5 = 15 − 10. That is, 

21 = 3 × (15 − 10) + 6 where 15, 10, and 6 are the 5th, 4th, and 3rd triangular numbers. One can 

generalize from the diagrams of Figure 6 to have the relation: 
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𝑡𝑛 = 3 × (𝑡𝑛−1 − 𝑡𝑛−2) + 𝑡𝑛−3. (4) 

Proof of relation (4) is based on formula (1) and relation (2). Using (1) and (2) yields 
𝑛(𝑛+1)

2
=

3 × (𝑛 − 1) +
(𝑛−3)(𝑛−2)

2
 whence 𝑛2 + 𝑛 = 6𝑛 − 6 + 𝑛2 − 5𝑛 + 6. The last equality holds true for all n. 

This proof can also be outsourced to a digital tool, either Wolfram Alpha of Maple. 

An emphasis on divisibility by three often prompts teacher candidates to wonder whether the 

number three, as a divisor, stems from geometry as triangular numbers represent equilateral triangles (top 

part of Figures 1 and 6) and that a triangular number is either a multiple of three or greater by another 

triangular number than a multiple of three. However, in the case of square numbers 1, 4, 9, 16, 25, 36, 

49 ... (partial sums of the sequence 1, 3, 5, 7, 9, ...), one can recognize similar relationships such as 16 = 

3 × 5 + 1 = 3 × (9 − 4) + 1, 25 = 3 × 7 + 4 = 3 × (16−9) + 4, 36 = 3 × 9 + 9 = 3 × (25 − 16) + 9, 49 = 3 

× 11 + 16 = 3 × (36 − 25) + 16, which show that a square number is not only a sum of a multiple of three 

plus another square number but each multiple of three has difference between two consecutive squares 

as the second factor. Furthermore, as one teacher candidate noted in the classroom, all four square 

numbers involved are consecutive ones, not only those the difference of which is multiplied by three. One 

can check to see that the same type of relationships can be developed for pentagonal numbers 1, 5, 12, 

22, 35, 51, ... (partial sums of the sequence 1, 4, 7, 10, ...). For example, 51 = 3 × 13 + 12 =

3 × (35 − 22) + 12. In general, among four consecutive polygonal numbers of side m the following 

relation holds true 

𝑃(𝑚, 𝑛) = 3 × [𝑃(𝑚, 𝑛 − 1) − 𝑃(𝑚, 𝑛 − 2)] + 𝑃(𝑚, 𝑛 − 3). (5) 

Here 𝑃(𝑚, 𝑛) =
𝑛2(𝑚−2)−𝑛(𝑚−4)

2
—an m-gonal number of rank n. 

Once this (technology-immune) observation has been made, the proof of relation (5) can be 

outsourced to Maple (Figure 7; percentage symbol “%” in the Maple code means “the latter”). The use of 

Maple by prospective mathematics teachers requires some training as the tool is very sensitive to the code 

used. As mentioned by one of the secondary teacher candidates, “I have worked extensively with Maple, but 

I don’t feel enough where I could utilize it extensively in a classroom without some training”. An answer to this 

comment can be found in recommendations for teacher preparation by the Conference Board of the 

Mathematical Sciences[16], “Teachers must have opportunities to engage in the use of a variety of 

technological tools including those designed for mathematics and for teaching mathematics ... even if 

these tools are not the same ones they will eventually use with children”. 

To conclude this section, note that the development of formula (5) and its proof can be referred to 

as a TITE problem-solving activity. As an extension of this activity, it will be shown in the next section 

that the factor three appearing in relations (4) and (5) is due to the length of a string of the polygonal 

numbers considered. Quite unexpectedly, the change of an (even) length of a string yields a new (odd) 

divisor. 
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Figure 7. Using Maple in proving relation (5).0. 

5. Generalizing from formula (5) 

If one considers the first six triangular numbers 1, 3, 6, 10, 15, 21, then, as shown at the left-hand 

side of Figure 8, the number 21 (= 1 + 2 + ... + 6) is one greater than a multiple of five, i.e., 21 = 5 × 4 +

1 = 5 × (10– 6) + 1. Likewise, if one considers the first eight triangular numbers 1, 3, 6, 10, 15, 21, 28, 

36,  then, as shown at the right-hand side of Figure 8, the number 36 (= 1 + 2 + ... + 8) is one greater 

than a multiple of seven, i.e., 36 = 7 × 5 + 1 = 7 × (15 – 10) + 1.  One can check to see that similar 

relationships hold true in the case of other strings of six and eight consecutive triangular numbers, 

respectively. Note that whatever even length of a string is, one can always select a pair of numbers at the 

middle of the string; thus, from any string of an even length, the first, the last, and two numbers in the 

middle can be selected to satisfy the corresponding relationship.  

