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Abstract: This study investigates the maximum wind energy potential of points that exhibit 

the highest correlation in an urban environment. A wind tunnel experiment that was simulated 

in a previous study using the Large Eddy Simulation (LES) methodology to generate wind 

speed time series at various locations within a complex urban setting. The analysis focuses on 

the correlation of wind speeds at different heights and spatial points, demonstrating a clear 

dependence on height, with maximum correlations generally increasing as height increases. 

This phenomenon is attributed to the disruption of turbulent eddies by buildings, which 

significantly influences the wind flow patterns. The Spectral Proper Orthogonal 

Decomposition (SPOD) technique is employed to calculate the maximum wind energy, 

revealing that the maximum values occur on building rooftops. Additionally, an empirical 

equation is proposed, relating the maximum wind energy to the distance between the most 

correlated points, with a relatively high correlation coefficient. The findings of this research 

have practical implications for the optimization of renewable energy resources, particularly in 

urban environments where wind flow is highly complex. This study contributes to the 

understanding of wind energy potential in urban settings, offering insights that could be 

valuable for the placement and design of wind turbines in such challenging environments. The 

study revealed a significant dependence of wind energy potential on spatial positioning and 

height, with maximum values occurring at rooftops. An empirical equation was developed to 

predict the difference in maximum wind energy based on the distance between highly 

correlated points, offering a practical tool for urban wind energy optimization. These findings 

provide actionable insights for the integration of renewable energy systems in complex urban 

settings. 

Keywords: urban wind energy; large eddy simulation (LES); wind flow correlation; spectral 

proper orthogonal decomposition (SPOD); renewable energy in urban environments; wind 
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1. Introduction 

The growing global demand for renewable energy sources, driven by the need to 

reduce greenhouse gas emissions and combat climate change, has highlighted wind 

energy as a key player in the transition to sustainable energy systems [1]. Wind energy 

is recognized as one of the most promising and scalable renewable technologies, 

particularly in urban environments where space is limited and energy demand is 

concentrated [2]. Urban wind energy, however, presents unique challenges due to the 

highly turbulent nature of airflow within cities, influenced by the presence of buildings 

and other structures [3]. 

Urban environments create complex wind patterns characterized by the 

disruption of natural airflow, leading to increased turbulence, flow separation, and 
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wake effects [4]. These phenomena significantly impact the performance and 

efficiency of wind turbines, making the optimization of their placement and design 

critical [5]. The interaction between wind turbines and urban structures has been the 

subject of numerous studies, particularly regarding the spatial correlation of wind 

speeds and the potential for energy capture in dense urban settings [6]. 

Recent research in the field has demonstrated that the spatial correlation of wind 

speeds plays a crucial role in optimizing turbine placement, especially in areas with 

significant turbulence [7]. For instance, Porté-Agel et al. [7] emphasized the 

importance of understanding wake effects and turbine spacing in wind farm design, 

while [8] provided insights into the impact of building geometry on wind flow 

dynamics around urban wind turbines. These studies, along with others by Hertwig et 

al. [9] and Škvorc and Kozmar [10], underscore the importance of high-resolution 

simulations, such as Large Eddy Simulation (LES), to capture the intricate details of 

wind flow in urban environments. 

LES has proven to be an indispensable tool in urban wind energy research, 

offering the ability to resolve large-scale turbulent structures that significantly 

influence wind energy potential. Previous work by Blocken [11] and Bazdidi-Tehrani 

et al. [12] has highlighted the advantages of LES over traditional Reynolds-Averaged 

Navier-Stokes (RANS) models, particularly in capturing the complex interactions 

between urban geometry and wind flow. Additionally, advanced techniques such as 

Spectral Proper Orthogonal Decomposition (SPOD) have been employed to analyze 

wind energy potential by identifying dominant flow structures that contribute to 

energy production. 

While it is well established in the literature that maximum wind energy typically 

occurs on building rooftops due to reduced turbulence and obstruction at higher 

elevations, this study focuses on analyzing the spatial variations of wind energy in 

urban environments. Specifically, we apply the SPOD technique, which has not been 

widely used in this context, to provide a more detailed understanding of energy flow 

dynamics and their correlation with urban geometry. 

One of the most widely referenced studies in the validation of LES for urban wind 

flow is the Mock Urban Setting Test (MUST), which involved field measurements of 

wind speeds in a controlled urban-like environment. This large-scale field experiment 

has provided a robust dataset for validating CFD models, including LES. However, it 

is important to note that replicating the atmospheric conditions observed in MUST 

through LES is challenging due to the lack of control over natural wind conditions. 

Nonetheless, LES simulations have been used extensively to investigate the 

correlation of wind speeds at different heights and spatial locations within urban 

environments, providing valuable insights for optimizing wind energy capture. 

