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Abstract: This research endeavor investigates the natural convection flow of Williamson 

fluid in the region between two vertical parallel flat plates via porous medium. Impacts of 

viscous dissipation, joule heating, exponential space-and thermal-dependent heat sources 

(ESHS/THS) are invoked. Mass transfer is also studied accounting chemical reaction impact. 

The governing non-linear PDEs are reduced to ODEs in non-dimensional form under 

adequate transformation relations. The numerical technique, namely, Runge–Kutta fourth-

order is utilized to tackle the problem with shooting method. Additionally, second law 

analysis is presented in terms of entropy production. The effects of numerous regulating 

parameters occurred in the problem relevant to flow, heat and mass transport, and entropy 

production are discussed via graphical mode of representation. Moreover, the quantities of 

physical significance are computed, displayed in graphical form, and discussed. For 

verification of acquired results, a comparison is also made using HPM with prior research 

and found to be in excellent agreement. It is concluded that the fluid temperature field 

enhances with upsurging values of pertinent parameters. The influence of the convective 

surface parameter and order of reaction are found to make augmentation in mass diffusion. 

Further, effect of Joule heating is noticed to rise rate of heat transfer while reverse scenario 

observed with upsurging values of heat source parameters. The influence of viscous 

dissipation is seen to grow entropy production. 

Keywords: Williamson fluid; velocity slip; THS; ESHS; viscous dissipation; porous medium; 

joule heating; chemical reaction; entropy production; convective boundaries; HPM 

1. Introduction 

The channel flows are the fundamental configurations in fluid dynamics. The 

study of convection flow in channels has been a prominent field of research interest 

for its important engineering applications, e.g., in electrochemical processes, heat 

exchangers, solar energy collectors, in fibrous insulation, and so forth. Several 

researchers have considered natural convection problems of viscous fluids in the 

region between two vertical flat plates, including Bruce and Na [1], Aung et al. [2], 

Vajravelu and Sastri [3], Rajagopal and Na [4], Cheng et al. [5], Ziabakhsh and 

Domairry [6], Narahari and Dutta [7], Kargar and Akbarzade [8], Rashidi et al. [9], 

Hatami et al. [10], etc. 

The overhead investigations were carried out for the clear fluid flows. None of 

these studies considered flow via porous medium. In thermal free convection via 

porous medium the fluid flow is driven because of buoyancy forces. These forces 

occur because of density variations due to temperature gradients in the fluid. The 

interest in the study of convection via porous medium is inspired by its significance 

in widespread practical and engineering applications, for example, solar power 
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collectors, drying processes, heat removal in nuclear reactors, groundwater pollution, 

thermal insulation, etc. A considerable number of studies on convection flow 

problems of viscous fluids via porous medium in the region between two vertical 

parallel plates under the influence of Lorentz force have been reported by many 

researchers, such as Rapits et al. [11], Chamkha [12], Singh and Pathak [13], Das et 

al. [14], and many others. MHD flow continues to be of interest to researchers due to 

its wide range of practical applications in manufacturing processes, MHD power 

generators, astrophysical fluid dynamics, plasma aerodynamics, and geophysical 

fluid dynamics. Besides, in medical therapies like laparoscopic treatment, MHD with 

joule heating plays a significant role. In recent years, Asha and Sunitha [15], Swain 

et al. [16], Ramesh et al. [17], Ali et al. [18], etc. have examined the effects of MHD 

with joule heating. 

Williamson fluid, a pseudoplastic non-Newtonian fluid, was introduced by 

Williamson [19]. The investigations of such fluid flows are significant because of 

their important practical applications, such as in the drawing of polymer sheets, the 

production of adhesives, photographic film production, and so on. Vasudev [20] 

investigated heat transport in the peristaltic flow of Williamson fluid in the region 

between horizontal parallel plates via porous medium. Considering the impact of 

Lorentz force, the natural convection flow of Williamson fluid in the region between 

vertical parallel plates via porous medium was proposed by Subramanyam et al. [21]. 

Swaroopa and Prasad [22] proposed free convection Williamson flow in the region 

between parallel walls under consideration of radiation and Lorentz force impact. An 

analytical investigation of Williamson fluid free convective flow in an upright 

channel with permeable walls, considering viscosity and radiation effects was 

presented by Ajibade et al. [23]. Forced convection in Williamson flow via porous 

medium was carried out by Qawasmeh et al. [24]. Pattanaik et al. [25] have analysed 

Williamson flow via porous medium, in the existence of nanoparticles, in a parallel 

plate channel due to thermal buoyancy, considering Lorentz force and radiation 

impacts. Usman et al. [26] have examined heat transport in Williamson fluid flow in 

a ciliated channel with permeable walls under the influence of Lorentz force via 

porous media. 

In nature and industries, many transport processes occur where thermal and 

mass transport take place parallelly as a consequence of the joint buoyancy effects of 

thermal and species diffusion. The heat and mass transport phenomenon is also 

encountered in chemical process industries, for instance, polymer production and 

food processing. The occurrence of reaction and their order in such phenomenon 

influence the performance and features of the product obtained. Grosan et al. [27] 

examined the impact of thermophoretic transport of particles in the mixed convective 

heat and mass transport in a vertical parallel plate channel. Reaction influence on 

convection flow of power law fluid in the existence of porous medium, invoking heat 

and mass transport was examined by Ibrahim et al. [28]. Uwanta and Hamza [29] 

discussed the impact of suction or injection on the exothermic reaction of Arrhenius 

kinetics, thermal diffusion, and the time dependent convective flow of viscous 

Newtonian fluid in the region between two infinite upright parallel permeable plates. 

Prasannakumara et al. [30] studied reaction and radiation influence on Williamson 

fluid flow with nanoparticles in porous medium influenced by stretchy surface. 
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Singh and Kumar [31] investigated heat and mass transmission in micropolar fluid 

flow in porous channel, considering chemical reaction with radiation influence. 

Mallikarjun et al. [32] analysed fully developed mixed convection flow in vertical 

channel considering heat production or absorption and reaction of first order. 

Thermal and mass transport in the convective flow of Williamson fluid outside a 

cylinder via porous medium, under assumptions of the boundary layer, was 

investigated by Loganathan and Dhivya [33]. Huang [34] has examined thermal and 

mass transport in convective flow via porous medium along an inclined surface 

considering Lorentz force influence. Nazir et al. [35] have considered surface 

chemical reaction in the flow of Walter’s B fluid past a paraboloid, including heat 

and mass diffusion. Olkha and Kumar [36] have reported heat and mass transport in 

free convection flow of non-Newtonian fluid via porous medium in the region 

between two vertical cylinders, considering chemical reaction impact. Olkha and 

Kumar [37] have also investigated melting heat transport in non-Newtonian fluid 

flow via porous medium produced by a curved surface stretching non-linearly, 

including mass transport and reaction influence. 

