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Abstract: This research endeavor investigates the natural convection flow of Williamson fluid 

in the region between two vertical parallel flat plates via a porous medium. Impacts of viscous 

dissipation, joule heating, exponential space, and thermal-dependent heat sources (ESHS/THS) 

are invoked. Mass transfer is also studied in accounting for chemical reaction impact. The 

governing non-linear PDEs are reduced to ODEs in non-dimensional form under adequate 

transformation relations. The numerical technique, namely, Runge-Kutta fourth-order, is 

utilized to tackle the problem with the shooting method. Additionally, second-law analysis is 

presented in terms of entropy production. The effects of numerous regulating parameters 

occurred in the problem relevant to flow, heat and mass transport, and entropy production are 

discussed via graphical mode of representation. Moreover, the quantities of physical 

significance are computed, displayed in graphical form, and discussed. For verification of 

acquired results, a comparison is also made using HPM with prior research, which was found 

to be in excellent agreement. It is concluded that the fluid temperature field enhances with 

upsurging values of pertinent parameters. The influence of the convective surface parameter 

and order of reaction are found to make augmentation in mass diffusion. Further, the effect of 

joule heating is noticed to increase the rate of heat transfer, while the reverse scenario is 

observed with upsurging values of heat source parameters. The influence of viscous dissipation 

is seen to increase entropy production. 

Keywords: Williamson fluid; velocity slip; THS; ESHS; viscous dissipation; porous medium; 

joule heating; chemical reaction; entropy production; convective boundaries; HPM 

1. Introduction 

The channel flows are the fundamental configurations in fluid dynamics. The 
study of convection flow in channels has been a prominent field of research interest 
for its important engineering applications, e.g., in electrochemical processes, heat 
exchangers, solar energy collectors, fibrous insulation, and so forth. Several 
researchers have considered the natural convection problems of viscous fluids in the 
region between two vertical flat plates, including Bruce and Na [1], Aung et al. [2], 
Vajravelu and Sastri [3], Rajagopal and Na [4], Cheng et al. [5], Ziabakhsh and 
Domairry [6], Narahari and Dutta [7], Kargar and Akbarzade [8], Rashidi et al. [9], 
Hatami et al. [10], etc. 

The overhead investigations were carried out for the clear fluid flows. None of 
these studies considered flow via a porous medium. In thermal-free convection via 
porous medium, the fluid flow is driven by buoyancy forces. These forces occur 
because of density variations due to temperature gradients in the fluid. The interest in 
the study of convection via porous medium is inspired by its significance in 
widespread practical and engineering applications, for example, solar power 
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collectors, drying processes, heat removal in nuclear reactors, groundwater pollution, 
thermal insulation, etc. A considerable number of studies on convection flow problems 
of viscous fluids via porous medium in the region between two vertical parallel plates 
under the influence of Lorentz force have been reported by many researchers, such as 
Rapits et al. [11], Chamkha [12], Singh and Pathak [13], Das et al. [14], and many 
others. MHD flow continues to be of interest to researchers due to its wide range of 
practical applications in manufacturing processes, MHD power generators, 
astrophysical fluid dynamics, plasma aerodynamics, and geophysical fluid dynamics. 
Besides, in medical therapies like laparoscopic treatment, MHD with joule heating 
plays a significant role. In recent years, Asha and Sunitha [15], Swain et al. [16], 
Ramesh et al. [17], Ali et al. [18], etc. have examined the effects of MHD with joule 
heating. 

Williamson fluid, a pseudoplastic non-Newtonian fluid, was introduced by 
Williamson [19]. The investigations of such fluid flows are significant because of their 
important practical applications, such as in the drawing of polymer sheets, the 
production of adhesives, photographic film production, and so on. Vasudev [20] 
investigated heat transport in the peristaltic flow of Williamson fluid in the region 
between horizontal parallel plates via a porous medium. Considering the impact of 
Lorentz force, the natural convection flow of Williamson fluid in the region between 
vertical parallel plates via porous medium was proposed by Subramanyam et al. [21]. 
Swaroopa and Prasad [22] proposed free convection Williamson flow in the region 
between parallel walls under consideration of radiation and Lorentz force impact. An 
analytical investigation of Williamson fluid-free convective flow in an upright channel 
with permeable walls, considering viscosity and radiation effects, was presented by 
Ajibade et al. [23]. Forced convection in Williamson flow via a porous medium was 
carried out by Qawasmeh et al. [24]. Pattanaik et al. [25] have analysed Williamson 
flow via porous medium in the existence of nanoparticles in a parallel plate channel 
due to thermal buoyancy, considering Lorentz force and radiation impacts. Usman et 
al. [26] have examined heat transport in Williamson fluid flow in a ciliated channel 
with permeable walls under the influence of Lorentz force via porous media. 

In nature and industries, many transport processes occur where thermal and mass 
transport take place parallelly as a consequence of the joint buoyancy effects of 
thermal and species diffusion. The heat and mass transport phenomenon is also 
encountered in chemical process industries, for instance, polymer production and food 
processing. The occurrence of reactions and their order in such phenomena influence 
the performance and features of the product obtained. Grosan et al. [27] examined the 
impact of thermophoretic transport of particles in mixed convective heat and mass 
transport in a vertical parallel plate channel. Reaction influence on convection flow of 
power law fluid in the existence of porous medium, invoking heat and mass transport, 
was examined by Ibrahim et al. [28]. Uwanta and Hamza [29] discussed the impact of 
suction or injection on the exothermic reaction of Arrhenius kinetics, thermal 
diffusion, and the time-dependent convective flow of viscous Newtonian fluid in the 
region between two infinite upright parallel permeable plates. Prasannakumara et al. 
[30] studied reaction and radiation influence on Williamson fluid flow with 
nanoparticles in porous medium influenced by stretchy surfaces. Singh and Kumar 
[31] investigated heat and mass transmission in micropolar fluid flow in porous 
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channels, considering chemical reactions with radiation influence. Mallikarjun et al. 
[32] analysed fully developed mixed convection flow in a vertical channel, 
considering heat production, absorption, and reactions of first order. Thermal and mass 
transport in the convective flow of Williamson fluid outside a cylinder via porous 
medium, under assumptions of the boundary layer, was investigated by Loganathan 
and Dhivya [33]. Huang [34] has examined thermal and mass transport in convective 
flow via porous medium along an inclined surface, considering Lorentz force 
influence. Nazir et al. [35] have considered surface chemical reactions in the flow of 
Walter’s B fluid past a paraboloid, including heat and mass diffusion. Olkha and 
Kumar [36] have reported heat and mass transport in free convection flow of non-
Newtonian fluid via porous medium in the region between two vertical cylinders, 
considering chemical reaction impact. Olkha and Kumar [37] have also investigated 
melting heat transport in non-Newtonian fluid flow via porous medium produced by a 
curved surface stretching non-linearly, including mass transport and reaction 
influence. 