This study aims to further explore the maximum wind energy potential in urban 

environments by analyzing the points that exhibit the highest correlation in wind speed. 

By employing LES to generate high-resolution wind speed time series, this research 

contributes to the growing body of knowledge on urban wind energy optimization. 

The findings could have significant implications for the placement and design of wind 

turbines in urban areas, where the interaction between wind flow and building 

structures presents unique challenges for energy harvesting. 
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2. Methodology 

The methodology employed in this study is divided into three key stages: CFD 

simulation, identification of correlated points, and estimation of maximum wind 

energy. Each stage plays a crucial role in achieving the study’s objective of examining 

the maximum wind energy potential in an urban environment by analyzing points with 

the highest wind speed correlations. 

2.1. CFD Simulation 

To simulate the wind flow in an urban environment, the ADREA-HF code was 

utilized in Efthimiou et al. [13], which is well-suited for high Reynolds number flows 

typical in urban settings. Given the complexity of urban airflow, where turbulence is 

significantly influenced by the presence of buildings and other structures, it was 

essential to adopt a simulation methodology capable of capturing these dynamics 

accurately. The LES approach was selected for this purpose due to its ability to resolve 

large-scale turbulent eddies while modeling smaller scales through subgrid scale 

models [8,9]. This method provides a detailed representation of the wind speed time 

series across various points within the urban landscape, which is critical for subsequent 

analysis. 

The LES methodology simulated the wind tunnel experiment in Efthimiou et al. 

[13], replicating urban conditions by including detailed urban geometry and neutral 

atmospheric stability conditions. The simulation setup involved high-resolution grids 

to ensure the accuracy of the flow fields, particularly near the surfaces of buildings, 

where turbulence intensity is greatest [10]. The resulting wind speed data forms the 

foundation for the correlation and energy analyses conducted in the subsequent steps. 

Previous studies have highlighted the significant influence of grid resolution on 

the accuracy of LES results, particularly in urban environments where turbulence is 

complex. Research by Blocken [11] and Bazdidi-Tehrani et al. [12] has demonstrated 

that finer grid resolutions lead to improved representation of small-scale turbulent 

eddies and flow characteristics around buildings. However, achieving high-resolution 

grids requires substantial computational resources, which often impose practical 

limitations. Despite these challenges, the chosen grid resolution in Efthimiou et al. [13] 

balances computational feasibility with the need for accurate flow prediction, 

capturing the most relevant flow structures for wind energy analysis. 

It is important to acknowledge that the grid resolution selected in Efthimiou et al. 

[13] was a compromise between accuracy and computational feasibility. While a finer 

grid would undoubtedly capture more detailed turbulent structures, the resolution 

employed was sufficient to model large-scale wind flow dynamics. Certain small-scale 

features, particularly around building edges and narrow urban canyons, may not be 

fully resolved, which could introduce some local inaccuracies. Nonetheless, the 

primary goal of analyzing wind energy potential based on correlations at different 

points remains unaffected by these limitations. 

2.2. Identification of correlated points 

The next step involved identifying the points within the urban environment that 

exhibit the highest correlation in wind speed. Cross-correlation analysis was employed 
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to measure the similarity between the wind speed time series at different locations as 

a function of the displacement of one series relative to another. This technique is vital 

for understanding how wind flow characteristics at one point influence or are 

influenced by those at another, particularly in complex urban terrains where buildings 

can disrupt and redirect airflow. 

For each group of sensors placed at different heights within the urban canyon, 

cross-correlation coefficients were calculated to identify the most correlated points. 

These correlations were then analyzed across different heights to assess how urban 

geometry affects wind flow consistency. The findings from this analysis are crucial for 

determining the optimal placement of wind turbines or other energy-harvesting 

devices in urban environments, as they highlight areas where wind energy potential is 

maximized due to consistent wind speed patterns. 

2.3. Estimation of maximum wind energy 

The final stage of the methodology focused on estimating the maximum wind 

energy at the identified correlated points. Spectral Proper Orthogonal Decomposition 

(SPOD) was employed for this purpose, a powerful technique used to decompose 

complex turbulent flow fields into orthogonal modes that capture the most energetic 

structures. SPOD is particularly effective in analyzing wind energy because it allows 

for the extraction of dominant flow features that contribute to energy production, 

providing a clearer understanding of where and how wind energy can be optimally 

harnessed. 

The SPOD analysis was performed on the LES-generated wind speed time series 

to quantify the maximum wind energy available at different heights and locations. The 

results were then compared across various sensor groups to identify patterns related to 

urban geometry, such as the influence of building heights and spatial positioning 

within the urban canyon. This analysis also led to the development of an empirical 

equation that relates the maximum wind energy of the most correlated points to their 

corresponding distances, providing a practical tool for urban wind energy planning 

and optimization. 