The consideration of convective boundary condition in heat transport problems 

is significant in engineering processes, e.g., thermal energy storage, gas turbines, 

nuclear plants, and so forth. Srinivas et al. [38] studied thermal and mass diffusion in 

the pulsating flow of viscous Newtonian fluid in a horizontal channel via porous 

medium considering slip flow and convective boundary constraints, including 

Lorentz force and chemical reaction. Oyelakin et al. [39] employed convective 

surface boundary conditions, including velocity slip in time-dependent non-

Newtonian flow in the existence of nanoparticles, including influence of heat 

transport characteristics. Such constraints on convection slip flow of Williamson 

fluid produced by a stretchy surface, considering Lorentz force and Joule heating, 

were employed by Sharada and Shankar [40]. Zeeshan et al. [41] explored the 

radiative Couette-Poiseuille flow of nanofluid in a channel with chemical reaction 

considering convective boundaries, Joule heating, activation energy, and viscous 

dissipation. Convective boundary conditions to discuss heat transport in the flow of 

Casson fluid in the region between inclined permeable parallel plates, invoking 

impacts of flow-thermal properties were considered by Neeraja et al. [42]. Jagadeesh 

and Reddy [43] have employed convective boundary conditions in 3-D convection 

non-Newtonian couple stress flow in the existence of nanoparticles influenced by a 

stretchable sheet, considering Lorentz force, radiation, and reaction. 

The exponential space-dependent heat source procedure is probably more suited 

for excellent thermal processes since a minor size augmentation of the heat source 

leads to a significant improvement in the thermal field. Several researchers have 

considered exponential space-and thermal-dependent heat sources (ESHS/THS) in 

their studies conducted on viscous Newtonian and non-Newtonian fluid flows in 

various aspects, including Zaigham Zia et al. [44], Thriveni et al. [45], Mahanthesh 

et al. [46], Nagaraja and Gireesha [47], Swain et al. [48], Hasibi et al. [49], Sharma 

et al. [50], etc. 

Entropy, a key thermodynamic irreversibility parameter, occurs in the second 

law of thermodynamics. The analysis of entropy production makes a significant 

contribution to thermal systems design decisions and thus supports in optimization of 
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cost and energy in science and engineering areas like the cooling of electronic 

devices, heat exchangers, energy storage systems (Yessef et al. [51], Chojaa et al. 

[52], Loulijat et al. [53], and Hamid et al. [54]), etc. Bejan [55,56] presented 

pioneering work on entropy production and its optimization. Baytas [57] analysed 

entropy production in free convection via porous medium along with thermal 

transport and mass transport in a tilted permeable enclosure. Makinde and Eegunjobi 

[58] proposed the rate of entropy and Bejan number in viscous couple stress flow in 

an upright channel filled with porous material in the existence of buoyancy forces. 

Das et al. [59] examined entropy production in pseudo-plastic fluid flow in the 

existence of nanoparticles in a channel having permeable walls under convective 

heating. Analysis of heat transport in natural convection and entropy production 

inside a channel including a permeable plate mounted at the lower wall was 

performed numerically by Maskaniyan et al. [60]. Yusuf et al. [61] examined the 

entropy production number in the bioconvective flow of pseudoplastic fluid in the 

existence of nanoparticles along an aligned semi-infinite porous plate under 

convective boundaries, considering magnetic field, Joule heating, viscous dissipation, 

and chemical reaction. Olkha and Dadheech [62] numerically analysed entropy 

production in flow of three different fluids (Williamson fluid, Casson fluid, and 

viscous fluid) produced by a permeable stretching sheet. Entropy production in the 

free convection of nanofluid via porous medium in a square configuration including 

heated corners, in the existence of Lorentz force, has been discussed by Reddy et al. 

[63]. Entropy production in Jeffery fluid flow in tilted permeable pipe via porous 

medium applying convective boundary constraints in the existence of applied 

magnetic field has been investigated by Raje et al. [64]. In natural and forced 

convection slip flow in the region between vertical parallel permeable plates, the 

entropy production has been discussed by Balamurugan et al. [65]. 

In view of the aforementioned studies, this work investigates gravity-driven 

Williamson fluid flow in the region bounded by two vertical parallel flat plates under 

convective surface boundary constraints. Slip flow is considered via porous medium 

under Lorentz force impact. In heat transport analysis, viscous dissipation, Joule 

heating, and non-uniform heat source contributions are accounted for. Mass transport 

is also discussed in the existence of the reaction effect. Apart from that second law 

analysis is invoked in the study in terms of entropy production, which completes the 

heat transport analysis. The Runge-Kutta 4th order technique is employed for 

numerical simulations on MATLAB. Additionally, the influence of pertinent 

parameters on wall shear stress, rate of heat transport, and mass transport rate, are 

exhibited in a graphical way and discussed. A comparison of the results obtained 

made with previously published data, an excellent match achieved. 

2. Problem formulation 

We consider the fully developed, steady flow of an incompressible Williamson 

fluid in the region bounded by two vertical infinite parallel flat plates situated at a 

distance ℎ  apart (as Figure 1 depicts). We choose 𝑥 −axis parallel to the flow, 

opposite to the gravitational field and 𝑦 − axis is considered perpendicular to it. The 

fluid flow is considered via porous medium and a uniform magnetic field 𝐵0  is 
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applied in the perpendicular direction of flow. Convective boundary constraints 

relevant to heat and concentration are applied at the channel walls along with 

velocity slip. Moreover, the impacts of viscous dissipation, exponential space-and 

thermal-dependent heat sources, Joule heating, and higher order chemical reaction 

are accounted for. A Cartesian co-ordinate system is considered. The plates are 

assumed of infinite length in 𝑥 −  and 𝑧 − directions, all physical quantities are, 

therefore, treated as functions of 𝑦 only. 

 

Figure 1. Systematic diagram for present problem. 