The consideration of convective boundary conditions in heat transport problems 
is significant in engineering processes, e.g., thermal energy storage, gas turbines, 
nuclear plants, and so forth. Srinivas et al. [38] studied thermal and mass diffusion in 
the pulsating flow of viscous Newtonian fluid in a horizontal channel via porous 
medium, considering slip flow and convective boundary constraints, including 
Lorentz force and chemical reaction. Oyelakin et al. [39] employed convective surface 
boundary conditions, including velocity slip in time-dependent non-Newtonian flow 
in the existence of nanoparticles including influence of heat transport characteristics. 
Such constraints on the convection slip flow of Williamson fluid produced by a 
stretchy surface, considering Lorentz force and Joule heating, were employed by 
Sharada and Shankar [40]. Zeeshan et al. [41] explored the radiative Couette-
Poiseuille flow of nanofluid in a channel with chemical reactions considering 
convective boundaries, Joule heating, activation energy, and viscous dissipation. 
Convective boundary conditions to discuss heat transport in the flow of Casson fluid 
in the region between inclined permeable parallel plates, invoking the impacts of flow-
thermal properties, were considered by Neeraja et al. [42]. Jagadeesh and Reddy [43] 
have employed convective boundary conditions in 3-D convection non-Newtonian 
couple stress flow in the existence of nanoparticles influenced by a stretchable sheet, 
considering Lorentz force, radiation, and reaction. 

The exponential space-dependent heat source procedure is probably more suited 
for excellent thermal processes since a minor size augmentation of the heat source 
leads to a significant improvement in the thermal field. Several researchers have 
considered exponential space- and thermal-dependent heat sources (ESHS/THS) in 
their studies conducted on viscous Newtonian and non-Newtonian fluid flows in 
various aspects, including Zaigham Zia et al. [44], Thriveni et al. [45], Mahanthesh et 
al. [46], Nagaraja and Gireesha [47], Swain et al. [48], Hasibi et al. [49], Sharma et al. 
[50], etc. 

Entropy, a key thermodynamic irreversibility parameter, occurs in the second law 
of thermodynamics. The analysis of entropy production makes a significant 
contribution to thermal systems design decisions and thus supports optimization of 
cost and energy in science and engineering areas like the cooling of electronic devices, 
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heat exchangers, energy storage systems (Yessef et al. [51], Chojaa et al. [52], Loulijat 
et al. [53], and Hamid et al. [54]), etc. Bejan [55,56] presented pioneering work on 
entropy production and its optimization. Baytas [57] analysed entropy production in 
free convection via porous medium along with thermal transport and mass transport 
in a tilted permeable enclosure. Makinde and Eegunjobi [58] proposed the rate of 
entropy and Bejan number in viscous couple stress flow in an upright channel filled 
with porous material in the existence of buoyancy forces. Das et al. [59] examined 
entropy production in pseudo-plastic fluid flow in the existence of nanoparticles in a 
channel having permeable walls under convective heating. Analysis of heat transport 
in natural convection and entropy production inside a channel including a permeable 
plate mounted at the lower wall was performed numerically by Maskaniyan et al. [60]. 
Yusuf et al. [61] examined the entropy production number in the bioconvective flow 
of pseudoplastic fluid in the existence of nanoparticles along an aligned semi-infinite 
porous plate under convective boundaries, considering magnetic field, Joule heating, 
viscous dissipation, and chemical reaction. Olkha and Dadheech [62] numerically 
analysed entropy production in the flow of three different fluids (Williamson fluid, 
Casson fluid, and viscous fluid) produced by a permeable stretching sheet. Entropy 
production in the free convection of nanofluid via porous medium in a square 
configuration including heated corners, in the existence of Lorentz force, has been 
discussed by Reddy et al. [63]. Entropy production in Jeffery fluid flow in tilted 
permeable pipe via porous medium applying convective boundary constraints in the 
existence of an applied magnetic field has been investigated by Raje et al. [64]. In 
natural and forced convection slip flow in the region between vertical parallel 
permeable plates, entropy production has been discussed by Balamurugan et al. [65]. 

In view of the aforementioned studies, this work investigates gravity-driven 
Williamson fluid flow in the region bounded by two vertical parallel flat plates under 
convective surface boundary constraints. Slip flow is considered a porous medium 
under Lorentz force impact. In heat transport analysis, viscous dissipation, joule 
heating, and non-uniform heat source contributions are accounted for. Mass transport 
is also discussed in light of the existence of the reaction effect. Apart from that, 
second-law analysis is invoked in the study in terms of entropy production, which 
completes the heat transport analysis. The Runge-Kutta 4th order technique is 
employed for numerical simulations on MATLAB. Additionally, the influence of 
pertinent parameters on wall shear stress, rate of heat transport, and mass transport 
rate is exhibited in a graphical way and discussed. A comparison of the results obtained 
with previously published data shows an excellent match. 

2. Problem formulation 

We consider the fully developed, steady flow of an incompressible Williamson 
fluid in the region bounded by two vertical, infinitely parallel flat plates situated at a 

distance ℎ  apart (as Figure 1 depicts). We choose 𝑥 −axis parallel to the flow, 

opposite to the gravitational field, and 𝑦 − axis is considered perpendicular to it. The 

fluid flow is considered via porous medium, and a uniform magnetic field 𝐵଴  is 
applied in the perpendicular direction of flow. Convective boundary constraints 
relevant to heat and concentration are applied at the channel walls along with velocity 
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slip. Moreover, the impacts of viscous dissipation, exponential space-and thermal-
dependent heat sources, joule heating, and higher-order chemical reactions are 
accounted for. A cartesian coordinate system is considered. The plates are assumed of 

infinite length in 𝑥 − and 𝑧 −directions, all physical quantities are, therefore, treated 

as functions of 𝑦 only. 

 
Figure 1. Systematic diagram for present problem. 