By combining advanced simulation techniques with robust statistical analyses, 

this methodology offers a comprehensive approach to understanding and optimizing 

wind energy potential in complex urban environments. The findings contribute to the 

growing body of knowledge on renewable energy integration in urban settings and 

offer practical insights for future energy harvesting strategies. 

The calculations of wind speed correlation and maximum wind energy potential 

in this study are based on well-established principles in fluid dynamics and turbulence 

modeling. The primary method used for calculating wind speed correlations between 

different points in the urban environment is cross-correlation analysis. This technique 

provides insights into the relationship between wind speed time series from different 

locations, helping to identify areas where wind flow is most coherent. Cross-

correlation is particularly useful in urban settings, where turbulent flow structures can 

significantly alter wind patterns due to the complex geometry of buildings and other 

obstacles. 
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Additionally, the energy yield calculations are grounded in the Spectral Proper 

Orthogonal Decomposition (SPOD) method. SPOD is a powerful statistical tool that 

decomposes the wind flow field into orthogonal modes, each capturing a distinct 

feature of the turbulent flow. By focusing on the most energetic modes, SPOD allows 

for the quantification of maximum wind energy at different heights and locations. This 

approach provides a more comprehensive understanding of how energy is distributed 

across the urban landscape, and it is particularly effective in identifying regions where 

wind energy potential is maximized. 

The choice of SPOD over more traditional methods, such as the Fast Fourier 

Transform (FFT), lies in its ability to capture the most dominant, energy-carrying 

structures in turbulent flows, making it ideal for applications like urban wind energy 

optimization. The energy yield estimates presented in this study are, therefore, based 

on the contribution of these dominant modes, offering a robust framework for 

assessing wind energy potential in complex urban environments. 

3. The wind tunnel experiment 

The MUST (Mock Urban Setting Test) wind tunnel experiment is a critical 

component in validating CFD models, particularly for urban wind flow simulations. 

In this experiment, obstacles were arranged in a grid pattern, simulating an urban 

environment with 12 rows of 10 obstacles each, where each obstacle had dimensions 

of 12.2 m in length, 2.42 m in width, and 2.54 m in height. The primary objective was 

to measure wind speeds at various points within this setup using a network of 3568 

sensors, strategically placed to capture detailed wind flow data across different areas 

of the simulated urban environment. This data serves as a benchmark for assessing the 

accuracy of CFD models, including both Reynolds-Averaged Navier-Stokes (RANS) 

and LES methodologies, by comparing the measured wind velocities to the model 

predictions. The MUST experiment is renowned for its rigorous validation process and 

is frequently referenced in studies focused on urban wind flow dynamics. 

The sensors used in the MUST wind tunnel experiment played a vital role in 

capturing detailed wind flow data across the simulated urban environment. A total of 

3568 sensors were deployed, strategically positioned to cover various heights and 

locations within the test field. These sensors were arranged in different configurations, 

including a coarse network, a dense network, vertical profiles, and specific uw levels, 

to ensure comprehensive data collection. The height of the sensors ranged from 0.45 

meters to 13.5 m, allowing for the measurement of wind velocity components (u, v, 

and w) at multiple levels above the ground. This extensive sensor network enabled the 

collection of high-resolution data, which was essential for validating the CFD models, 

including both RANS and LES simulations. The sensor data provided a robust dataset 

for comparing simulated results against experimental observations, ensuring that the 

models accurately reflected the complex wind dynamics present in urban 

environments. 

4. The numerical simulation 

The LES approach employed in Efthimiou et al. [13] was used in this study. It is 

designed to capture the detailed turbulent structures in complex urban environments. 
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LES is a high-fidelity simulation technique that resolves the larger turbulent eddies 

directly while modeling the effects of the smaller scales, which are computationally 

expensive to simulate in full. In the context of this research, LES was applied to a 

computational field representing a portion of the atmospheric surface layer, using a 

medium-sized computational grid that accurately reflects the geometry of the urban 

setup. The LES simulations utilized a non-reflective boundary condition for the 

vertical velocity component at the outflow and a zero-gradient boundary condition for 

the other velocity components. Wall functions were applied to the surfaces of the 

buildings and the ground, with a roughness length of z0 = 10–5 m. This setup was 

critical for ensuring that the simulation accurately represented the flow dynamics 

around urban structures, providing insights into how turbulent eddies interact with the 

built environment. The LES results were validated against wind tunnel data from the 

MUST experiment in Efthimiou et al. [13], demonstrating the capability of LES to 

replicate the complex flow patterns observed in real-world urban settings. Full details 

about the numerical simulation and the wind tunnel experiment can be found in 

Efthimiou et al. [13]. Some details are provided in this work. 