With the aforementioned considerations, the regulating equations are  

𝜇
𝑑2𝑣

𝑑𝑦2
+

𝜇Г

√2

𝑑

𝑑𝑦
{(

𝑑𝑣

𝑑𝑦
)

2

} + 𝜌𝑔[𝛽𝑇(𝑇 − 𝑇0) + 𝛽𝐶(𝐶 − 𝐶0)] −
𝜇

𝐾𝑝
𝑣 − 𝜎𝐵0

2𝑣 = 0 (1) 

𝜅
𝑑2𝑇

𝑑𝑦2
+ 𝜇 [1 +

𝛤

√2

𝑑𝑣

𝑑𝑦
] (

𝑑𝑣

𝑑𝑦
)

2

+ 𝑄𝑇
∗ (𝑇 − 𝑇0) + 𝑄𝐸

∗ (𝑇𝑤 − 𝑇0) × 𝑝 (−
𝑦

ℎ
) + 𝜎𝐵0

2𝑣2 = 0 (2) 

𝐷𝐵

𝑑2𝐶

𝑑𝑦2
− 𝑘𝑛(𝐶 − 𝐶0)𝑛 = 0 (3) 

and the relevant boundary constraints are considered as 

𝑎𝑡 𝑦 = 0: 𝑣 = 𝑙 
𝑑𝑣

𝑑𝑦
, 𝜅 

𝑑𝑇

𝑑𝑦
= −ℎ𝑓(𝑇𝑤 − 𝑇), 𝐷𝐵

𝑑𝐶

𝑑𝑦
= −ℎ𝑠(𝐶𝑤 − 𝐶), 

𝑎𝑡 𝑦 = ℎ: 𝑣 = −𝑙 
𝑑𝑣

𝑑𝑦
, 𝜅 

𝑑𝑇

𝑑𝑦
= −ℎ𝑓(𝑇0 − 𝑇), 𝐷𝐵

𝑑𝐶

𝑑𝑦
= −ℎ𝑠(𝐶0 − 𝐶), 

(4) 

where 𝑣 is the axial velocity of the fluid, 𝑇 is the temperature of the fluid, 𝑇0 is the 

temperature of the right wall, 𝐶 is the concentration of the fluid, 𝜇 is the viscosity, 𝜌 

is the density, 𝛤 is the time constant, 𝛽𝑇 is the coefficient of thermal expansion, 𝛽𝐶 is 

the coefficient of mass expansion, 𝐶0 is the concentration at the right wall, 𝜎 is the 

electrical conductivity, 𝐵0 is strength of magnetic field, 𝐾𝑝 is the permeability of the 

porous medium, 𝜅 is the thermal conductivity, 𝑈 is the reference velocity, ℎ𝑓 is the 

convective heat transfer coefficient, ℎ𝑠  is the convective mass transfer coefficient, 

𝐷𝐵 is diffusion coefficient, 𝑄𝑇
∗
 is the thermal based heat source coefficient, 𝑄𝐸

∗
 is 

the exponential heat source coefficient, 𝑇𝑤  is temperature of left wall, 𝐶𝑤  is the 

concentration at the left wall. 



Energy Storage and Conversion 2024, 2(1), 515.  

6 

Invoking the following non-dimensional quantities 

𝑉 =
𝑣

𝑈
, 𝜂 =

𝑦

ℎ
, 𝜃 =

𝑇 − 𝑇0

𝑇𝑤 − 𝑇0
, 𝜙 =

𝐶 − 𝐶0

𝐶𝑤 − 𝐶0
 (5) 

Equations (1)–(3) reduce to following non-dimensional form,  

𝑑2𝑉

𝑑𝜂2
+ 𝑊𝑒

𝑑𝑉

𝑑𝜂

𝑑2𝑉

𝑑𝜂2
+

𝐺𝑟

𝑅𝑒
𝜃 +

𝐺𝑐

𝑅𝑒
𝜙 − 𝐷 𝑉 − 𝐻𝑎2𝑉 = 0 (6) 

𝑑2𝜃

𝑑𝜂2
+ 𝐵𝑟 [1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
] (

𝑑𝑉

𝑑𝜂
)

2

+ 𝑄𝑇𝜃 + 𝑄𝐸 𝑒𝑥𝑝(−𝜂) + 𝐻𝑎2𝐵𝑟 𝑉2 = 0 (7) 

𝑑2𝜙

𝑑𝜂2
− 𝑆𝑐𝐾𝑛𝜙𝑛 = 0 (8) 

and the corresponding boundary conditions in non-dimensional form are: 

𝑉 = 𝐿
𝑑𝑉

𝑑𝜂
, 𝜃 = 1 +

1

𝐵𝑖1
 
𝑑𝜃

𝑑𝜂
, 𝜙 = 1 +

1

𝐵𝑖2
 
𝑑𝜙

𝑑𝜂
, 𝑎𝑡 𝜂 = 0 

𝑉 = −𝐿
𝑑𝑉

𝑑𝜂
, 𝜃 =

1

𝐵𝑖1
 
𝑑𝜃

𝑑𝜂
, 𝜙 =

1

𝐵𝑖2
 
𝑑𝜙

𝑑𝜂
, 𝑎𝑡 𝜂 = 1 

(9) 

where, 𝑊𝑒 = √2 Г𝑈/ ℎ is the non-Newtonian parameter, 𝐵𝑟 = 𝜇𝑈2/𝜅(𝑇𝑤 − 𝑇0) is 

the Brinkman number, 𝑄𝑇 = 𝑄𝑇
∗
ℎ

2/𝜅 is the THS parameter, 𝑄𝐸 = 𝑄𝐸
∗
ℎ

2/𝜅 is the 

ESHS parameter, 𝐻𝑎 = 𝐵0ℎ√𝜎/𝜇 is the Hartman number, 𝐷 = ℎ
2/𝐾𝑝 is the porous 

medium parameter,𝐺𝑟 = 𝑔𝛽𝑇(𝑇𝑤 − 𝑇0)ℎ3/𝜐2 is the thermal Grashof number, 𝐺𝑐 =

𝑔𝛽𝐶(𝐶𝑤 − 𝐶0)ℎ3/𝜐2 is the solutal Grashof number, 𝑅𝑒 = 𝑈ℎ/𝜐 is Reynolds number, 

𝑆𝑐 = 𝜐/𝐷𝐵  is the Schmidt number, 𝐾𝑛 = 𝑘𝑛(𝐶𝑤 − 𝐶0)𝑛−1ℎ
2/𝜐  is the chemical 

reaction parameter, 𝐿 = 𝑙/ℎ is the velocity slip parameter, 𝐵𝑖1 = ℎℎ𝑓/𝜅 is thermal 

Biot number, 𝐵𝑖2 = ℎℎ𝑠/𝐷𝐵 is the solutal Biot number. 