Generalizing from such numeric equalities, yields the symbolic relations 

𝑡𝑛 = 5(𝑡𝑛−2 − 𝑡𝑛−3) + 𝑡𝑛−5 and 𝑡𝑛 = 7(𝑡𝑛−3 − 𝑡𝑛−4) + 𝑡𝑛−7 

that hold true among four numbers selected out of, respectively, six and eight consecutive triangular 

numbers. Furthermore, the following generalization can be inductively formulated for four numbers (the 

first, the last, and two in the middle) selected out of 2𝑘 + 2 consecutive m-gonal numbers: 

𝑃(𝑚, 𝑛) = (2𝑘 + 1)[𝑃(𝑚, 𝑛 − 𝑘) − 𝑃(𝑚, 𝑛 − 𝑘 − 1)] + 𝑃(𝑚, 𝑛 − 2𝑘 − 1). (6) 

Once again, the proof of relation (6) can be outsourced to Maple (Figure 9). The tool checks whether 

the difference between the left- and right-hand sides of relation (6) is equal to zero by carrying out 

symbolic computations which in the pre-digital era were too complicated unless special interest in such 

computations by hand was developed through successful yet time-consuming drill and practice. As 

Langtangen and Tveito[32] put it, “Much of the current focus on algebraically challenging, lengthy, error 

prone paper and pencil work can be significantly reduced. The reason for such an evolution is that the 

computer is simply much better than humans on any theoretically phrased well-defined repetitive 

operation”. In the digital era, the use of Maple is what may be considered a technology enabled part of 

TITE problem solving. Just as the development and proof of formula (5), its generalization may also be 

considered as a TITE problem which combines mathematical reasoning necessary for the development 

of formula (6) and its technology-enabled proof. The development of formula (6) was not technology 

supported (unless someone used a calculator in doing simple calculations). Yet the proof of formula (6) 

was not possible without using technology capable of symbolic computations, or, at the very least, “would 

require large amounts of computational time if done by hand”[15]. Furthermore, in the words of a 

secondary teacher candidate, “Using Maple ... allows us to easily manipulate and visualize concepts that may 

otherwise be difficult to comprehend”. The use of diagrams created from counters can also be considered as 

a TE part of the activity and the interpretation of the diagrams can be considered as a TI part. One can 
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see that a TITE activity may have several TI and TE parts while the order in which the parts are used 

depends on a problem situation. 

 
Figure 8. Triangular numbers as sums of multiples of five and seven plus one. 

 
Figure 9. Using Maple to prove relation (6). 

6. Connecting triangular and trapezoidal numbers 

As was mentioned above, Pólya[31] introduced the term trapezoidal number—a sum of k consecutive 

natural numbers starting from n—a generalization of a triangular number for which n = 1. This 

generalization makes the following important distinction between triangular and trapezoidal numbers: 

whereas every triangular number has only one representation as a sum of consecutive natural numbers 

because the sum starts with one, a representation of an integer as a sum of consecutive natural numbers 

may not be unique as the first addend in the sum may vary and only powers of two cannot be represented 

as a sum of consecutive natural numbers. For example, 7 = 3 + 4, 15 = 7 + 8 = 4 + 5 + 6 = 1 + 2 + 3 + 

4 + 5, and 16 does not have such representation. Contrary to the last note, one can assume that the 

equality 2𝑛 = 𝑚 + (𝑚 + 1) + ⋯ + (𝑚 + 𝑘 − 1) holds true. Carrying out the summation of an arithmetic 

sequence in the right-hand side of the last relation leads to the equality 
(2𝑚+𝑘−1)𝑘

2
= 2𝑛 which, however, 

is not possible. Indeed, whereas its right-hand side has no odd factors, one of the factors k or 2m + k – 1 

in its left-hand side is always odd because either k is odd or, if k is even, the factor 2m + k – 1 is odd. 