The discretization of the computational domain is presented in detail in Efthimiou 

et al. [13]. It is reminded that nearly 22.5 million cells are used. The selection of the 

grid is performed in order to be computationally manageable and near the work [14]. 

It is reminded that in the MUST experiment, the horizontal dimensions of the field are 

almost equal to 270 m, with a minimum cell size equal to 0.25 m in horizontal and 

vertical directions. The height of the cells near the ground satisfies the minimum grid 

analysis that is suggested by the work [15], i.e., 1/10 of the building height (Figure 1). 

As a result, the domain among the buildings has cubic cells and then continuously 

expands with a factor of 1.1. In the horizontal directions, the dx and dy are kept 

constant (Figure 1) in the field of obstacles covering an area of 172.55 m × 198.13 m. 

Outside the obstacle area, the dx and dy extend by a factor of 1.1. 

  
(a) (b) 

Figure 1. Grid details: (a) near the buildings; (b) among the buildings. 

Table 1 presents the boundary conditions for u, v and w at each plane or solid 

surface of the domain. At the outlet of the flow a non-reflecting type boundary 

condition is used for the vertical velocity component u as well as a zero gradient 

boundary condition for the velocity components v and w. Rough-wall wall functions 
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are used at the surfaces of the buildings and the ground with a roughness length z0 

equal to 1.E-5 m. At the inlet and at the top boundary, a zero value is set for the velocity 

components v and w while the Langevin boundary condition is used for the velocity 

component u. Concerning initial conditions, the vertical profile of the velocity 

component u imposed on the inlet is used throughout the field. 

Table 1. Boundary conditions for the hydrodynamic variables (u, v, w: velocity 

components in the x-, y-, z-axis respectively). 

Plane Boundary condition 

−x Inlet: Langevin-type equation for u, v = w = 0 

+x Outlet: Non-reflecting type boundary condition for u, 
𝜕𝜑

𝜕𝑥
= 0, φ = v, w 

−y Rough-wall wall functions, roughness length = 1.0e-005 m 

+y Rough-wall wall functions, roughness length = 1.0e-005 m 

Ground Rough-wall wall functions, roughness length = 1.0e-005 m 

Top Langevin-type equation for u, v = w = 0 

Building walls Rough-wall wall functions, roughness length = 1.0e-005 m 

The validation of the LES results was a crucial step in ensuring the accuracy and 

reliability of the simulations in replicating real-world wind flow dynamics in urban 

environments. This validation was conducted by comparing the LES results with 

experimental data obtained from the MUST wind tunnel experiment described above. 

Specifically, it is reminded that, in Efthimiou et al. [13], the LES-predicted velocity 

components (u, v, and w) were compared against the measurements collected from a 

dense network of 3568 sensors strategically placed within the wind tunnel setup. The 

validation process utilized the hit rate (HR) metric, a quantitative measure 

recommended by COST Action 732 for assessing model performance. HR provides 

insight into the fraction of predictions that fall within an acceptable range of the 

measured data. The calculations took into account both the relative error and 

experimental uncertainty, ensuring a robust comparison. For the horizontal velocity 

components (u and v), the LES model demonstrated strong performance, achieving 

HR values that exceed the threshold of 0.66, as outlined in COST Action 732 

guidelines. Although the vertical velocity component (w) exhibited lower HR values, 

this is a well-known challenge in urban wind simulations, primarily due to the 

complexity of vertical wind structures and the limitations of grid resolution in such 

environments. 

The LES results showed reasonable agreement with the data, though some 

discrepancies were observed, likely due to the resolution limitations. This agreement 

provides confidence in the overall accuracy of the simulation. However, it is 

acknowledged that a finer grid resolution would likely improve the representation of 

small-scale turbulent structures, further enhancing the accuracy of localized flow 

predictions. Future studies will address this aspect through a detailed grid refinement 

study. 

Although the LES model demonstrated reasonable agreement with the 

experimental data on a large-scale basis, it is important to note that some discrepancies 

may arise due to the grid resolution, particularly in regions with highly localized 
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turbulent structures. Nevertheless, the model captured the overall flow trends 

accurately, which are critical for assessing the wind energy potential in this urban 

configuration. 

5. Results and discussion 

5.1. Performance of the LES model 

The performance of the LES model for each variable u, v and w of the same 

experiment is presented in Efthimiou et al. [13]. In the present study the following 

wind speeds are validated based on the groups of the available measurements: 

Coarse and fine networks: 

𝑈𝑉 = √𝑢2 + 𝑣2 (1) 

uw plane: 

𝑈𝑊 = √𝑢2 + 𝑤2 (2) 

In Figure 2 the quantile plots of the mean wind speeds are presented. The quantile 

plots are used in many scientific fields including turbulence. The results have been 

grouped according to the group of sensors. We observe that most of the points fall 

within the limits of the “1 to 2” and “2 to 1” lines for all the groups of sensors. The 

overall scatter of the values about the 1-to-1 line is almost similar for the coarse and 

fine networks and higher for the uw planes. Also, a total underprediction is obvious 

for all the groups of sensors and is lower for the fine network and higher for the uw 

plane. It should be noticed that the highest discrepancies are observed mainly for the 

lower values and this will be the subject of a separate study in the future by examining 

also their location in the domain, the wall boundary conditions and the history of 

turbulence. 

