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Abstract: Characterized by unique physical and chemical properties, metal oxide materials 

have garnered significant attention for research and development in energy storage device 

applications. In the current work, we present a simple and low-cost synthesis protocol for 

orthorhombic-phase niobium oxide (T-Nb2O5) electrodes, aimed at supercapacitor applications. 

The as-prepared T-Nb2O5 was characterized utilizing field emission scanning electron 

microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy, confirming the 

formation of orthorhombic-phase T-Nb2O5 nanoparticles. Detailed electrochemical analyses 

were conducted on T-Nb2O5, utilizing 1 M LiOH as the electrolyte. The unique nanoparticle 

architecture of T-Nb2O5 offers abundant electro-active sites and enhances reaction kinetics, 

leading to high specific capacitance. Notably, the T-Nb2O5 electrode achieved a gravimetric 

capacitance of approximately 23 F g−1 at the lowest sweep rate (5 mV s−1). These findings 

highlight the potential of T-Nb2O5 as an effective electroactive material for supercapacitors. 

Keywords: hydrothermal; T-Nb2O5; nanoparticles; specific capacitance; supercapacitors 

1. Introduction 

In the present age, electrochemical energy storage devices are key for tackling 

non-renewable energy source depletion and reducing the impact of global warming. 

Amid these devices, lithium-ion batteries (LiBs) and supercapacitors have attracted 

significant attention due to their widespread industrial and daily applications, owing 

to their high-specific power, rapid charge-discharge rates, and prolonged cyclic 

stability [1–3]. Supercapacitors, comprising electrochemical double-layer capacitors 

(EDLCs) and pseudocapacitors, provide the benefit of rapid energy release via fast 

surface or near-surface electrochemical reactions, including physical 

adsorption/desorption or Faradaic processes [4]. In both EDLCs and pseudo capacitors, 

carbon-based materials, transition metal oxides, and transition metal hydroxides are 

widely used as electroactive materials in academic research and industrial 

applications. Transition metal oxides are considered an aspiring candidate for use 

as electrodes in energy storage devices due to their abundant availability, eco-

friendliness, and ease of accessibility [5]. These materials also possess a variety of 

attractive features, including diverse compositions and morphologies, large surface 

areas, and high theoretical gravimetric specific capacitance. Moreover, transition 

metal oxides are crucial in the electrodes of electrochemical supercapacitors, as they 

significantly enhance capacitance by enabling precise adjustment and control of 

defects and surface/interfaces at the nanoscale [6]. 

Metal oxides, including cobalt oxide, iron oxide, nickel oxide, and manganese 

oxide, serve as advantageous electrodes for supercapacitors due to their unique 

chemical and physical properties, as well as their high specific capacity and 
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capacitance, which substantially surpass those of carbon-based electrodes. Among 

various metal oxides, Nb2O5 exhibits various stoichiometries and crystal structures 

that depend on the synthesis method and has been extensively studied as a high- 

capacity material for energy storage applications [7–11]. In the last few years, T-

Nb2O5 has emerged as a promising anode material for Na+ and Li+ storage due to its 

large interplanar lattice spacing along the (001) plane and its characteristic 

pseudocapacitive behavior [12–19]. However, there are limited reports on the use of 

T-Nb2O5 as an electrode material for supercapacitors. At first, Kong et al. [20] reported 

free- standing T-Nb2O5/graphene composite papers for Li-intercalating 

pseudocapacitive electrodes. The T-Nb2O5/graphene composite paper obtained a 

gravimetric and volumetric capacitance of 620.5 F g−1 and 961.8 F cm−3 at 1 mV s−1. 

Later on, Jiang et al. [21] synthesized T-Nb2O5/N-doped carbon nanosheets for 

use in lithium-ion capacitors. These lithium-ion capacitors, based on T-Nb2O5/N-

doped carbon nanosheets, achieved an energy density of approximately 70.3 Wh kg−1 

and a power density of 16,014 W kg−1. Furthermore, Zhang and their colleagues [22] 

prepared T-Nb2O5 nanoparticles confined within a porous carbon shell for use in a 

Hybrid supercapacitor, achieving a maximum specific capacity of 410 Fg−1 at a 

Current density of 1Ag−1. These electrochemical studies suggest that additional 

research is needed to further study the electrochemical behavior of bare T-Nb2O5 as 

an electroactive material for energy storage systems. 