With the aforementioned considerations, the regulating equations are  

𝜇
𝑑ଶ𝑣

𝑑𝑦ଶ
+

𝜇Г

√2

𝑑

𝑑𝑦
ቊ൬

𝑑𝑣

𝑑𝑦
൰
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𝜇

𝐾௣
𝑣 − 𝜎𝐵଴

ଶ𝑣 = 0 (1)

𝜅
𝑑ଶ𝑇

𝑑𝑦ଶ
+ 𝜇 ൤1 +

𝛤

√2

𝑑𝑣

𝑑𝑦
൨ ൬

𝑑𝑣

𝑑𝑦
൰

ଶ

+ 𝑄்
∗ (𝑇 − 𝑇଴) + 𝑄ா

∗ (𝑇௪ − 𝑇଴) × 𝑝 ቀ−
𝑦

ℎ
ቁ + 𝜎𝐵଴

ଶ𝑣ଶ = 0 (2)

𝐷஻

𝑑ଶ𝐶

𝑑𝑦ଶ
− 𝑘௡(𝐶 − 𝐶଴)௡ = 0 (3)

and the relevant boundary constraints are considered as 

𝑎𝑡 𝑦 = 0: 𝑣 = 𝑙 
𝑑𝑣

𝑑𝑦
, 𝜅 

𝑑𝑇

𝑑𝑦
= −ℎ௙(𝑇௪ − 𝑇), 𝐷஻

𝑑𝐶

𝑑𝑦
= −ℎ௦(𝐶௪ − 𝐶), 

𝑎𝑡 𝑦 = ℎ: 𝑣 = −𝑙 
𝑑𝑣

𝑑𝑦
, 𝜅 

𝑑𝑇

𝑑𝑦
= −ℎ௙(𝑇଴ − 𝑇), 𝐷஻

𝑑𝐶

𝑑𝑦
= −ℎ௦(𝐶଴ − 𝐶), 

(4)

where 𝑣 is the axial velocity of the fluid, 𝑇 is the temperature of the fluid, 𝑇଴ is the 

temperature of the right wall, 𝐶 is the concentration of the fluid, 𝜇 is the viscosity, 𝜌 

is the density, 𝛤 is the time constant, 𝛽் is the coefficient of thermal expansion, 𝛽஼ is 

the coefficient of mass expansion, 𝐶଴ is the concentration at the right wall, 𝜎 is the 

electrical conductivity, 𝐵଴ is strength of magnetic field, 𝐾௣ is the permeability of the 

porous medium, 𝜅 is the thermal conductivity, 𝑈 is the reference velocity, ℎ௙ is the 

convective heat transfer coefficient, ℎ௦ is the convective mass transfer coefficient, 𝐷஻ 

is diffusion coefficient, 𝑄்
∗ is the thermal based heat source coefficient, 𝑄ா

∗ is the 

exponential heat source coefficient, 𝑇௪  is temperature of left wall, 𝐶௪  is the 
concentration at the left wall. 

Invoking the following non-dimensional quantities 
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𝑉 =
𝑣

𝑈
, 𝜂 =

𝑦

ℎ
, 𝜃 =

𝑇 − 𝑇଴

𝑇௪ − 𝑇଴
, 𝜙 =

𝐶 − 𝐶଴

𝐶௪ − 𝐶଴
 (5)

Equations (1)–(3) reduce to following non-dimensional form,  

𝑑ଶ𝑉

𝑑𝜂ଶ
+ 𝑊𝑒

𝑑𝑉

𝑑𝜂

𝑑ଶ𝑉

𝑑𝜂ଶ
+

𝐺𝑟

𝑅𝑒
𝜃 +

𝐺𝑐

𝑅𝑒
𝜙 − 𝐷 𝑉 − 𝐻𝑎ଶ𝑉 = 0 (6)

𝑑ଶ𝜃

𝑑𝜂ଶ
+ 𝐵𝑟 ൤1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
൨ ൬

𝑑𝑉

𝑑𝜂
൰

ଶ

+ 𝑄்𝜃 + 𝑄ா 𝑒𝑥𝑝(−𝜂) + 𝐻𝑎ଶ𝐵𝑟 𝑉ଶ = 0 (7)

𝑑ଶ𝜙

𝑑𝜂ଶ
− 𝑆𝑐𝐾௡𝜙௡ = 0 (8)

and the corresponding boundary conditions in non-dimensional form are: 

𝑉 = 𝐿
𝑑𝑉

𝑑𝜂
, 𝜃 = 1 +

1

𝐵𝑖ଵ
 
𝑑𝜃

𝑑𝜂
, 𝜙 = 1 +

1

𝐵𝑖ଶ
 
𝑑𝜙

𝑑𝜂
, 𝑎𝑡 𝜂 = 0 

𝑉 = −𝐿
𝑑𝑉

𝑑𝜂
, 𝜃 =

1

𝐵𝑖ଵ
 
𝑑𝜃

𝑑𝜂
, 𝜙 =

1

𝐵𝑖ଶ
 
𝑑𝜙

𝑑𝜂
, 𝑎𝑡 𝜂 = 1 

(9)

where, 𝑊𝑒 = √2 Г 𝑈/ ℎ is the non-Newtonian parameter, 𝐵𝑟 = 𝜇𝑈ଶ/𝜅(𝑇௪ − 𝑇଴) is 

the Brinkman number, 𝑄் = 𝑄்
∗ℎଶ/𝜅 is the THS parameter, 𝑄ா = 𝑄ா

∗ℎଶ/𝜅 is the 

ESHS parameter, 𝐻𝑎 = 𝐵଴ℎඥ𝜎/𝜇 is the Hartman number, 𝐷 = ℎଶ/𝐾௣ is the porous 

medium parameter,𝐺𝑟 = 𝑔𝛽்(𝑇௪ − 𝑇଴)ℎଷ/𝜐ଶ is the thermal Grashof number, 𝐺𝑐 =

𝑔𝛽஼(𝐶௪ − 𝐶଴)ℎଷ/𝜐ଶ is the solutal Grashof number, 𝑅𝑒 = 𝑈ℎ/𝜐 is Reynolds number, 

𝑆𝑐 = 𝜐/𝐷஻  is the Schmidt number, 𝐾௡ = 𝑘௡(𝐶௪ − 𝐶଴)௡ିଵℎଶ/𝜐  is the chemical 

reaction parameter, 𝐿 = 𝑙/ℎ is the velocity slip parameter, 𝐵𝑖ଵ = ℎℎ௙/𝜅  is thermal 

Biot number, 𝐵𝑖ଶ = ℎℎ௦/𝐷஻ is the solutal Biot number. 