3. Quantities of physical significance 

The quantities of physical importance (skin-friction coefficient, Nusselt number, 

and Sherwood number) respectively, given by  

𝐶𝑓 =
𝜏𝑤

𝜇 𝑈/ℎ
, 𝑁𝑢 =

ℎ𝑞𝑤

𝜅(𝑇𝑤 − 𝑇0)
 𝑎𝑛𝑑 𝑆ℎ =

ℎ𝑗𝑤

𝐷𝐵(𝐶𝑤 − 𝐶0)
 (10) 

where shear stress (𝜏𝑤), heat flux (𝑞𝑤), and mass flux (𝑗𝑤) are given by 

𝜏𝑤 = 𝜇 {
𝜕𝑣

𝜕𝑦
+

Г

√2
(

𝜕𝑣

𝜕𝑦
)

2

}
𝑦=0

, 𝑞𝑤 = − (𝜅
𝜕𝑇

𝜕𝑦
)

𝑦=0

, 𝑗𝑤 = −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)

𝑦=0

 (11) 

On substituting values from Equation (11) and Equation (5) into Equation (10), 

the obtained non-dimensional expressions are as follows: 

𝐶𝑓 = [
𝑑𝑉

𝑑𝜂
+

𝑊𝑒

2
(

𝑑𝑉

𝑑𝜂
)

2

]
𝜂=0

, 𝑁𝑢 = − (
𝑑𝜃

𝑑𝜂
)

𝜂=0

, 𝑆ℎ = − (
𝑑𝜙

𝑑𝜂
)

𝜂=0

 (12) 

4. Entropy generation 

The dimensional entropy production for the current problem is given as  

𝑆𝑔𝑒𝑛 =
𝜅

𝑇0
2 (

𝑑𝑇

𝑑𝑦
)

2

+ [
𝑅𝐷

𝐶0
(

𝑑𝐶

𝑑𝑦
)

2

+
𝑅𝐷

𝑇0
(

𝑑𝐶

𝑑𝑦

𝑑𝑇

𝑑𝑦
)] +

𝜇

𝑇0
[1 +

𝛤

√2

𝑑𝑢

𝑑𝑦
] +

1

𝑇0

𝜇

𝑘𝑝
𝑢2 +

1

𝑇0
𝜎𝐵0

2𝑢2 (13) 
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where the terms on right side in Equation (13) are entropy contributions due to heat 

transport, mass transport, viscous dissipation, porous medium, and magnetic field 

respectively. 

The non-dimensional entropy generation (𝑁𝑆) is defined as  

𝑁𝑆 =
𝑆𝑔𝑒𝑛

𝑆0
, where 𝑆0 =

𝜅(𝑇𝑤−𝑇0)2

𝑇0
2ℎ2  

Thus, the non-dimensional entropy production (𝑁𝑆) is expressed as 

𝑁𝑆 = (
𝑑𝜃

𝑑𝜂
)

2

+
𝛺𝐶

𝛺𝑇
𝜙𝐶 [

𝛺𝐶

𝛺𝑇
(

𝑑𝜙

𝑑𝜂
)

2

+
𝑑𝜃

𝑑𝜂

𝑑𝜙

𝑑𝜂
] +

𝐵𝑟

𝛺𝑇
[(1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
) (

𝑑𝑉

𝑑𝜂
)

2

+ (𝐻𝑎)2𝑉2 + 𝐷𝑉2]

= 𝑆𝑇 + 𝑆𝐶 + 𝑆𝑓 + 𝑆𝑀 + 𝑆𝑃  

(14) 

where, 

𝑆𝑇 = (
𝑑𝜃

𝑑𝜂
)

2

, 𝑆𝐶 =
𝛺𝐶

𝛺𝑇
𝜙𝐶 [

𝛺𝐶

𝛺𝑇
(

𝑑𝜙

𝑑𝜂
)

2

+
𝑑𝜃

𝑑𝜂

𝑑𝜙

𝑑𝜂
] , 𝑆𝑓 =

𝐵𝑟

𝛺𝑇
(1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
) (

𝑑𝑉

𝑑𝜂
)

2

, 𝑆𝑀 =

(𝐻𝑎)2𝑉2, and 𝑆𝑃 = 𝐷𝑉2 represent the irreversibility corresponding to heat transfer, 

mass transfer, viscous dissipation in porous medium, and magnetic field, 

respectively. 𝛺𝑇 = (𝑇𝑤 − 𝑇0)/𝑇0  represent the temperature difference parameter, 

𝛺𝐶 = (𝐶𝑤 − 𝐶0)/𝐶0  represent the concentration difference parameter, 𝜙𝐶 =

𝑅𝐷𝐶0/𝜅 represent the diffusion parameter. 

5. Numerical methodology 

The Runge-Kutta fourth order method with shooting approach is utilized to 

tackle the system of nonlinear ODEs (6)-(8) numerically, under the boundary 

conditions (9). Non-linear ODEs (6)-(8) including boundary constraints (9) are 

initially transformed into simultaneous nonlinear DEs of first order, they are then 

further changed into an initial value problem by applying the shooting approach. 

(𝑉,
𝑑𝑉

𝑑𝜂
, 𝜃,

𝑑𝜃

𝑑𝜂
, 𝜙,

𝑑𝜙

𝑑𝜂
) = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6) (15) 

𝑑𝑦1

𝑑𝜂
= 𝑦2,

𝑑𝑦3

𝑑𝜂
= 𝑦4,

𝑑𝑦5

𝑑𝜂
= 𝑦6 (16) 

𝑑𝑦2

𝑑𝜂
= −

𝐺𝑟
𝑅𝑒 𝑦3 +

𝐺𝑐
𝑅𝑒 𝑦5 − 𝐷𝑦1 − (𝐻𝑎)2𝑦1

1 + 𝑊𝑒 𝑦2
 (17) 

𝑑𝑦4

𝑑𝜂
= −𝐵𝑟 (1 +

𝑊𝑒

2
𝑦2) 𝑦2

2 − 𝑄𝑇 𝑦3 − 𝑄𝐸 𝑒𝑥𝑝(−𝜂) − (𝐻𝑎)2𝐵𝑟 𝑦1
2 (18) 

𝑑𝑦6

𝑑𝜂
= 𝑆𝑐𝐾𝑛(𝑦5)𝑛 (19) 

The boundary conditions are as follows: 

𝑦1(0) = 𝐿𝑦2(0), 𝑦2(0) = 𝛼1, 𝑦3(0) = 1 +
1

𝐵𝑖1
𝑦4(0), 𝑦4(0) = 𝛼2, 𝑦5(0) = 1 +

1

𝐵𝑖2
𝑦6(0), 𝑦6(0) = 𝛼3, 𝑦1(1)

= −𝐿𝑦2(0), 𝑦3(1) =
1

𝐵𝑖1
𝑦4(1), 𝑦5(1) =

1

𝐵𝑖2
𝑦6(1) 

(20) 

where, 𝛼1, 𝛼2, and 𝛼3 are the initial guesses. 