The validation metrics (VMs) provide a quantitative way of comparing the 

predictions of a model with the measurements. The VMs are very useful for the 

validation of a model, especially in the case of a large amount of data. Various VMs 

are available, and each one has its advantages and disadvantages. In the present study, 

three VMs are used: a) The factor of two of observations within a factor of two (FAC2), 

the fractional bias (FB), and the normalized mean square error (NMSE). Figure 2 

presents the selected VMs for each group of sensors. It is clear that the VMs have 

almost their ideal values, supporting further the robustness of the LES simulation. Also, 

the VMs strengthen the findings of the quantile plots. 
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(a) (b) 

 
(c) 

Figure 2. Quantile plots comparing the mean wind speeds between the wind tunnel and the LES model: (a) Coarse 

network; (b) Fine network; (c) uw plane. The validation metrics are also presented. 

5.2. Maximum correlations 

The statistics of the maximum correlations for each group of sensors and each 

height are presented in Table 2. It should be noticed that the autocorrelations are 

excluded from the analysis.  

To calculate the statistics of maximum correlations, cross-correlation coefficients 

were employed. These coefficients quantify the similarity between two wind speed 

time series as a function of the displacement of one series relative to the other. The 

correlation coefficients in this study are computed based on the normalized cross-

covariance, ensuring values fall within the range of −1 to +1. Negative values indicate 

an inverse relationship, while positive values denote direct correlation. This approach 
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provides a robust framework for analyzing the influence of spatial separation and 

height on wind speed coherence. 

The following conclusions are drawn for the statistics: 

Concerning the coarse network: 

1) There is a clear dependence on the height. The mean, maximum, and minimum 

values are increased with the height. On the other hand, the skewness and kurtosis 

are decreased with the height. 

2) The maximum correlations are decreased as we move towards the urban area. 

This is due to the buildings which cause the breakup of the turbulent eddies. 

3) The skewness is positive indicating that the tail is on the right. 

Concerning the fine network: 

4) The mean, maximum, skewness and kurtosis are close to the results of the coarse 

network at the height of 2.55 m. 

5) Except for the minimum, all the other statistics of the height of 1.725 m of the 

fine network are close to the height of 1.28 m of the coarse network. 

6) There is a clear dependence on the height. The mean, maximum, and minimum 

values are increased with the height. On the other hand, the skewness and kurtosis 

are decreased with the height. These are also conclusions of the coarse network. 

7) The skewness is positive indicating that the tail is on the right. 

8) The maximum correlations are decreased as we move deep inside the canyon. 

This is also the conclusion of the course network. 

Concerning the uw plane: 

9) The mean and kurtosis are close to the results of the coarse and fine networks at 

the height of 2.55 m. 

10) The skewness is positive indicating that the tail is on the right. This is also the 

conclusion of the other networks. 

11) The skewness and kurtosis have the lowest values among the corresponding ones 

of the other networks. 

Table 2. Statistics of maximum correlations for each group of sensors and each height. 

 Coarse network Fine network uw plane 

Height 5.1 2.55 1.28 2.55 1.725 0.9 2.55 

Number of combinations 83232 92720 93330 8556 8556 8556 1482 

Mean 9.75e+04 4.04e+04 1.90e+04 3.93e+04 2.41e+04 1.81e+04 3.56e+04 

Maximum 1.35e+05 8.96e+04 6.99e+04 8.03e+04 7.17e+04 5.99e+04 5.75e+04 

Minimum 6.54e+04 6.31e+03 9.86e+02 1.05e+04 2.19e+03 1.86e+03 1.71e+04 

Skewness 0.41 0.48 0.93 0.56 0.88 1.08 0.18 

Kurtosis 2.66 2.75 3.65 2.69 3.06 3.63 2.48 

5.3. Maximum wind energy 

The statistics of the maximum wind energy for each group of sensors and each 

height are presented in Table 3. 

The statistics of maximum wind energy were calculated by integrating the LES-

generated wind speed profiles with the empirical energy equation. The initial velocity 

profile at the inlet boundary was defined based on a logarithmic wind profile, while 
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the vertical wind speed distribution was extracted from the simulation results. This 

ensures that the derived wind energy values capture the spatial and height-dependent 

variations of wind flow in the urban environment. 