Obviously, this part of the emerging mathematical activity connecting triangular and trapezoidal 

numbers is technology immune. 
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Observing the top diagrams of Figure 8, one can see clearly that a triangular number is a sum of a 

smaller triangular number and a trapezoidal number. It is also clear (both visually and numerically) that 

a trapezoidal number may be represented as a sum of other trapezoidal numbers. However, what does 

not immediately follow from the diagrams of Figure 8 is that a trapezoidal number (augmenting a 

triangular number to a larger triangular number) can also be represented as a sum of one (or more) 

triangular numbers and one (or more) products of two integers. For example, one can develop the 

representation 78 = 15 + 28 + 5 × 7, noting that 5 and 7 are the ranks of triangular numbers 15 and 28, 

respectively. Such property of a triangular number can first be presented in a diagrammatic form. To this 

end, the following problem, requiring, as will be shown below, the use of the TITE framework, can be 

formulated. 

Problem 1. Is it possible to represent an equilateral triangle as a sum of two equilateral triangles and a rectangle? 

Alternatively: Is it possible to represent a triangular number as a sum of two triangular numbers and a product of two 

integers? 

A positive answer to this problem is shown in Figure 10. It was offered by one of the author’s 

students, an elementary teacher candidate (Problem 1 was formulated as one of the prompts at the 

discussion forum of an asynchronous elementary mathematics teacher education course). When the 

author, responding to the finding shown in Figure 10, asked whether there is more than one way to 

represent 28 as a sum of two triangular numbers and a product of two integers, another candidate noted 

that such representation is not unique and, in a follow-up post, presented a diagram shown in Figure 11. 

One can interpret the process of answering the questions of Problem 1 as a TITE activity in which one 

creates diagrams by using tactile technology tools (nowadays available free online) and then interprets 

mathematical meaning of the diagrams as a TI part of the activity. One can also see (Figure 10) that the 

triangular number 28 consists of the triangular number 10 (of rank 4) plus the number 18 which can be 

represented as a trapezoid with three rows: 18 = 5 + 6 + 7. Likewise, in Figure 11, the triangular number 

28 consists of the triangular number 21 (of rank 6) plus the number 7 which can be represented as a 

trapezoid with two rows: 7 = 3 + 4, where the first and the second addends represent, respectively, an 

equilateral triangle and a rectangle (square shaped). Note that the sum 5 + 6 + 7 = 6 + (5 + 7) = 6 + 12 

also represents the number 18 as a sum of two addends, which geometrically are an equilateral triangle 

and a rectangle. But the difference between the two representations of the triangular number 28 shown 

in Figure 10 and 11 is that the side lengths of the 3 by 4 rectangle (Figure 10) coincide with the lengths 

of the bases that the corresponding triangles (expressed through the numbers 6 and 10) have. 

 
Figure 10. Representing 28 as 6 + 10 + 12. 
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Figure 11. Representing 28 as 3 + 21 + 4. 

Using Wolfram Alpha, one can prove that the sum 
𝑛(𝑛+1)

2
+

𝑚(𝑚+1)

2
+ 𝑛𝑚 is a triangular number of 

rank n + m (Figure 12) and that the sum 
𝑚(𝑚+1)

2
+ 𝑛𝑚 is a trapezoidal number with m rows the smallest 

of which is n + 1 (Figure 13). When n = 7 and m = 5 we have 

78 = 28 + 15 + 35 =
7×8

2
+

5×6

2
+ 7 × 5 =

7×8

2
+ 50 =

7×8

2
+ 8 + 9 + 10 + 11 + 12. 

 
Figure 12. Generalizing from the equality 28 + 15 + 35 = 78 using Wolfram Alpha. 

 

Figure 13. Generalizing from the equality 
5×(5+1)

2
+ 5 × 7 = 8 + 9 + 10 + 11 + 12. 

One can see that Wolfram Alpha provides (elementary) teacher candidates, in the words of one of 

them, “with answers that would not have been easy to find on my own”. The candidate continued: “When I first 

encountered Wolfram Alpha it was with a sense of dread, as I was not sure how to approach it and how it would work. 

As soon as I started using it though I was impressed by the variety of functions it possessed and how much it could 

help me, not only with my assignments but also with my future classes as an educator”. 