6. Homotopy perturbation method 

We use He’s homotopy perturbation approach [66–68] to solve the presented 

problem analytically. According to HPM, the differential Equations (6)–(8) satisfied 



Energy Storage and Conversion 2024, 2(1), 515.  

8 

by 𝑓(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are separated into two parts, the linear component ℒ(𝑓), 

ℒ(𝜃), and ℒ(𝜙) and the non-linear component 𝒩(𝑓), 𝒩(𝜃), and 𝒩(𝜙) and may be 

expressed as follows: 

ℒ(𝑓) + 𝒩(𝑓) − 𝑔(𝜂) = 0 (21) 

ℒ(𝜃) + 𝒩(𝜃) − ℎ(𝜂) = 0 (22) 

ℒ(𝜙) + 𝒩(𝜙) − 𝐼(𝜂) = 0 (23) 

where ℒ(𝑉) =
𝑑2𝑉

𝑑𝜂2, ℒ(𝜃) =
𝑑2𝜃

𝑑𝜂2, ℒ(𝜙) =
𝑑2𝜙

𝑑𝜂2  

𝒩(𝑉) = 𝑊𝑒 
𝑑𝑉

𝑑𝜂

𝑑2𝑉

𝑑𝜂2 +
𝐺𝑟

𝑅𝑒
𝜃 +

𝐺𝑐

𝑅𝑒
𝜙 − 𝐷 𝑉 − 𝐻𝑎2𝑉,  

𝒩(𝜃) = 𝐵𝑟 [1 +
𝑊𝑒

2

𝑑𝑉

𝑑𝜂
] (

𝑑𝑉

𝑑𝜂
)

2

+ 𝑄𝑇 𝜃 + 𝑄𝐸 𝑒𝑥𝑝(−𝜂) + 𝐻𝑎2𝐵𝑟 𝑉2, 

𝒩(𝜙) = −𝑆𝑐𝐾𝑛𝜙𝑛 , 𝑔(𝜂) = 0 , ℎ(𝜂) = 0, and 𝐼(𝜂) = 0 . With the homotopy 

technique, we create a homotopy 𝑉(𝜂, 𝑝): 𝛺 × [0,1] → ℝ , 𝜃(𝜂, 𝑝): 𝛺 × [0,1] → ℝ , 

and 𝜙(𝜂, 𝑝): 𝛺 × [0,1] → ℝ which satisfies the following equation  

(1 − 𝑝)[ℒ(𝑉) − ℒ(𝑢0)] + 𝑝[ℒ(𝑉) + 𝒩(𝑉) − 𝑔(𝜂)] = 0, 𝑝 ∈ [0,1] (24) 

(1 − 𝑝)[ℒ(𝜃) − ℒ(𝜃0)] + 𝑝[ℒ(𝜃) + 𝒩(𝜃) − ℎ(𝜂)] = 0, 𝑝 ∈ [0,1] (25) 

(1 − 𝑝)[ℒ(𝜙) − ℒ(𝜙0)] + 𝑝[ℒ(𝜙) + 𝒩(𝜙) − 𝐼(𝜂)] = 0, 𝑝 ∈ [0,1] (26) 

Equations (24)–(26) can be written as 

(1 − 𝑝)
𝑑2𝑉

𝑑𝜂2
+ 𝑝 (

𝑑2𝑉

𝑑𝜂2
+ 𝑊𝑒 

𝑑𝑉

𝑑𝜂

𝑑2𝑉

𝑑𝜂2
+

𝐺𝑟

𝑅𝑒
𝜃 +

𝐺𝑐

𝑅𝑒
𝜙 − 𝐷 × 𝑉 − 𝐻𝑎2𝑉) = 0  (27) 

(1 − 𝑝)
𝑑2𝜃

𝑑𝜂2
+ 𝑝 (

𝑑2𝜃

𝑑𝜂2
+ 𝐵𝑟 [1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
] (

𝑑𝑉

𝑑𝜂
)

2

+ 𝑄𝑇 𝜃 + 𝑄𝐸 𝑒𝑥𝑝(−𝜂) + 𝐻𝑎2𝐵𝑟 × 𝑉2) = 0 (28) 

(1 − 𝑝)
𝑑2𝜙

𝑑𝜂2
+ 𝑝 (

𝑑2𝜙

𝑑𝜂2
− 𝑆𝑐𝐾𝑛𝜙𝑛) = 0 (29) 

In Equations (24)–(26), 𝑝 is an embedding parameter, 𝑢0, 𝜃0 and 𝜙0 is an initial 

guess, which satisfies the boundary conditions (9). It can be consider the solutions of 

the Equations (24)–(26) as a power series in 𝑝 as follows:  

𝑉(𝜂, 𝑝) = ∑ 𝑣𝑘(𝜂)

∞

𝑘=0

𝑝𝑘 (30) 

𝜃(𝜂, 𝑝) = ∑ 𝜃𝑘(𝜂)

∞

𝑘=0

𝑝𝑘 (31) 

𝜙(𝜂, 𝑝) = ∑ 𝜙𝑘(𝜂)

∞

𝑘=0

𝑝𝑘 (32) 

where 𝑣𝑘, 𝜃𝑘, 𝜙𝑘 are unknown function of 𝜂. The approximate solutions (by taking 

𝑝 → 1) are given by 

𝑉(𝜂) = 𝑉(𝜂, 1) = ∑ 𝑣𝑘(𝜂)

∞

𝑘=0

 (33) 

𝜃(𝜂) = 𝜃(𝜂, 1) = ∑ 𝜃𝑘(𝜂)

∞

𝑘=0

 (34) 

𝜙(𝜂) = 𝜙(𝜂, 1) = ∑ 𝜙𝑘(𝜂)