The following conclusions are drawn from the statistics: 

Concerning the course network: 

12) There is again a clear dependence on the height. The mean and minimum values 

are increased with the height. On the other hand, the skewness is decreased with 

the height. 

13) According to the mean value the maximum wind energy is decreased as we move 

towards the urban area. This is due to the buildings, which cause the breakup of 

the turbulent eddies. More specifically, this reduction in wind energy as we move 

deeper into the urban area can be explained by the increased interference from 

buildings, which causes more frequent breakup of turbulent eddies. The complex 

geometry of the urban environment creates areas of lower wind speeds and 

increased turbulence, reducing the overall available energy for capture. 

14) The skewness is positive, indicating that the tail is on the right. 

15) The maximum wind energy presents the highest maximum value on the roof of 

the buildings (2.55 m). 

16) The maximum wind energy presents the lowest kurtosis on the roof of the 

buildings (2.55 m). 

17) The minimum value of the 5.1 m presents a non-zero value in comparison with 

all the other cases. 

18) The skewness and kurtosis present the highest values deep inside the canyon. 

Concerning the fine network: 

19) There is again a clear dependence on the height. The mean value is increased with 

the height. On the other hand, the skewness and kurtosis are decreased with the 

height. These are also partially conclusions of the coarse network. 

20) The skewness is positive, indicating that the tail is on the right. This is also 

conclusion of the coarse network. 

21) The skewness and kurtosis present the highest values deep inside the canyon. 

This is also a conclusion of the coarse network. 

22) The maximum wind energy presents the highest maximum value deep inside the 

canyon. 

The higher energy observed in the fine network is likely due to the increased 

resolution of sensors, which provides a more detailed capture of the wind flow 

dynamics within the urban canyon. The fine network’s denser sensor placement allows 

for more accurate measurements of wind speed fluctuations, particularly in regions 

where turbulence is more pronounced, such as near building edges and narrow 

passageways. 

The discrepancy between the mean values at 2.55 m for the coarse network (76.83) 

and fine network (13.01) can be attributed to differences in sensor density and spatial 

resolution. The coarse network provides an averaged representation of wind flow 

across larger grid cells, which may overestimate wind energy due to smoothing effects. 

In contrast, the fine network captures localized turbulence and flow structures with 

greater detail, leading to a more accurate but lower mean value. This highlights the 

critical role of resolution in urban wind energy analysis. 
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Concerning the uw plane: 

23) The skewness is positive, indicating that the tail is on the right. This is also the 

conclusion of the other networks. 

24) The skewness and kurtosis have the highest values among the corresponding ones 

of the other networks. 

25) The maximum value is close to the corresponding value of the fine network. 

Generally, the increase in maximum wind energy with height can be attributed to 

the reduced impact of urban obstacles at higher elevations. As buildings and structures 

disrupt the wind flow more intensely at lower heights, the energy available for capture 

decreases. At greater heights, the wind experiences less turbulence and fewer 

disruptions, resulting in higher energy potential. 

Table 3. Statistics of maximum wind energy for each group of sensors and each height. 

 Coarse network Fine network uw plane 

Height 5.1 2.55 1.28 2.55 1.725 0.9 2.55 

Mean 104 76.83 37.06 13.01 8.43 7.54 3.75 

Maximum 302 397 287 251 191 405 244 

Minimum 22.28 0 0 0 0 0 0 

Skewness 0.57 0.76 1.41 3.41 3.74 5.17 7.28 

Kurtosis 2.77 2.69 3.93 13.81 16.54 41.72 56.32 

These findings have significant implications for urban wind energy optimization. 

By understanding how wind energy potential varies with height and urban geometry, 

it is possible to identify prime locations for wind turbine placement. The higher energy 

at building rooftops suggests that these locations could be ideal for the installation of 

small wind turbines, whereas areas closer to the ground may experience lower energy 

yields due to increased turbulence and obstructions. 

Figures 3–5 present contour plots of the maximum wind energy for each group 

of sensors and height. The black circles indicate the points with the highest correlation. 

  
(a) (b) 
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(c) 

Figure 3. The maximum energy (E [kJ]) per group of sensors for the coarse network: (a) Height = 5.1 m; (b) Height = 

2.55 m; (c) Height = 1.28 m. The black circles indicate the points with the highest correlation. 

  
(a) (b) 
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(c) 

Figure 4. The maximum energy (E [kJ]) per group of sensors for the fine network: (a) Height = 2.55 m; (b) Height = 

1.725 m; (c) Height = 0.9 m. 

 

Figure 5. The maximum energy (E [kJ]) for the uw plane. 

The figures presented in this paper depict the spatial distribution and variation of 

maximum wind energy potential across different sensor groups and heights within the 

urban canyon. Each figure provides key insights into the complex interactions between 

wind flow and urban geometry, helping to visualize how building structures influence 

the availability and intensity of wind energy. 