In general, as shown in the study of Asiru[22], one can formulate and prove 

Problem 2. Show that the sum of k triangular numbers plus the pairwise products of their ranks is a triangular 

number the rank of which is the sum of their ranks. That is, the sum ∑  
𝑛𝑖(𝑛𝑖+1)

2

𝑘
𝑖=1 + ∑ (𝑛𝑖 × 𝑛𝑗

𝑘
𝑖,𝑗=1,𝑖≠𝑗 ) is a 

triangular number of the rank ∑ 𝑛𝑖
𝑘
𝑖=1 .  
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A proof of the statement of Problem 2 is pretty straightforward and may be considered as a TI part 

of the activity because doing such proof using symbolic computations of software is more challenging 

than carrying out algebraic transformations through “the old school” approach. Indeed, 

𝑛1(𝑛1 + 1)

2
+

𝑛2(𝑛2 + 1)

2
+ ⋯ +

𝑛𝑘(𝑛𝑘 + 1)

2
+ 𝑛1𝑛2 + 𝑛1𝑛3 + ⋯ + 𝑛𝑘−1𝑛𝑘 

=
1

2
(𝑛1

2 + 𝑛2
2 + ⋯ + 𝑛𝑘

2 + 2𝑛1𝑛2 + 2𝑛1𝑛3 + ⋯ + 2𝑛𝑘−1𝑛𝑘 +  𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘) 

=
(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘)2 + (𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘)

2
 

=
(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘)(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 + 1)

2
. 

An important aspect of the TITE framework is that there are cases when mathematical reasoning is 

more efficient than the use of computing technology. For example, often in grade school, mental 

computations may be more time efficient than the use of a calculator. For example, one does not need a 

calculator to multiply a number by its reciprocal as such use of a calculator may not display the unity as 

the answer[33]. 

Furthermore, not mentioned in the study of Asiru[22], is the following 

Problem 3. Show that the sum ∑  
𝑛𝑖(𝑛𝑖+1)

2

𝑘
𝑖=2 + ∑ (𝑛𝑖 × 𝑛𝑗)𝑘

𝑖,𝑗=1,𝑖≠𝑗  is a trapezoidal number with ∑ 𝑛𝑖
𝑘
𝑖=2  

rows the smallest of which is 𝑛1 + 1. 

Indeed, 

(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘)(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 + 1)

2
−

𝑛1(𝑛1 + 1)

2
 

=
[(𝑛1 + (𝑛2 + ⋯ + 𝑛𝑘)][(𝑛1 + 1) + (𝑛2 + ⋯ + 𝑛𝑘)]

2
−

𝑛1(𝑛1 + 1)

2

=
(𝑛2 + ⋯ + 𝑛𝑘)[2𝑛1 + 1 + (𝑛2 + ⋯ + 𝑛𝑘)]

2
 

= (𝑛1 + 1) + (𝑛1 + 2) + ⋯ + [𝑛1 + (𝑛2 + ⋯ + 𝑛𝑘)]. 

In the case of consecutive triangular numbers, we have the formula 

∑
𝑖(𝑖 + 1)

2
+ ∑ ∑ (𝑖 × 𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

𝑛

𝑖=1

) =

𝑛(𝑛 + 1)
2 × [

𝑛(𝑛 + 1)
2 + 1]

2
 (7) 

being a triangular number of the rank 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
. Figure 14 shows the use of Maple in 

(almost) confirming formula (7). Indeed, the expression 

𝑛(𝑛 + 1)(𝑛2 + 𝑛 + 2)

8
=

𝑛(𝑛 + 1)
2 × [

𝑛(𝑛 + 1)
2 + 1]

2
 

(8) 

represents the triangular number of rank 
𝑛(𝑛+1)

2
. Note that the result generated by Maple, i.e., the left-hand 

side of formula (8) requires the use of uncomplicated algebra to arrive at its right-hand side which 

confirms the statement about the rank of the triangular number defined by the left-hand side of (7). As an 

aside, note that following formula (8), one can pose and solve the following 

Problem 4. Prove that the product 𝑛(𝑛 + 1)(𝑛2 + 𝑛 + 2) is a multiple of eight. 

The use of technology provides ample opportunities for problem posing[34]. 
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Figure 14. Using Maple in exploring the case of consecutive triangular numbers. 