Therefore, in the current work, we synthesized bare T-Nb2O5 utilizing the 

hydrothermal method and conducted electrochemical evaluations as supercapacitor 

electrodes, using both half-cell and symmetric supercapacitor devices. 

2. Experimental methods 

2.1. Materials 

Niobium(V) chloride [NbCl5], Ethanol [C2H5OH], and Lithium hydroxide [LiOH] 

were purchased from Sigma Aldrich, India. Polyvinylidene fluoride (PVDF) and 

Carbon black were obtained from Sigma Aldrich, India. 

2.2. Growth of T-Nb2O5 nanostructure 

All chemical reagents were directly used as purchased without further 

purification. A highly reproducible hydrothermal method was used to prepare a 

uniform amorphous precursor. In a typical method, 2 mmol of NbCl5 was dissolved 

in 50 mL of ethanol, resulting in a yellow solution, which was stirred for 30 min until 

it became a colorless solution. After adding 20 mL of deionized water and stirring for 

2 h, the opaque sol was transferred to a Teflon autoclave and sealed within a steel 

container. The autoclave was then heated to 200 °C for 12 h and subsequently cooled 

naturally. Once the reaction was complete, the precipitates were extracted from the 

autoclave and washed several times with water and ethanol to remove any residues. 

The collected powder was then dried overnight at 60 °C. Finally, the dried sample 

was annealed at 600 °C for 2 h. 
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2.3. Physical characterization 

X-ray diffraction (XRD) analysis of the as-prepared T-Nb2O5 was conducted 

utilizing an XRD instrument bought from Malvern Panalytical equipped with Cu-

Kα radiation (λ = 1.54184 Å), operating at a high voltage of 30 kV and a current of 30 

mA. The surface morphology of the prepared T-Nb2O5 nanostructure was examined 

utilizing FESEM (JEOL JSM 7900F) at various magnifications. 

2.4. Electrochemical characterization 

The electrode material was prepared utilizing the slurry coating technique. In 

brief, the electroactive material (T-Nb2O5), PVDF and carbon black were mixed in a 

weight ratio of 80:5:15 with N-methyl pyrrolidone (NMP) as the dispersant. The 

mixture was ground for a few hours in an agate mortar to make a uniform slurry. 

The slurry was applied onto a stainless-steel substrate and dried at 55 °C for 8 h. 

The electrochemical characterization of T-Nb2O5 was carried out utilizing a 

three-electrode system in a 1.0 M LiOH electrolyte, where Ag/AgCl was used as the 

reference electrode, platinum foil as the counter electrode, and T-Nb2O5-coated 

stainless steel as the working electrode.  

A T-Nb2O5//T-Nb2O5 symmetric supercapacitor device (SSD) was constructed 

by inserting a polypropylene separator between two stainless steel electrodes coated 

with T-Nb2O5. The electrochemical performance of both the T-Nb2O5 electrode and 

the T-Nb2O5//T-Nb2O5 SSD was evaluated through charge-discharge (CD), cyclic 

voltammetry (CV), and electrochemical impedance spectroscopy (EIS) utilizing an 

electrochemical workstation. The specific capacitance of the T-Nb2O5 electrodes 

was calculated using the following Equations (1) and (2): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 = (𝐼𝑑𝑉)/(𝑠 × 𝛥𝑉 × 𝑚) (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 = (𝐼 × 𝛥𝑡)/(𝛥𝑉 × 𝑚) (2) 

here, “I” is the current (A), “∆V” is the potential window, specific capacitance in 

F g−1, “s” is the scan rate (mV s−1), “∆t” is the discharge time (s), and “m” is the mass 

of the electroactive material coated on the substrate. 