Figure 3 shows the maximum energy values for the coarse network across 

different heights. As observed, the highest energy values occur at rooftop levels (2.55 

m), where the influence of building-induced turbulence is minimized, allowing for 

more consistent wind patterns. In contrast, energy levels decrease as we move towards 
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lower heights due to the increased disruption of wind flow by the surrounding 

structures. 

Figure 4 presents the corresponding maximum energy values for the fine 

network. The denser sensor placement in this network reveals a more detailed picture 

of wind energy distribution, particularly highlighting regions of high turbulence near 

building edges. The increased resolution allows for the identification of small-scale 

energy variations that are not apparent in the coarse network. 

Figure 5 focuses on the uw plane, illustrating the wind energy distribution across 

different heights. As with the other networks, the data indicates a clear increase in 

energy potential with height. The positive skewness observed in these figures reflects 

that the majority of energy values are concentrated towards the higher end of the 

spectrum, indicating a few locations with significantly higher energy potential. 

The black circles in Figures 3–5 indicate points of highest wind speed correlation, 

which are not always located in zones of maximum wind energy. This discrepancy 

arises due to the combined effects of spatial geometry and turbulence, where the 

regions of maximum wind energy may not necessarily coincide with the most coherent 

wind patterns. These points were selected based on their potential for stable and 

consistent energy yields over time. 

A question that arises is if there is an equation that describes the difference of the 

maximum wind energy versus the distance of the most correlated points (black circles 

of the previous figures). Figure 6 reveals that there is an equation with a relatively 

high correlation coefficient that relates the difference of the maximum wind energy of 

the most correlated points versus their corresponding distance. The empirical 

relationship illustrated in Figure 6 is of particular interest as it demonstrates how the 

difference in maximum wind energy correlates with the distance between the most 

correlated points. This correlation supports the hypothesis that wind energy potential 

is highly dependent on spatial positioning within the urban environment, with points 

that are further apart exhibiting lower correlation and, consequently, a lower energy 

differential. 

The empirical equation presented in Figure 6 is derived from the analysis of wind 

energy data collected in this study and, to the best of the author’s knowledge, has not 

been previously documented in the literature. This new equation offers a practical tool 

for predicting the difference in maximum wind energy based on the distance between 

the most correlated points, providing valuable insights for urban wind energy planning. 

The empirical equation presented in this study is derived from the analysis of 

wind energy data collected at various sensor locations in the urban canyon. The 

equation describes the relationship between the difference in maximum wind energy 

and the distance between the most correlated points. This relationship was observed 

consistently across the data, indicating that spatial proximity plays a key role in energy 

distribution. Although the equation has been validated within the context of the present 

urban environment, further validation across different urban configurations would be 

valuable for assessing its broader applicability. 

Future research could focus on applying this equation to a variety of urban 

environments to explore its robustness and generalizability. This would provide 

further insights into its practical utility for wind energy optimization in diverse urban 

settings. 
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Figure 6. The difference of the maximum wind energy Δ(Maximum energy) versus 

the distance of the most correlated points. 

Overall, these figures provide critical visual evidence supporting the conclusions 

of this study. They highlight the variability of wind energy across different heights 

and spatial locations, emphasizing the importance of optimizing wind turbine 

placement in urban environments. 

The current grid resolution, while adequate for capturing the broad trends in wind 

energy potential, may affect the detailed representation of turbulent eddies in certain 

localized areas. For instance, grid refinement could lead to improved accuracy in wind 

speed predictions near building surfaces, which might influence the correlation 

patterns observed at lower heights within the urban canyon. However, the overall 

findings of this study, particularly regarding the identification of points with the 

highest wind energy potential, are expected to remain consistent. Further refinement 

of the grid in future studies will provide additional validation of these results. 

5.4. Methodological limitations 

While it is acknowledged that the grid resolution employed in this study 

introduces certain limitations, particularly in capturing small-scale turbulent structures, 

the resolution used is sufficient to capture the primary flow features of interest. The 

chosen resolution balances computational feasibility with accuracy in predicting large-

scale wind flow dynamics, which are the main focus of this study. This approach 

ensures that the key phenomena influencing wind energy potential in urban 

environments are accurately represented. 