∞

𝑘=0

 (35) 
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using the Equations (9), (30)–(32) into Equations (24)–(26), equating the coefficients 

of like powers of 𝑝, we get  

𝑝0:
𝑑2𝑣0

𝑑𝜂2
= 0, 𝑣0(0) = 𝐿 

𝑑𝑣0(0)

𝑑𝜂
, 𝑣0(1) = −𝐿 

𝑑𝑣0(1)

𝑑𝜂
 

𝑑2𝜃0

𝑑𝜂2
= 0, 𝜃0(0) = 1 +

1

𝐵𝑖1

𝑑𝜃0(0)

𝑑𝜂
, 𝜃0(1) =

1

𝐵𝑖1

𝑑𝜃0(1)

𝑑𝜂
 

𝑑2𝜙0

𝑑𝜂2
= 0, 𝜙0(0) = 1 +

1

𝐵𝑖2

𝑑𝜙0(0)

𝑑𝜂
, 𝜙0(1) =

1

𝐵𝑖2

𝑑𝜙0(1)

𝑑𝜂
 

(36) 

𝑝1 : 
𝑑2𝑣1

𝑑𝜂2
+ 𝑊𝑒

𝑑𝑣0

𝑑𝜂

𝑑2𝑣0

𝑑𝜂2
+

𝐺𝑟

𝑅𝑒
𝜃0 +

𝐺𝑐

𝑅𝑒
𝜙0 − (𝐷 + 𝐻𝑎2)𝑣0 = 0 , 

𝑣1(0) = 𝐿
𝑑𝑣1(0)

𝑑𝜂
, 𝑣1(1) = −𝐿

𝑑𝑣1(1)

𝑑𝜂
 

𝑑2𝜃1

𝑑𝜂2
+ 𝐵𝑟 (1 +

𝑊𝑒

2

𝑑𝑣0

𝑑𝜂
) (

𝑑𝑣0

𝑑𝜂
)

2

+ 𝑄𝑇𝜃0 + 𝑄𝐸𝑒−𝜂 + 𝐻𝑎2𝐵𝑟𝑣0
2 = 0, 

𝜃1(0) =
1

𝐵𝑖1

𝑑𝜃1(0)

𝑑𝜂
, 𝜃1(1) =

1

𝐵𝑖1

𝑑𝜃1(1)

𝑑𝜂
 

𝑑2𝜙1

𝑑𝜂2
− 𝑆𝑐𝐾𝑛𝜙0

𝑛 = 0, 𝜙1(0) =
1

𝐵𝑖2

𝑑𝜙1(0)

𝑑𝜂
, 𝜙1(1) =

1

𝐵𝑖2

𝑑𝜙1(1)

𝑑𝜂
 

(37) 

𝑝2 : 
𝑑2𝑣2

𝑑𝜂2
+ 𝑊𝑒 (

𝑑𝑣0

𝑑𝜂

𝑑2𝑣1

𝑑𝜂2
+

𝑑𝑣1

𝑑𝜂

𝑑2𝑣0

𝑑𝜂2
) +

𝐺𝑟

𝑅𝑒
𝜃1 +

𝐺𝑐

𝑅𝑒
𝜙1 − (𝐷 + 𝐻𝑎2)𝑣1 = 0 , 

𝑣2(0) = 𝐿
𝑑𝑣2(0)

𝑑𝜂
, 𝑣2(1) = −𝐿

𝑑𝑣2(1)

𝑑𝜂
 

𝑑2𝜃2

𝑑𝜂2
+ 𝐵𝑟 (2 +

3

2
𝑊𝑒

𝑑𝑣0

𝑑𝜂
)

𝑑𝑣0

𝑑𝜂

𝑑𝑣1

𝑑𝜂
+ 𝑄𝑇𝜃1 + 2𝐻𝑎2𝐵𝑟𝑣0𝑣1 = 0, 

𝜃2(0) =
1

𝐵𝑖1

𝑑𝜃2(0)

𝑑𝜂
, 𝜃2(1) =

1

𝐵𝑖1

𝑑𝜃2(1)

𝑑𝜂
 

𝑑2𝜙2

𝑑𝜂2
− 𝑛𝑆𝑐𝐾𝑛𝜙0

𝑛−1𝜙1 = 0, 𝜙2(0) =
1

𝐵𝑖2

𝑑𝜙2(0)

𝑑𝜂
, 𝜙2(1) =

1

𝐵𝑖2

𝑑𝜙2(1)

𝑑𝜂
 

(38) 

Similarly, we can obtain other coefficients with help of MATLAB software. 

Solving these linear ordinary differential equations using corresponding boundary 

conditions with help of MATLAB and substituting in the Equations (33)–(35), we 

can find homotopy perturbation solutions for various values of parameters. 

7. Results and discussion 

In this section, various graphs are drawn to display the effects of various 

parameters that occurred in the problem. Throughout the numerical computations, 

we considered 𝐺𝑟 = 1 , 𝐻𝑎 = 0.3 , 𝐷 = 0.5 , 𝐵𝑟 = 2, 𝑄𝑇 = 0.2 , 𝑄𝐸 = 0.2, 𝑅𝑒 = 1 , 

𝑆𝑐 = 0.5, 𝐾𝑛 = 0.5, 𝑛 = 2, 𝐿 = 0.1, 𝐺𝑐 = 1, 𝐵𝑖1 = 100, and 𝐵𝑖2 = 100, as fixed. 

The MATLAB based RK-4th order technique is utilized to tackle the system of 

regulating Equations (6)–(8) along with boundary constraints (9). For the validity of 

the results obtained a comparison is made with previously reported studies by Singh 

and Paul [69], and Ajibade et al. [23], as presented in Table 1. The validity of the 

study’s findings is confirmed by a high level of agreement between the two sets of 

data.  
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Table 1. Comparison for 𝑉(𝜂) and 𝜃(𝜂) when 𝑅𝑒 = 𝐺𝑟 = 1.0 and values of other parameters are taken zero. 