3. Results and discussion 

The T-Nb2O5 was synthesized using a hydrothermal method, followed by post-

annealing. The XRD pattern of T-Nb2O5 is illustrated in Figure 1a, which indicates 

that the crystal structure of pure Nb2O5 aligns closely with the standard peaks for 

T-Nb2O5 (JCPDS No. 30–0873) [23]. The peaks at 22.79°, 28.50°, 36.83°, 42.88°, 

45.31°, 46.47°, 50.06°, 51.04°, 55.43°, 56.57°, 59.02°, 63.93°, 71.26°, and 77.95° 

correspond the (001), (100), (181), (130), (110), (002), (301), (331), (182), (381), (160), 

(161), (382) and (122). To examine the microstructure and morphology of the as-

synthesized sample, scanning electron microscope (SEM) analysis was conducted, as 

presented in Figure 1b and Figure 1c. The SEM micrograph discloses the growth of 

Nb2O5 nanoparticles with an average size of around 30–40 nm. Additionally, EDS 

analysis (as presented in Figure 1d) was performed to confirm the presence of 

niobium and oxygen elements in the sample. The overlay elemental mapping of 
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Nb2O5 nanoparticles, shown in Figure 1e and Figure 1f, demonstrates the uniform 

distribution of niobium and oxygen elements throughout the sample [24]. 

 

Figure 1. (a) XRD pattern of as-prepared T-Nb2O5. FE-SEM micrographs of T-Nb2O5; (b–c) at various 

magnifications (200.0 kx, and 150.0 kx); (d) the EDS spectrum of as-prepared T-Nb2O5. The elemental mapping of T-

Nb2O5; (e) niobium; (f) oxygen element. 

To evaluate the supercapacitive performance of the T-Nb2O5 nanoparticles, 

cyclic voltammetry (CV) tests and galvanostatic charge-discharge (CD) cycling were 

conducted in a three-electrode system. The CV profile of T-Nb2O5 was conducted (as 

presented in Figure 2a) in the potential range of −1.0 to 0.2 V at various scan rates 

of 5 to 100 mV s−1. The CV profile illustrates that it is different from EDLC-based 

material. It can be perceived that strong redox peaks are noticeable in each CV 

profile, signifying that the measured electrochemical performance is mostly founded 

on the redox mechanism or pseudocapacitive behavior of Nb2O5 [25]. The anodic 

and cathodic peaks in the CV profile appear at 0.35 V and 0.50 V, respectively. 
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Figure 2. Electrochemical characterization of T-Nb2O5 electrode in a three-electrode 

system. (a) CV curves of T-Nb2O5 electrode at various scan rates (5–100 mV s
−1); (b) 

CD profile of T-Nb2O5 electrode at various applied currents (1–5 mA); (c) effect of 

scan rates on specific capacitance of T-Nb2O5 electrode; and (d) the Nyquist plot T-

Nb2O5 electrode with inset shows the enlarged view. 

These peaks are attributed to the intercalation and deintercalation of lithium ions 

at the surface of the T-Nb2O5 electrode, indicating its pseudocapacitive behavior. The 

Charge storage mechanism, involving lithium-ion intercalation T-Nb2O5, can be 

represented by the following reaction [26]: 

Nb2 O 5  +  xLi+ +  xe−  ↔  LixNb2 O 5  

The increase in current with corresponding increases in scan rates in the CV 

profiles suggests the capacitive nature of the T-Nb2O5 electrode. Furthermore, the 

CD profile of the T-Nb2O5 electrode at various applied currents (1 to 5 mA) is provided 

in Figure 2b. The CD profiles indicate the distinct plateau regions in the discharge 

curves, which again demonstrate the pseudocapacitive nature of the T-Nb2O5 

electrode [27]. In the CD profile, the intermediate resistance (IR) drop arises primarily 

from the Internal resistance within the active electrode material, along with contact 

resistance at the electrode-electrolyte interface. Notably, the observed IR drop 

gradually decreases as the current is reduced [28,29]. As shown in Figure 2b, the 

measured IR drop for the T-Nb2O5-based electrode at a constant current of 3 mA is 

approximately 0.08 V. The scan rate versus the specific capacitance curve of the T-

Nb2O5 electrode is provided in Figure 2c. It showed that the specific capacitance of 

the T-Nb2O5 electrode is increased from 14 to 23 F g−1 with a decrease in scan rate 

from 100 to 5 mV s−1. The Electrochemical impedance spectroscopy (EIS) 

measurements were conducted for the T-Nb2O5 electrode over a frequency range of 
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0.1 Hz to 100 kHz to investigate its charge transfer behavior, as illustrated in Figure 

2d. The enlarged view of the Nyquist plot reveals an equivalent series resistance 

(ESR) of approximately 0.5 Ω, with no noticeable charge transfer resistance, 

indicating the excellent electrical conductivity of the T-Nb2O5 electrode. 