Furthermore, the resolution of the computational grid used in this study plays a 

critical role in the accuracy of the simulation results. It is reminded that the 

computational grid used in this study was meticulously designed to balance 

computational manageability with the need for accuracy in simulating urban wind 

flows. The grid encompassed a computational field with dimensions of approximately 
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277.85 m by 303.43 m in the horizontal directions (x and y) and 21.06 m in the vertical 

direction (z). The grid was discretized into approximately 22.5 million cells, with cell 

sizes ranging from a minimum of 0.25 m to a maximum of 5.14 m in the horizontal 

directions and from 0.25 m to 1.84 m in the vertical direction. Given the relatively low 

resolution employed, it is acknowledged that the errors in the present study introduced 

are likely to be significant. These errors primarily arise from the grid’s inability to 

fully capture the intricate details of turbulent flow structures, especially in regions of 

complex geometry such as urban environments. It should be noticed that while the 

overall flow trends are captured, certain localized flow features, particularly near 

building edges and within narrow urban canyons, are less accurately represented. This 

limitation affects the precision of the velocity field and the correlation of wind speeds 

at different points, which could influence the study’s conclusions regarding wind 

energy potential. Future work will focus on refining the grid resolution and exploring 

hybrid simulation techniques to mitigate these errors, ensuring more accurate and 

reliable predictions. Additionally, it is proposed that further studies be conducted using 

higher-resolution models to validate the current findings and to better understand the 

implications of resolution on simulation outcomes. 

It is important to note that, while the LES model performs well for the horizontal 

components, certain discrepancies are observed in the vertical velocity (w). These 

discrepancies can be attributed to the resolution of the computational grid, which may 

not fully capture the intricate turbulent structures present in urban canyons. Despite 

this, the overall performance of the LES remains reliable for the primary flow features, 

and the identified discrepancies do not undermine the core findings of the study. 

Future work may focus on further refining the grid resolution and incorporating 

additional experimental data to address these challenges. 

Despite the acknowledged limitations related to grid resolution, the core findings 

of this study remain robust. The primary focus on identifying points of maximum wind 

energy and analyzing large-scale flow correlations is not significantly affected by the 

unresolved smaller-scale turbulent features. Therefore, the conclusions drawn from 

the analysis are reliable within the scope of this study’s objectives. 

6. Conclusions 

In this study, a comprehensive analysis of wind flow dynamics and energy 

potential was conducted within an urban environment using LES methodologies. The 

simulation of a wind tunnel experiment provided detailed wind speed time series 

across various spatial locations and heights, enabling a thorough investigation into the 

correlation patterns and energy distribution of urban wind flows. 

The findings indicate a pronounced dependence of wind speed correlations on 

height, with higher correlations observed at increased elevations. This trend can be 

attributed to the diminished influence of building-induced turbulence and obstruction 

at greater heights, allowing for more coherent and stable wind patterns. The complex 

interplay between urban structures and atmospheric flow underscores the importance 

of considering vertical variability when assessing wind resource potential in cityscapes. 

Employing the SPOD technique, the maximum wind energy was quantified 

across different points within the urban setting. The results reveal that building 
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rooftops exhibit the highest wind energy potential, highlighting these locations as 

prime candidates for the installation of wind energy harvesting systems. This insight 

is particularly valuable for urban planners and renewable energy developers aiming to 

optimize the integration of wind turbines in densely built environments. 

Furthermore, an empirical equation was developed that relates the maximum 

wind energy to the distance between highly correlated points. This relationship 

demonstrates a significant correlation coefficient, providing a practical tool for 

predicting wind energy potential based on spatial parameters. Such a model can 

facilitate more efficient planning and deployment of wind energy infrastructure by 

allowing for quick assessments of prospective sites based on their spatial 

characteristics and proximity. 

The outcomes of this research contribute to a deeper understanding of urban wind 

dynamics and offer actionable guidance for enhancing renewable energy utilization 

within cities. By identifying optimal locations and quantifying potential energy yields, 

this study supports the advancement of sustainable urban development and the 

diversification of energy sources. 

Future work will focus on conducting a detailed grid refinement study to assess 

its impact on the accuracy of LES predictions in urban environments. Higher-

resolution grids will be employed to better capture the intricate turbulent structures 

and wind flow patterns around buildings. Such refinements will help to further validate 

the correlation and wind energy findings presented here, offering a more robust 

foundation for optimizing wind energy potential in urban settings. 

Also, for future work, it is recommended to extend this analysis by incorporating 

higher-resolution simulations and exploring a wider variety of urban configurations to 

capture an even more detailed spectrum of wind flow behaviors. Additionally, 

integrating real-world observational data could further validate and refine the 

simulation results and empirical models presented herein. Such efforts will continue 

to improve the accuracy and applicability of wind energy assessments in complex 

urban environments, fostering more resilient and sustainable urban energy systems. 

Finally, future work will focus on conducting a detailed grid refinement study to 

assess its impact on the accuracy of LES predictions in urban environments. While the 

current grid resolution is sufficient for capturing the overall trends in wind energy 

potential, higher-resolution grids are expected to further enhance the accuracy of 

localized flow predictions. Such refinements will provide additional validation for the 

findings presented here. 
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