𝜼 
Singh and Paul [69] Ajibade et al. [23] 

Present study 

RK 4  HPM  

𝑽(𝜼) 𝜽(𝜼) 𝑽(𝜼) 𝜽(𝜼) 𝑽(𝜼) 𝜽(𝜼) 𝑽(𝜼) 𝜽(𝜼) 

0     0 1 0 1 

0.1 0.02850 0.900 0.02819 0.900 0.02850 0.900 0.02850 0.900 

0.2     0.04800 0.800 0.04800 0.800 

0.3 0.05950 0.700 0.05916 0.700 0.05950 0.700 0.05950 0.700 

0.4     0.06400 0.600 0.06400 0.600 

0.5 0.06250 0.500 0.06238 0.500 0.06250 0.500 0.06250 0.500 

0.6     0.05600 0.400 0.05600 0.400 

0.7 0.04550 0.300 0.04553 0.300 0.04550 0.300 0.04550 0.300 

0.8     0.03200 0.200 0.03200 0.200 

0.9 0.01650 0.100 0.01653 0.100 0.01650 0.100 0.01650 0.100 

1.0     0 0 0 0 

Figures 2–10 show the impacts of various pertinent parameters such as thermal 

Grashof number (𝐺𝑟), mass Grashof number (𝐺𝑐), Reynolds number (𝑅𝑒), non-

Newtonian fluid (Williamson fluid) parameter (𝑊𝑒) , Hartmann number (𝐻𝑎) , 

porous medium parameter (𝐷) , velocity slip parameter (𝐿) , chemical reaction 

parameter (𝐾𝑛), thermal Biot number (𝐵𝑖1), solutal Biot number (𝐵𝑖2), Schmidt 

number (𝑆𝑐) , exponential space (𝑄𝐸) -and thermal-dependent (𝑄𝑇)  heat source 

parameters, Brinkman number (𝐵𝑟) , temperature difference parameter (𝛺𝑇) , 

concentration difference parameter (𝛺𝐶), and diffusion parameter (𝜙𝐶) on fluid flow, 

thermal, and concentration field.  

The effects of 𝐷  and 𝐻𝑎  on the velocity distribution 𝑉(𝜂)  are exhibited in 

Figure 2. It is observed, from this figure, 𝑉(𝜂) lessens with upsurge in the value 

parameter 𝐷. The reason behind this is that raising the porous medium parameter (or 

decreasing permeability) Darcy resistance which opposes the flow upsurges. Fluid 

flow also lowers with augmentation in 𝐻𝑎 parameter value. An increase in 𝐻𝑎 value 

results in increase of Lorentz force, which acts in a transverse direction. Hence, the 

flow field shrinks with upsurging value of the parameter 𝐻𝑎. 
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Figure 2. Velocity variation for 𝐷 and 𝐻𝑎. 

The impacts of 𝐺𝑟 and 𝐺𝑐 on fluid velocity 𝑉(𝜂) are displayed in Figure 3. We 

concluded, 𝑉(𝜂)  enhances for increasing values of 𝐺𝑟  and 𝐺𝑐  because a greater 

Grashof number conveys a larger buoyancy force, which causes upsurge in velocity 

field. 

Figure 4 illustrates the impact of 𝐵𝑟 and 𝐿 on pace of the flow. With rising 

values of 𝐵𝑟 and 𝐿, fluid velocity 𝑉(𝜂) is found to grow. Upsurge in value of 𝐵𝑟 

makes enhancement in viscous heating, which rises fluid kinetic energy and hence 

the pace of the flow improves. As the flow slip parameter (𝐿) rises, the flow in the 

channel increases, and the effect is more apparent in the middle portion of the 

channel. 

 
Figure 3. Velocity variation for 𝐺𝑟 and 𝐺𝑐. 
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Figure 4. Velocity variation for 𝐿 and 𝐵𝑟. 

Figure 5 depicts the impact of 𝑅𝑒 and 𝑊𝑒 on velocity distribution. It is found 

that 𝑉(𝜂) lessens with rising value of 𝑅𝑒. The impact of Williamson parameter is 

also observed to shrink the velocity field. Physically, an upsurge in 𝑊𝑒 parameter 

value implies increase in stress relaxation time, which causes a reduction in fluid 

flow and thus, velocity profile lowers. The effect is prominent in almost half the 

lower portion of the channel. 

Figure 6 depicts the impacts of rising THS parameter and ESHS parameter 

values, i.e., 𝑄𝑇 and 𝑄𝐸 on the pace of the flow. The figure reveals that with a rise in 

the values of 𝑄𝑇 and 𝑄𝐸  fluid velocity increases. It may happen due to the higher 

kinetic energy of fluid molecules. 

 
Figure 5. Velocity variation for 𝑊𝑒 and 𝑅𝑒. 



Energy Storage and Conversion 2024, 2(1), 515.  

13 

 
Figure 6. Velocity variation for 𝑄𝑇 and 𝑄𝐸. 

The effect of the THS and ESHS parameters i.e. (𝑄𝑇, and 𝑄𝐸) on the energy 

profile 𝜃(𝜂) is exhibited in Figure 7. This graphical representation shows that when 

the value of 𝑄𝑇  and 𝑄𝐸  grows, the temperature profile improves because heat 

production improves as the values of heat source parameters (𝑄𝑇, and 𝑄𝐸) increase. 

Figure 8 reveals the effect of ascending 𝐵𝑟 and 𝐵𝑖1 values on the temperature 

distribution 𝜃(𝜂) . The figure displays that fluid temperature 𝜃(𝜂)  increases with 

upsurging the values of 𝐵𝑟 and 𝐵𝑖1. Physically, increase in Brinkman number value 

enhances viscous heating, which causes augmentation in fluid flow temperature and 

thus thermal profile magnifies. Thermal Biot number 𝐵𝑖1  involves heat transfer 

coefficient. 𝐵𝑖1 = 0 i.e. there is no heat transfer and 𝐵𝑖1 > 0 means heat transfer 

rate increases, which causes an increase in the temperature profile. 

 
Figure 7. Temperature variation for 𝑄𝑇 and 𝑄𝐸. 
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Figure 8. Temperature variation for 𝐵𝑟 and 𝐵𝑖1. 

Figure 9 indicates the variation in concentration distribution 𝜙(𝜂) 

corresponding to 𝑆𝑐 and 𝐾𝑛. This figure depicts that concentration distribution, 𝜙(𝜂) 

is reducing with an augmentation in 𝑆𝑐  and 𝐾𝑛  values. The reason behind this is 

reduction in mass diffusivity as the Schmidt number (𝑆𝑐) value upsurges.  

Figure 10 exhibits the variation in concentration distribution 𝜙(𝜂)  for 

ascending values of 𝑛  and 𝐵𝑖2 . It is quite obvious from these figures that 𝜙(𝜂) 

enhance for improving the values of 𝑛 and 𝐵𝑖2. 

 
Figure 9. Concentration variation for 𝑆𝑐 and 𝐾𝑛. 
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Figure 10. Concentration variation for 𝑛 and 𝐵𝑖2. 