3. Quantities of physical significance 

The quantities of physical importance (skin-friction coefficient, Nusselt number, 
and Sherwood number) respectively, given by  

𝐶௙ =
𝜏௪

𝜇 𝑈/ℎ
, 𝑁𝑢 =

ℎ𝑞௪

𝜅(𝑇௪ − 𝑇଴)
 𝑎𝑛𝑑 𝑆ℎ =

ℎ𝑗௪

𝐷஻(𝐶௪ − 𝐶଴)
 (10)

where shear stress (𝜏௪), heat flux (𝑞௪), and mass flux (𝑗௪) are given by 

𝜏௪ = 𝜇 ቊ
𝜕𝑣

𝜕𝑦
+

Г

√2
൬

𝜕𝑣

𝜕𝑦
൰

ଶ

ቋ
௬ୀ଴

, 𝑞௪ = − ൬𝜅
𝜕𝑇

𝜕𝑦
൰

௬ୀ଴

, 𝑗௪ = −𝐷஻ ൬
𝜕𝐶

𝜕𝑦
൰

௬ୀ଴

 (11)

On substituting values from Equation (11) and Equation (5) into Equation (10), 
the obtained non-dimensional expressions are as follows: 

𝐶௙ = ቈ
𝑑𝑉

𝑑𝜂
+

𝑊𝑒

2
൬

𝑑𝑉

𝑑𝜂
൰

ଶ

቉
ఎୀ଴

, 𝑁𝑢 = − ൬
𝑑𝜃

𝑑𝜂
൰

ఎୀ଴

, 𝑆ℎ = − ൬
𝑑𝜙

𝑑𝜂
൰

ఎୀ଴

 (12)

4. Entropy generation 

The dimensional entropy production for the current problem is given as  

𝑆௚௘௡ =
𝜅

𝑇଴
ଶ ൬

𝑑𝑇

𝑑𝑦
൰

ଶ

+ ቈ
𝑅𝐷

𝐶଴
൬

𝑑𝐶

𝑑𝑦
൰

ଶ

+
𝑅𝐷

𝑇଴
൬

𝑑𝐶

𝑑𝑦

𝑑𝑇

𝑑𝑦
൰቉ +

𝜇

𝑇଴
൤1 +

𝛤

√2

𝑑𝑢

𝑑𝑦
൨ +

1

𝑇଴

𝜇

𝑘௣
𝑢ଶ +

1

𝑇଴
𝜎𝐵଴

ଶ𝑢ଶ (13)

where the terms on right side in Equation (13) are entropy contributions due to heat 
transport, mass transport, viscous dissipation, porous medium, and magnetic field 
respectively. 
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The non-dimensional entropy generation (𝑁𝑆) is defined as  

𝑁𝑆 =
ௌ೒೐೙

ௌబ
, where 𝑆଴ =

఑(்ೢ ି బ்)మ

బ்
మℎమ  

Thus, the non-dimensional entropy production (𝑁𝑆) is expressed as 

𝑁𝑆 = ൬
𝑑𝜃

𝑑𝜂
൰

ଶ

+
𝛺஼

𝛺்
𝜙஼ ቈ

𝛺஼

𝛺்
൬

𝑑𝜙

𝑑𝜂
൰

ଶ

+
𝑑𝜃

𝑑𝜂

𝑑𝜙

𝑑𝜂
቉ +

𝐵𝑟

𝛺்
ቈ൬1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
൰ ൬

𝑑𝑉

𝑑𝜂
൰

ଶ

+ (𝐻𝑎)ଶ𝑉ଶ + 𝐷𝑉ଶ቉

= 𝑆் + 𝑆஼ + 𝑆௙ + 𝑆ெ + 𝑆௉ 

(14)

where, 

𝑆் = ቀ
ௗఏ

ௗఎ
ቁ

ଶ
, 𝑆஼ =

ఆ಴

ఆ೅
𝜙஼ ൤

ఆ಴

ఆ೅
ቀ

ௗథ

ௗఎ
ቁ

ଶ
+

ௗఏ

ௗఎ

ௗథ

ௗఎ
൨ , 𝑆௙ =

஻௥

ఆ೅
ቀ1 +

ௐ௘

ଶ

ௗ௏

ௗఎ
ቁ ቀ

ௗ௏

ௗఎ
ቁ

ଶ
, 𝑆ெ =

(𝐻𝑎)ଶ𝑉ଶ, and 𝑆௉ = 𝐷𝑉ଶ represent the irreversibility corresponding to heat transfer, 
mass transfer, viscous dissipation in porous medium, and magnetic field, respectively. 

𝛺் = (𝑇௪ − 𝑇଴)/𝑇଴  represent the temperature difference parameter, 𝛺஼ = (𝐶௪ −

𝐶଴)/𝐶଴ represent the concentration difference parameter, 𝜙஼ = 𝑅𝐷𝐶଴/𝜅 represent the 
diffusion parameter. 

5. Numerical methodology 

The Runge-Kutta fourth-order method with a shooting approach is utilized to 
tackle the system of nonlinear ODEs (6)-(8) numerically under the boundary 
conditions (9). Non-linear ODEs (6)-(8) including boundary constraints (9), are 
initially transformed into simultaneous nonlinear DEs of first order; they are then 
further changed into an initial value problem by applying the shooting approach. 

൬𝑉,
𝑑𝑉

𝑑𝜂
, 𝜃,

𝑑𝜃

𝑑𝜂
, 𝜙,

𝑑𝜙

𝑑𝜂
൰ = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, 𝑦ସ, 𝑦ହ, 𝑦଺) (15)

𝑑𝑦ଵ

𝑑𝜂
= 𝑦ଶ,

𝑑𝑦ଷ

𝑑𝜂
= 𝑦ସ,

𝑑𝑦ହ

𝑑𝜂
= 𝑦଺ (16)

𝑑𝑦ଶ

𝑑𝜂
= −

𝐺𝑟
𝑅𝑒

𝑦ଷ +
𝐺𝑐
𝑅𝑒

𝑦ହ − 𝐷𝑦ଵ − (𝐻𝑎)ଶ𝑦ଵ

1 + 𝑊𝑒 𝑦ଶ
 (17)

𝑑𝑦ସ

𝑑𝜂
= −𝐵𝑟 ൬1 +

𝑊𝑒

2
𝑦ଶ൰ 𝑦ଶ

ଶ − 𝑄் 𝑦ଷ − 𝑄ா 𝑒𝑥𝑝(−𝜂) − (𝐻𝑎)ଶ𝐵𝑟 𝑦ଵ
ଶ (18)

𝑑𝑦଺

𝑑𝜂
= 𝑆𝑐𝐾௡(𝑦ହ)௡ (19)

The boundary conditions are as follows: 

𝑦ଵ(0) = 𝐿𝑦ଶ(0), 𝑦ଶ(0) = 𝛼ଵ, 𝑦ଷ(0) = 1 +
1

𝐵𝑖ଵ
𝑦ସ(0), 𝑦ସ(0) = 𝛼ଶ, 𝑦ହ(0) = 1 +

1

𝐵𝑖ଶ
𝑦଺(0), 𝑦଺(0) = 𝛼ଷ, 𝑦ଵ(1)

= −𝐿𝑦ଶ(0), 𝑦ଷ(1) =
1

𝐵𝑖ଵ
𝑦ସ(1), 𝑦ହ(1) =

1

𝐵𝑖ଶ
𝑦଺(1) 

(20)

where, 𝛼ଵ, 𝛼ଶ, and 𝛼ଷ are the initial guesses. 