7. Using the OEIS® as a source of information 

As shown in the spreadsheet of Figure 15, triangular numbers the ranks of which are consecutive 

triangular numbers are as follows: 1, 6, 21, 55, 120, 231, ... This sequence is mentioned under the number 

A002817 in the Online Encyclopedia of Integer Sequences (OEIS®, https://oeis.org/) and called Doubly 

triangular numbers. The general form of this subsequence of triangular numbers generated by Wolfram 

Alpha (Figure 16) is 

𝑡𝑛(𝑛+1)

2

=
𝑛4+2𝑛3+3𝑛2+2𝑛

8
. 

 
Figure 15. Doubly triangular numbers (left). 

 
Figure 16. Closed formula for Doubly triangular numbers generated by Wolfram Alpha. 
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Note that unlike formula (6) which defines same property for any polygonal number sequence, the 

above property of triangular numbers expressed through (7) does not hold for other polygonal numbers. 

For example, in the case of square numbers we have (using Maple)  

∑ 𝑖2 + ∑ ∑ (𝑖 × 𝑗𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

𝑛
𝑖=1 ) =

𝑛(𝑛+1)(𝑛+2)(3𝑛+1)

24
, 

and, as shown in Figure 17, n = 3 is the only possibility for the right-hand side of the last equality to be a 

perfect square. Indeed, 12 + 22 + 32 + 1 × 2 + 1 × 3 + 2 × 3 = 52 . In the general case of m-gonal 

numbers, using Maple (Figure 18), we have 

∑
𝑖2(𝑚−2)−𝑖(𝑚−4)

2
+ ∑ ∑ (𝑖 × 𝑗𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

𝑛
𝑖=1 ) =

𝑛(𝑛+1)(3𝑛2+4𝑚(𝑛−1)−9(𝑛−2))

24
. (9) 

To conclude this section, note that one can check computationally that the right-hand side of the last 

relation may not have the form of 
𝑙2(𝑚−2)−𝑙(𝑚−4)

2
 (an m-gonal number of rank l) except the case m = 4, l 

= 4 and n = 3. 

 
Figure 17. Verifying analogue of (7) in the case of square numbers. 

 
Figure 18. Using Maple in proving relation (9). 

8. Conclusion 

The paper was written as a reflection on the author’s work with K-12 teacher candidates within 

several mathematics education graduate level courses that included explorations of number theory 

concepts using technology. Among such 3-credit courses were Topics and research in mathematics education 

(a capstone secondary education class of about 10 students evaluated via the final (collaborative) project 

selected by students from a list offered), Problem solving (a mixed level class of about 10 students evaluated 



Forum for Education Studies 2023; 1(1): 201. 

16 

via portfolio including multiple assignments), Spreadsheets in education (a mixed level class of about 10 

students evaluated via the final (collaborative) project selected by students from a list offered), Topics in 

mathematics for elementary teachers (a class of about 15 students evaluated via portfolio including multiple 

assignments), Elementary mathematics content and methods (a class, most recently asynchronous, of about 

20 students evaluated via tests and the final project selected by students from three types offered), and 

other courses taught by the author at the State University of New York at Potsdam. The above-mentioned 

courses and activities described in the paper were technologically enhanced through different educational 

means, including conference-type presentations in computer labs, online forums, individual final projects 

and weekly assignments to work on which students had access to digital and other tools either at home 

or in a university computer lab. 

The students in the courses had quite different backgrounds: recent undergraduates, practicing 

teachers, former physicians, lawyers, militaries (to name just a few professions), all pursuing their 

master’s degree in education. Due to the university’s geographical location in close proximity to Ontario 

province of Canada, many students of the author are Canadians. With the advent of education programs 

offered online, the number of students increased significantly, including international students. Using 

elementary number theory as a backdrop for the paper, its goal was to demonstrate possible uses of 

technological tools, both physical and digital, in the preparation of future teachers of mathematics. The 

paper demonstrated the use of spreadsheets, Wolfram Alpha and Maple in exploring ideas of number theory 

that were first presented through hands-on activities of creating manipulative-based diagrams. 

Diagrammatic representations of relationships among integers were used as prompts in developing their 

numeric interpretations followed by algebraic generalizations requiring either computational verification 

(Figures 7 and 9) or symbolic simplification (Figures 12–14). In that way, the interplay of hands-on, 

cognitive and computational approaches to the ideas of elementary number theory was the focus of the 

paper. 