Figures 11–14 are sketched to depict the pertinent parameters impact on 

entropy production 𝑁𝑆. These figures show more entropy production near the lower 

wall in comparison to that near the upper plate.  

Figure 11 shows variation in 𝑁𝑆 due to rising Brinkman number value. We 

observed, 𝑁𝑆  upsurges for ascending 𝐵𝑟  values. The reason behind, as 𝐵𝑟  is a 

parameter for viscous heating, and more heat is produced for larger values of 𝐵𝑟 

which causes enhancement in 𝑁𝑆 and hence 𝑁𝑆 profile magnifies.  

Figure 12 is drawn to exhibit the effect of Grashof numbers (𝐺𝑟, and 𝐺𝑐) on 

𝑁𝑆. It depicts 𝑁𝑆 profile magnifies for ascending values of Grashof numbers, and 

the effect is significant in the entire channel width, and this is due to elevated friction 

(shear) near the walls.  

Figure 13 is plotted to show the impact of Reynolds number (𝑅𝑒) and diffusion 

parameter (𝜙𝐶) on 𝑁𝑆. It is noticed that an increase in 𝑅𝑒 values cause a reduction in 

𝑁𝑆 and hence 𝑁𝑆  profile shrinks with ascending Reynolds number. This may be 

attributed to the decrease in velocity, which results in the decrease in heat transfer 

and hence decrease in entropy generation. It is seen in this graph that upsurging 

value of the parameter 𝜙𝐶  cause upsurge in 𝑁𝑆 value and hence the corresponding 

profile improves. This is attributed to the increased convection currents driven by the 

differences in the densities of the fluid under the influence of gravitational forces, 

leading to increased heat production. 

In Figure 14, the impact of the temperature difference parameter (𝛺𝑇 ) and 

concentration difference parameter (𝛺𝐶 ) is shown on entropy generation number. 

The figure shows that rising 𝛺𝑇  value lowers 𝑁𝑆  and the corresponding profile 

diminishes due to the assumption that the temperature difference between the wall of 

the channel and fluid layers is sufficiently small. It depicts that irreversibility level 

heightens with upsurge in 𝛺𝐶  values. A greater mass is deposited on the surface of 

the plates as concentration increases, resulting in higher pressure being exerted on 

the walls of the plates, which causes higher rates of entropy generation. 
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Figure 11. Entropy variation for 𝐵𝑟. 

 
Figure 12. Entropy variation for 𝐺𝑟 and 𝐺𝑐. 
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Figure 13. Entropy variation for 𝑅𝑒 and 𝜙𝐶 . 

 
Figure 14. Entropy variation for 𝛺𝑇 and 𝛺𝐶 . 

The values of the wall shear stress in terms of skin friction coefficient (𝐶𝑓) and 

rate of heat transport in terms of Nusselt number (𝑁𝑢) for the rising values of the 

relevant parameters are shown in Figures 15 and 16. It is observed that the wall 

shear stress decreases by rising the values of 𝑅𝑒, 𝐻𝑎, 𝐷, while, the parameters: 𝐺𝑟 

and 𝐺𝑐 enhance it. The Nusselt number decreases with the growing value of the 

parameters 𝐵𝑟 , 𝑄𝑇 , 𝑄𝐸 , and 𝐵𝑖1  however, scenario changes in case of ascending 

values of 𝐻𝑎, as can be seen from the figure. Furthermore, Figure 17 illustrates the 

variation in the Sherwood number (𝑆ℎ) for ascending values of pertinent parameters. 

It is concluded that enhancement in values of the parameters 𝐾𝑛, 𝑆𝑐, 𝐵𝑖2 augments 

𝑆ℎ while, effect of the parameter 𝑛 is seen to reduce it. 
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Figure 15. Skin friction coefficient for 𝐺𝑟, 𝐺𝑐, 𝐻𝑎, 𝐷, and 𝑅𝑒. 

 

Figure 16. Nusselt number for 𝐵𝑟, 𝑄𝑇, 𝐻𝑎, 𝐵𝑖1, and 𝑄𝐸. 
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Figure 17. Sherwood number for 𝑆𝑐, 𝐾𝑛, 𝑛, and 𝐵𝑖2. 

8. Conclusions  

In this research, we consider the fully developed steady-state laminar, natural 

convection flow of Williamson fluid in a vertical channel via porous medium. The 

velocity slip and the convective boundary conditions are applied. The contributions 

of higher order chemical reaction, viscous dissipation, Joule heating, and non-linear 

heat sources (ESHS/THS) are accounted for. Second-law analysis is presented in 

terms of entropy production. A numerical approach namely, Runge-Kutta 4th order 

is employed to tackle the problem with the shooting method. A comparison is also 

made using HPM (Homotopy Perturbation Method) in order to validate the findings. 

The conclusions of this study are:  

1) Velocity field shrinks with rising values of 𝐷, 𝐻𝑎, 𝑅𝑒, and 𝑊𝑒. 

2) Velocity field upsurges with augmentation in values of 𝐺𝑟, 𝐺𝑐, 𝐵𝑟, 𝐿, 𝑄𝑇, and 

𝑄𝐸. 

3) Temperature distribution magnifies with the rising values of 𝑄𝑇 , 𝑄𝐸 , 𝐵𝑟, and 

𝐵𝑖1. 

4) Concentration distribution increases for rising values of 𝑛  and 𝐵𝑖2 , while it 

lessens for enhancement in values of 𝑆𝑐 and 𝐾𝑛. 

5) Entropy production upsurges as values of 𝐵𝑟, 𝐺𝑟, 𝐺𝑐, 𝛺𝑇, and 𝜙𝐶  are increased, 

but it decreases as values of 𝑅𝑒 and 𝛺𝑇 are increased. 

6) Skin friction coefficient upsurges with enhancement in values of 𝐺𝑟  and 𝐺𝑐 

while, the trend is changed in case of the parameters 𝑅𝑒, 𝐻𝑎, 𝐷. 

7) Nusselt number is observed to decrease with 𝐵𝑟 , 𝑄𝑇 , 𝑄𝐸 , and 𝐵𝑖1  while, 

scenario changes in case of increasing values of 𝐻𝑎. 

8) Rate of concentration transport upsurges with enhancement in values of 𝐾𝑛, 𝑆𝑐, 

and 𝐵𝑖2 however, scenario changes in case of ascending values of 𝑛. 
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