6. Homotopy perturbation method 

We use He’s homotopy perturbation approach [66–68] to solve the presented 
problem analytically. According to HPM, the differential Equations (6)–(8) satisfied 

by 𝑓(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are separated into two parts, the linear component ℒ(𝑓), 

ℒ(𝜃), and ℒ(𝜙) and the non-linear component 𝒩(𝑓), 𝒩(𝜃), and 𝒩(𝜙) and may be 
expressed as follows: 
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ℒ(𝑓) + 𝒩(𝑓) − 𝑔(𝜂) = 0 (21)

ℒ(𝜃) + 𝒩(𝜃) − ℎ(𝜂) = 0 (22)

ℒ(𝜙) + 𝒩(𝜙) − 𝐼(𝜂) = 0 (23)

where ℒ(𝑉) =
ௗమ௏

ௗఎమ, ℒ(𝜃) =
ௗమఏ

ௗఎమ, ℒ(𝜙) =
ௗమథ

ௗఎమ  

𝒩(𝑉) = 𝑊𝑒 
ௗ௏

ௗఎ

ௗమ௏

ௗఎమ +
ீ௥

ோ௘
𝜃 +

ீ௖

ோ௘
𝜙 − 𝐷 𝑉 − 𝐻𝑎ଶ𝑉,  

𝒩(𝜃) = 𝐵𝑟 ቂ1 +
ௐ௘

ଶ

ௗ௏

ௗఎ
ቃ ቀ

ௗ௏

ௗఎ
ቁ

ଶ
+ 𝑄்  𝜃 + 𝑄ா 𝑒𝑥𝑝(−𝜂) + 𝐻𝑎ଶ𝐵𝑟 𝑉ଶ, 

𝒩(𝜙) = −𝑆𝑐𝐾௡𝜙௡ , 𝑔(𝜂) = 0 , ℎ(𝜂) = 0 , and 𝐼(𝜂) = 0 . With the homotopy 

technique, we create a homotopy 𝑉(𝜂, 𝑝): 𝛺 × [0,1] → ℝ , 𝜃(𝜂, 𝑝): 𝛺 × [0,1] → ℝ , 

and 𝜙(𝜂, 𝑝): 𝛺 × [0,1] → ℝ which satisfies the following equation  

(1 − 𝑝)ൣℒ൫𝑉൯ − ℒ(𝑢଴)൧ + 𝑝ൣℒ(𝑉) + 𝒩൫𝑉൯ − 𝑔(𝜂)൧ = 0, 𝑝 ∈ [0,1] (24)

(1 − 𝑝)ൣℒ൫𝜃൯ − ℒ(𝜃଴)൧ + 𝑝ൣℒ(𝜃) + 𝒩൫𝜃൯ − ℎ(𝜂)൧ = 0, 𝑝 ∈ [0,1] (25)

(1 − 𝑝)ൣℒ൫𝜙൯ − ℒ(𝜙଴)൧ + 𝑝ൣℒ(𝜙) + 𝒩൫𝜙൯ − 𝐼(𝜂)൧ = 0, 𝑝 ∈ [0,1] (26)

Equations (24)–(26) can be written as 

(1 − 𝑝)
𝑑ଶ𝑉

𝑑𝜂ଶ
+ 𝑝 ቆ

𝑑ଶ𝑉

𝑑𝜂ଶ
+ 𝑊𝑒 

𝑑𝑉

𝑑𝜂

𝑑ଶ𝑉

𝑑𝜂ଶ
+

𝐺𝑟

𝑅𝑒
𝜃 +

𝐺𝑐

𝑅𝑒
𝜙 − 𝐷 × 𝑉 − 𝐻𝑎ଶ𝑉ቇ = 0  (27)

(1 − 𝑝)
𝑑ଶ𝜃

𝑑𝜂ଶ
+ 𝑝 ቆ

𝑑ଶ𝜃

𝑑𝜂ଶ
+ 𝐵𝑟 ൤1 +

𝑊𝑒

2

𝑑𝑉

𝑑𝜂
൨ ൬

𝑑𝑉

𝑑𝜂
൰

ଶ

+ 𝑄் 𝜃 + 𝑄ா 𝑒𝑥𝑝(−𝜂) + 𝐻𝑎ଶ𝐵𝑟 × 𝑉ଶቇ = 0 (28)

(1 − 𝑝)
𝑑ଶ𝜙

𝑑𝜂ଶ
+ 𝑝 ቆ

𝑑ଶ𝜙

𝑑𝜂ଶ
− 𝑆𝑐𝐾௡𝜙௡ቇ = 0 (29)

In Equations (24)–(26), 𝑝 is an embedding parameter, 𝑢଴, 𝜃଴ and 𝜙଴ is an initial 
guess, which satisfies the boundary conditions (9). It can be consider the solutions of 

the Equations (24)–(26) as a power series in 𝑝 as follows:  

𝑉(𝜂, 𝑝) = ෍ 𝑣௞(𝜂)

∞

௞ୀ଴

𝑝௞ (30)

𝜃(𝜂, 𝑝) = ෍ 𝜃௞(𝜂)

∞

௞ୀ଴

𝑝௞ (31)

𝜙(𝜂, 𝑝) = ෍ 𝜙௞(𝜂)

∞

௞ୀ଴

𝑝௞ (32)

where 𝑣௞, 𝜃௞, 𝜙௞ are unknown function of 𝜂. The approximate solutions (by taking 

𝑝 → 1) are given by 

𝑉(𝜂) = 𝑉(𝜂, 1) = ෍ 𝑣௞(𝜂)

∞

௞ୀ଴

 (33)

𝜃(𝜂) = 𝜃(𝜂, 1) = ෍ 𝜃௞(𝜂)

∞

௞ୀ଴

 (34)

𝜙(𝜂) = 𝜙(𝜂, 1) = ෍ 𝜙௞(𝜂)