To further evaluate the electrode composed of T-Nb2O5 nanoparticles, a 

symmetric supercapacitor device (SSD) was fabricated, employing T-Nb2O5 

electrodes as both the positive and negative electrodes. Figure 3a presents the CV 

profile of the T-Nb2O5-based SSD, demonstrating its operation within a potential 

range of 0.0 to 1.0 V. Furthermore, in the CV profile, no noticeable distortion is 

observed as the scan rates increase, indicating the rapid intercalation reaction of the 

T-Nb2O5 electrode. The CD tests for the T-Nb2O5-based SSD, conducted at various 

applied currents, are displayed in Figure 3b. The CD profile of T-Nb2O5-based SSD 

exhibits a quasi-rectangular behaviour, which aligns well with the CV results. 

 

Figure 3. Electrochemical characterization of T-Nb2O5 in an SSD system. (a) CV 

profile of T-Nb2O5-based SSD at various scan rates (5–100 mV s−1); (b) charge-

discharge-profile of T-Nb2O5 based SSD at various applied currents (0.1–1 mA); 

(c) effect of scan rates on specific Capacitance of T-Nb2O5 based SSD; and (d) the 

Nyquist plot T-Nb2O5 based SSD with inset shows the enlarged view. 

Figure 3c illustrates the relationship between specific capacitance and scan rate 

for the T-Nb2O5-based SSD, which achieved a specific capacitance of approximately 

0.76 F g−1 at a scan rate of 5 mV s−1. The cyclic stability test of the fabricated T-

Nb2O5-based SSD over 3000 cycles at an applied constant current of 0.5 mA, as 

illustrated in Figure S1 (in supporting information). The T-Nb2O5-based SSD 

demonstrated a capacitance retention of approximately 84.23%, with a calculated 
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coulombic efficiency of around 91% over continuous 3000 cycles. The Nyquist plot 

for T-Nb2O5-based SSD is represented in Figure 3d. The Nyquist plots for T-Nb2O5-

based SSD displayed three distinguishing regions: (i) low-frequency, (ii) intermediate-

frequency, and (iii) high-frequency. These regions allowed for determining key 

parameters such as the knee frequency, Warburg line, an equivalent series resistance 

(ESR) of the devices [30]. The T-Nb2O5-based SSD obtained a solution resistance 

(Rs) of about 0.7 Ω and charge transfer resistance (Rct) of about 2.3 Ω. The fitted 

Randles circuit of the Nyquist plot is provided in Figure S2 (in supporting 

information). Further, the EIS measurements of the T-Nb2O5-based SSD before and 

after the cyclic stability test, are illustrated in Figure S3 (in Supporting information). 

The Nyquist plots indicate a change in solution resistance (Rs) from 0.7 Ω to 0.9 Ω 

and an increase in charge transfer resistance (Rct) from 2.3 Ω to 3 Ω after the cyclic 

stability test over 3000 cycles. 

4. Conclusions 

In summary, a simple and efficient technique was employed to synthesize 

orthorhombic-phase niobium oxide (T-Nb2O5). 

The synthesized T-Nb2O5 was then characterized utilizing a range of physical 

techniques, including XRD, SEM, and EDS. 

Additionally, the supercapacitive performance of the T-Nb2O5 electrode was 

evaluated using both a half-cell system and a symmetric supercapacitor device. 

The T-Nb2O5 electrode demonstrated a gravimetric capacitance of approximately 

23 F g−1 at a scan rate of 5 mV s−1, along with excellent rate capability. 

These findings highlight the potential of T-Nb2O5 nanoparticles for future 

generation energy storage systems. 

Supplementary materials: The supplementary material includes the cyclic stability 

test, the fitted Randles circuit, and Nyquist plots (both before and after the cyclic 

stability test) for T-Nb2O5-based SSD. 
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