Through this interplay, the TITE (technology-immune/technology-enabled) problem-solving 

framework was discussed demonstrating that whereas argument and computation go hand-in-hand in 

doing mathematics, computational techniques do require the use of argumentation the accuracy of which 

can be verified through computation. This kind of verification works in the case of proving identities 

because if an identity was conjectured in error, computing would defy its correctness. In other cases, the 

accuracy of arguments leading to symbolic computation  of cognitively developed mathematical 

statements can only be verified through the recourse to special cases. Sometimes, the results of symbolic 

computations (e.g., Figure 14) require refinement by hand prompted by having an idea of how the final 

result should look like[35]. 

The paper demonstrated that, just as mental computation in grade school may often be more efficient 

and even less prone to errors than the use of a calculator, there are cases when doing algebraic 

transformations by hand is more efficient than using a computer algebra system. The use of the OEIS® 

was demonstrated in the context of exploring possible connections with already known results about 

integer sequences that can be generated by software through computer-enhanced number theory 

explorations. However, the introduction of online sources of mathematical information like OEIS® into 

various courses for teacher candidates should go with advice that the use of such sources requires teacher 

candidates’ mastery of managing the abundance of information provided online[36]. At the same time, the 

following comment by a candidate is indicative of the value of knowledge and experience with tools not 

necessarily to be used in the classroom but rather retained as part of professional expertise especially 

helpful when answering questions by curious students: “It is of the outmost importance that educators know 



Forum for Education Studies 2023; 1(1): 201. 

17 

much more than their students do so that they can help them in the knowledge acquisition process. If a teacher knows 

only the things that his or her students are trying to learn, then they cannot answer any questions the students might 

have with certainty. That is because their limited knowledge stops them from knowing the ‘why’ things work the way 

they do.” With this in mind, note that whereas national standards in the United States see teacher 

preparation being “the foundation for mathematics teaching, ... [mathematics teacher educators are 

encouraged] to address issues [of high-quality education] in a systemic way, providing teachers with the 

resources they need for professional growth”[15]. 

The didactic idea behind connecting geometric representations of number theory relationships to 

their symbolic formulations stems from Vygotsky’s perspective on the development of knowledge through 

the transition from dealing with the “first-order symbols ... directly denoting objects or actions ... [to] the 

second-order symbolism, which involves the creation of written signs for the spoken symbols of words”[37]. 

In other words, connecting manipulative diagrams (the first-order symbols) to algebraic formulas (the 

second-order symbolism) is based on the de-contextualization of hands-on activities by requiring one “to 

probe into the referents for the symbols involved”[12]. At the beginning of an asynchronous elementary 

mathematics methods course, many teacher candidates, especially non-traditional students, confessed 

that they were not familiar with this approach to the teaching and learning of mathematics. As one of the 

candidates noted, “When I learned math, visual representations were not a part of mathematical problem solving 

and therefore was not part of my education. Instead, our learning centered around rote memorization of multiplication 

tables and addition of single numbers.” Nonetheless, the Vygotskian approach to mathematics learned in the 

course, teacher candidates used with confidence already during their practicum as evinced in the 

following comment: “With the 5th Graders I am working with, it is helpful to have 5 cookies and 6 cookies and 

subtract the 5 cookies from the 6 cookies leaving the one cookie behind. This equation would be 6 – 5 = 1 however 

with the visual aids it is easier to see the remaining cookies”. An apparent applicability of using the physical as 

a precursor to the symbolic in the teaching of mathematics in grade school opens a field of investigation 

in other mathematical contexts for future mathematics education researchers. 

The paper briefly mentioned a few famous contributors, from Euclid to Euler, to number theory 

topics discussed. This opened a window into a value of integrating history of mathematics in teacher 

education courses in the form of “historical snippets”[38] thereby presenting “mathematics as a living and 

evolving subject”[16]. A review of current educational literature on polygonal numbers across five 

continents was provided to indicate a paucity of digital technology application to the teaching of these 

topics. This makes it possible to conclude that the contribution of the present paper to education research 

about basic ideas connecting arithmetic and geometry was to demonstrate how mathematical concepts 

with ancient roots can be explored by means of contemporary discourse. 
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