∞

௞ୀ଴

 (35)

using the Equations (9), (30)–(32) into Equations (24)–(26), equating the coefficients 

of like powers of 𝑝, we get  
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𝑝଴:
𝑑ଶ𝑣଴

𝑑𝜂ଶ
= 0, 𝑣଴(0) = 𝐿 

𝑑𝑣଴(0)

𝑑𝜂
, 𝑣଴(1) = −𝐿 

𝑑𝑣଴(1)

𝑑𝜂
 

𝑑ଶ𝜃଴

𝑑𝜂ଶ
= 0, 𝜃଴(0) = 1 +

1

𝐵𝑖ଵ

𝑑𝜃଴(0)

𝑑𝜂
, 𝜃଴(1) =

1

𝐵𝑖ଵ

𝑑𝜃଴(1)

𝑑𝜂
 

𝑑ଶ𝜙଴

𝑑𝜂ଶ
= 0, 𝜙଴(0) = 1 +

1

𝐵𝑖ଶ

𝑑𝜙଴(0)

𝑑𝜂
, 𝜙଴(1) =

1

𝐵𝑖ଶ

𝑑𝜙଴(1)

𝑑𝜂
 

(36)

𝑝ଵ : 
𝑑ଶ𝑣ଵ

𝑑𝜂ଶ
+ 𝑊𝑒

𝑑𝑣଴

𝑑𝜂

𝑑ଶ𝑣଴

𝑑𝜂ଶ
+

𝐺𝑟

𝑅𝑒
𝜃଴ +

𝐺𝑐

𝑅𝑒
𝜙଴ − (𝐷 + 𝐻𝑎ଶ)𝑣଴ = 0 , 

𝑣ଵ(0) = 𝐿
𝑑𝑣ଵ(0)

𝑑𝜂
, 𝑣ଵ(1) = −𝐿

𝑑𝑣ଵ(1)

𝑑𝜂
 

𝑑ଶ𝜃ଵ

𝑑𝜂ଶ
+ 𝐵𝑟 ൬1 +

𝑊𝑒

2

𝑑𝑣଴

𝑑𝜂
൰ ൬

𝑑𝑣଴

𝑑𝜂
൰

ଶ

+ 𝑄்𝜃଴ + 𝑄ா𝑒ିఎ + 𝐻𝑎ଶ𝐵𝑟𝑣଴
ଶ = 0, 

𝜃ଵ(0) =
1

𝐵𝑖ଵ

𝑑𝜃ଵ(0)

𝑑𝜂
, 𝜃ଵ(1) =

1

𝐵𝑖ଵ

𝑑𝜃ଵ(1)

𝑑𝜂
 

𝑑ଶ𝜙ଵ

𝑑𝜂ଶ
− 𝑆𝑐𝐾௡𝜙଴

௡ = 0, 𝜙ଵ(0) =
1

𝐵𝑖ଶ

𝑑𝜙ଵ(0)

𝑑𝜂
, 𝜙ଵ(1) =

1

𝐵𝑖ଶ

𝑑𝜙ଵ(1)

𝑑𝜂
 

(37)

𝑝ଶ : 
𝑑ଶ𝑣ଶ

𝑑𝜂ଶ
+ 𝑊𝑒 ቆ

𝑑𝑣଴

𝑑𝜂

𝑑ଶ𝑣ଵ

𝑑𝜂ଶ
+

𝑑𝑣ଵ

𝑑𝜂

𝑑ଶ𝑣଴

𝑑𝜂ଶ ቇ +
𝐺𝑟

𝑅𝑒
𝜃ଵ +

𝐺𝑐

𝑅𝑒
𝜙ଵ − (𝐷 + 𝐻𝑎ଶ)𝑣ଵ = 0 , 

𝑣ଶ(0) = 𝐿
𝑑𝑣ଶ(0)

𝑑𝜂
, 𝑣ଶ(1) = −𝐿

𝑑𝑣ଶ(1)

𝑑𝜂
 

𝑑ଶ𝜃ଶ

𝑑𝜂ଶ
+ 𝐵𝑟 ൬2 +

3

2
𝑊𝑒

𝑑𝑣଴

𝑑𝜂
൰

𝑑𝑣଴

𝑑𝜂

𝑑𝑣ଵ

𝑑𝜂
+ 𝑄்𝜃ଵ + 2𝐻𝑎ଶ𝐵𝑟𝑣଴𝑣ଵ = 0, 

𝜃ଶ(0) =
1

𝐵𝑖ଵ

𝑑𝜃ଶ(0)

𝑑𝜂
, 𝜃ଶ(1) =

1

𝐵𝑖ଵ

𝑑𝜃ଶ(1)

𝑑𝜂
 

𝑑ଶ𝜙ଶ

𝑑𝜂ଶ
− 𝑛𝑆𝑐𝐾௡𝜙଴

௡ିଵ𝜙ଵ = 0, 𝜙ଶ(0) =
1

𝐵𝑖ଶ

𝑑𝜙ଶ(0)

𝑑𝜂
, 𝜙ଶ(1) =

1

𝐵𝑖ଶ

𝑑𝜙ଶ(1)

𝑑𝜂
 

(38)

Similarly, we can obtain other coefficients with the help of MATLAB software. 
Solving these linear ordinary differential equations using corresponding boundary 
conditions with the help of MATLAB and substituting in the Equations (33)–(35), we 
can find homotopy perturbation solutions for various values of parameters. 

7. Results and discussion 

In this section, various graphs are drawn to display the effects of various 
parameters that occurred in the problem. Throughout the numerical computations, we 

considered 𝐺𝑟 = 1, 𝐻𝑎 = 0.3, 𝐷 = 0.5, 𝐵𝑟 = 2, 𝑄் = 0.2, 𝑄ா = 0.2, 𝑅𝑒 = 1, 𝑆𝑐 =

0.5, 𝐾௡ = 0.5, 𝑛 = 2, 𝐿 = 0.1, 𝐺𝑐 = 1, 𝐵𝑖ଵ = 100, and 𝐵𝑖ଶ = 100, as fixed. The 
MATLAB based RK-4th order technique is utilized to tackle the system of regulating 
Equations (6)–(8) along with boundary constraints (9). For the validity of the results 
obtained, a comparison is made with previously reported studies by Singh and Paul 
[69] and Ajibade et al. [23], as presented in Table 1. The validity of the study’s 
findings is confirmed by a high level of agreement between the two sets of data.  
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Table 1. Comparison for 𝑉(𝜂) and 𝜃(𝜂) when 𝑅𝑒 = 𝐺𝑟 = 1.0 and values of other parameters are taken zero. 

𝜼 
Singh and Paul [69] Ajibade et al. [23] 

Present study 

RK 4  HPM  

𝑽(𝜼) 𝜽(𝜼) 𝑽(𝜼) 𝜽(𝜼) 𝑽(𝜼) 𝜽(𝜼) 𝑽(𝜼) 𝜽(𝜼) 

0     0 1 0 1 

0.1 0.02850 0.900 0.02819 0.900 0.02850 0.900 0.02850 0.900 

0.2     0.04800 0.800 0.04800 0.800 

0.3 0.05950 0.700 0.05916 0.700 0.05950 0.700 0.05950 0.700 

0.4     0.06400 0.600 0.06400 0.600 

0.5 0.06250 0.500 0.06238 0.500 0.06250 0.500 0.06250 0.500 

0.6     0.05600 0.400 0.05600 0.400 

0.7 0.04550 0.300 0.04553 0.300 0.04550 0.300 0.04550 0.300 

0.8     0.03200 0.200 0.03200 0.200 

0.9 0.01650 0.100 0.01653 0.100 0.01650 0.100 0.01650 0.100 

1.0     0 0 0 0 

Figures 2–10 show the impacts of various pertinent parameters such as thermal 

Grashof number (𝐺𝑟), mass Grashof number (𝐺𝑐), Reynolds number (𝑅𝑒), non-

Newtonian fluid (Williamson fluid) parameter (𝑊𝑒), Hartmann number (𝐻𝑎), porous 

medium parameter (𝐷), velocity slip parameter (𝐿) , chemical reaction parameter 
(𝐾௡), thermal Biot number (𝐵𝑖ଵ), solutal Biot number (𝐵𝑖ଶ), Schmidt number (𝑆𝑐), 

exponential space (𝑄ா) -and thermal-dependent (𝑄்)  heat source parameters, 

Brinkman number (𝐵𝑟) , temperature difference parameter (𝛺்) , concentration 

difference parameter (𝛺஼), and diffusion parameter (𝜙஼) on fluid flow, thermal, and 
concentration fields.  

The effects of 𝐷 and 𝐻𝑎 on the velocity distribution 𝑉(𝜂) are exhibited in Figure 

2. It is observed, from this figure, 𝑉(𝜂) lessens with upsurge in the value parameter 𝐷. 
The reason behind this is that raising the porous medium parameter (or decreasing 
permeability) Darcy resistance which opposes the flow upsurges. Fluid flow also 

lowers with augmentation in 𝐻𝑎 parameter value. An increase in 𝐻𝑎 value results in 
increase of Lorentz force, which acts in a transverse direction. Hence, the flow field 

shrinks with the upsurging value of the parameter 𝐻𝑎. 

 
Figure 2. Velocity variation for 𝐷 and 𝐻𝑎. 
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The impacts of 𝐺𝑟 and 𝐺𝑐 on fluid velocity 𝑉(𝜂) are displayed in Figure 3. We 

concluded, 𝑉(𝜂)  enhances for increasing values of 𝐺𝑟  and 𝐺𝑐  because a greater 
Grashof number conveys a larger buoyancy force, which causes upsurge in velocity 
field. 

Figure 4 illustrates the impact of 𝐵𝑟  and 𝐿  on pace of the flow. With rising 

values of 𝐵𝑟 and 𝐿, fluid velocity 𝑉(𝜂) is found to grow. Upsurge in value of 𝐵𝑟 
makes enhancement in viscous heating, which raises fluid kinetic energy and hence 

the pace of the flow improves. As the flow slip parameter (𝐿) rises, the flow in the 
channel increases, and the effect is more apparent in the middle portion of the channel. 

 
Figure 3. Velocity variation for 𝐺𝑟 and 𝐺𝑐. 

 
Figure 4. Velocity variation for 𝐿 and 𝐵𝑟. 

Figure 5 depicts the impact of 𝑅𝑒 and 𝑊𝑒 on velocity distribution. It is found 

that 𝑉(𝜂) lessens with rising value of 𝑅𝑒. The impact of the Williamson parameter is 

also observed to shrink the velocity field. Physically, an upsurge in 𝑊𝑒 parameter 
value implies an increase in stress relaxation time, which causes a reduction in fluid 
flow and thus lowers the velocity profile. The effect is prominent in almost half of the 
lower portion of the channel. 
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Figure 6 depicts the impacts of rising THS parameter and ESHS parameter 

values, i.e., 𝑄் and 𝑄ா on the pace of the flow. The figure reveals that with a rise in 

the values of 𝑄்  and 𝑄ா  fluid velocity increases. It may happen due to the higher 
kinetic energy of fluid molecules. 

 
Figure 5. Velocity variation for 𝑊𝑒 and 𝑅𝑒. 

 
Figure 6. Velocity variation for 𝑄் and 𝑄ா. 

The effect of the THS and ESHS parameters i.e., (𝑄், and 𝑄ா) on the energy 

profile 𝜃(𝜂) is exhibited in Figure 7. This graphical representation shows that when 

the value of 𝑄்  and 𝑄ா  grows, the temperature profile improves because heat 

production improves as the values of heat source parameters (𝑄், and 𝑄ா) increase. 

Figure 8 reveals the effect of ascending 𝐵𝑟 and 𝐵𝑖ଵ values on the temperature 

distribution 𝜃(𝜂) . The figure displays that fluid temperature 𝜃(𝜂)  increases with 

upsurging the values of 𝐵𝑟 and 𝐵𝑖ଵ. Physically, an increase in Brinkman number value 
enhances viscous heating, which causes an augmentation in fluid flow temperature and 
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thus the magnifies thermal profile. Thermal Biot number 𝐵𝑖ଵ involves heat transfer 

coefficient. 𝐵𝑖ଵ = 0, i.e., there is no heat transfer, and 𝐵𝑖ଵ > 0 means heat transfer 
rate increases, which causes an increase in the temperature profile. 

 
Figure 7. Temperature variation for 𝑄் and 𝑄ா. 

 
Figure 8. Temperature variation for 𝐵𝑟 and 𝐵𝑖ଵ. 

Figure 9 indicates the variation in concentration distribution 𝜙(𝜂) corresponding 

to 𝑆𝑐  and 𝐾௡ . This figure depicts that concentration distribution, 𝜙(𝜂) is reducing 

with an augmentation in 𝑆𝑐 and 𝐾௡ values. The reason behind this is a reduction in 

mass diffusivity as the Schmidt number (𝑆𝑐) value upsurges.  

Figure 10 exhibits the variation in concentration distribution 𝜙(𝜂) for ascending 

values of 𝑛 and 𝐵𝑖ଶ . It is quite obvious from these figures that 𝜙(𝜂) enhance for 

improving the values of 𝑛 and 𝐵𝑖ଶ. 
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Figure 9. Concentration variation for 𝑆𝑐 and 𝐾௡. 

 
Figure 10. Concentration variation for 𝑛 and 𝐵𝑖ଶ. 

Figures 11–14 are sketched to depict the pertinent parameters impacting entropy 

production 𝑁𝑆. These figures show more entropy production near the lower wall in 
comparison to that near the upper plate.  

Figure 11 shows variation in 𝑁𝑆 due to the rising Brinkman number value. We 

observed, 𝑁𝑆  upsurges for ascending 𝐵𝑟  values. The reason behind, as 𝐵𝑟  is a 

parameter for viscous heating, and more heat is produced for larger values of 𝐵𝑟 which 

causes enhancement in 𝑁𝑆 and hence 𝑁𝑆 profile magnifies.  

Figure 12 is drawn to exhibit the effect of Grashof numbers (𝐺𝑟, and 𝐺𝑐) on 𝑁𝑆. 

It depicts 𝑁𝑆 profile magnifies for ascending values of Grashof numbers, and the 
effect is significant in the entire channel width, and this is due to elevated friction 
(shear) near the walls.  

Figure 13 is plotted to show the impact of Reynolds number (𝑅𝑒) and diffusion 

parameter (𝜙஼) on 𝑁𝑆. It is noticed that an increase in 𝑅𝑒 values causes a reduction in 

𝑁𝑆  and hence 𝑁𝑆  profile shrinks with ascending Reynolds number. This may be 
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attributed to the decrease in velocity, which results in a decrease in heat transfer and 
hence, a decrease in entropy generation. It is seen in this graph that upsurging value 

of the parameter 𝜙஼ cause upsurge in 𝑁𝑆 value and hence the corresponding profile 
improves. This is attributed to the increased convection currents driven by the 
differences in the densities of the fluid under the influence of gravitational forces, 
leading to increased heat production. 

In Figure 14, the impact of the temperature difference parameter (𝛺் ) and 

concentration difference parameter (𝛺஼) is shown on the entropy generation number. 

The figure shows that the rising 𝛺் value lowers 𝑁𝑆 and the corresponding profile 
diminishes due to the assumption that the temperature difference between the wall of 
the channel and fluid layers is sufficiently small. It depicts that irreversibility levels 

heightens with upsurge in 𝛺஼ values. A greater mass is deposited on the surface of the 
plates as concentration increases, resulting in higher pressure being exerted on the 
walls of the plates, which causes higher rates of entropy generation. 

 
Figure 11. Entropy variation for 𝐵𝑟. 

 
Figure 12. Entropy variation for 𝐺𝑟 and 𝐺𝑐. 
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Figure 13. Entropy variation for 𝑅𝑒 and 𝜙஼. 

 
Figure 14. Entropy variation for 𝛺் and 𝛺஼. 

The values of the wall shear stress in terms of skin friction coefficient ൫𝐶௙൯ and 

rate of heat transport in terms of Nusselt number (𝑁𝑢) for the rising values of the 
relevant parameters are shown in Figures 15 and 16. It is observed that the wall shear 

stress decreases by raising the values of 𝑅𝑒, 𝐻𝑎, 𝐷, while, the parameters: 𝐺𝑟 and 𝐺𝑐 
enhance it. The Nusselt number decreases with the growing value of the parameters 

𝐵𝑟, 𝑄், 𝑄ா, and 𝐵𝑖ଵ however, scenario changes in case of ascending values of 𝐻𝑎, as 
can be seen from the figure. Furthermore, Figure 17 illustrates the variation in the 

Sherwood number (𝑆ℎ) for ascending values of pertinent parameters. It is concluded 

that enhancement in values of the parameters 𝐾௡, 𝑆𝑐, 𝐵𝑖ଶ augments 𝑆ℎ while, effect 

of the parameter 𝑛 is seen to reduce it. 
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Figure 15. Skin friction coefficient for 𝐺𝑟, 𝐺𝑐, 𝐻𝑎, 𝐷, and 𝑅𝑒. 

 
Figure 16. Nusselt number for 𝐵𝑟, 𝑄், 𝐻𝑎, 𝐵𝑖ଵ, and 𝑄ா. 

 
Figure 17. Sherwood number for 𝑆𝑐, 𝐾௡, 𝑛, and 𝐵𝑖ଶ. 
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8. Conclusions  

In this research, we consider the fully developed steady-state laminar, natural 
convection flow of Williamson fluid in a vertical channel via porous medium. The 
velocity slip and the convective boundary conditions are applied. The contributions of 
higher order chemical reaction, viscous dissipation, Joule heating, and non-linear heat 
sources (ESHS/THS) are accounted for. Second-law analysis is presented in terms of 
entropy production. A numerical approach namely, Runge-Kutta 4th order is 
employed to tackle the problem with the shooting method. A comparison is also made 
using HPM (Homotopy Perturbation Method) in order to validate the findings. The 
conclusions of this study are:  

1) Velocity field shrinks with rising values of 𝐷, 𝐻𝑎, 𝑅𝑒, and 𝑊𝑒. 

2) Velocity field upsurges with augmentation in values of 𝐺𝑟, 𝐺𝑐, 𝐵𝑟, 𝐿, 𝑄், and 

𝑄ா. 

3) Temperature distribution magnifies with the rising values of 𝑄், 𝑄ா, 𝐵𝑟, and 𝐵𝑖ଵ. 

4) Concentration distribution increases for rising values of 𝑛  and 𝐵𝑖ଶ , while it 

lessens for enhancement in values of 𝑆𝑐 and 𝐾௡. 

5) Entropy production upsurges as values of 𝐵𝑟, 𝐺𝑟, 𝐺𝑐, 𝛺், and 𝜙஼ are increased, 

but it decreases as values of 𝑅𝑒 and 𝛺் are increased. 

6) Skin friction coefficient upsurges with enhancement in values of 𝐺𝑟 and 𝐺𝑐 while, 

the trend is changed in case of the parameters 𝑅𝑒, 𝐻𝑎, 𝐷. 

7) Nusselt number is observed to decrease with 𝐵𝑟, 𝑄், 𝑄ா, and 𝐵𝑖ଵ while, scenario 

changes in case of increasing values of 𝐻𝑎. 

8) Rate of concentration transport upsurges with enhancement in values of 𝐾௡, 𝑆𝑐, 

and 𝐵𝑖ଶ however, scenario changes in case of ascending values of 𝑛. 
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