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Abstract: In light of climate change imperatives, there is a critical need for technological 

advancements and research endeavors towards clean energy alternatives to replace 

conventional fossil fuels. Additionally, the development of high-capacity energy storage 

solutions for global transportability becomes paramount. Hydrogen emerges as a promising 

environmentally sustainable energy carrier, devoid of carbon dioxide emissions and possessing 

a high energy density per unit mass. Its versatile applicability spans various sectors, including 

industry, power generation, and transportation. However, the commercialization of hydrogen 

necessitates further technological innovations. Notably, high-pressure compression for 

hydrogen storage presents safety challenges and inherent limitations in storage capacity, 

resulting in about 30%–50% loss of hydrogen production. Consequently, substantial research 

endeavors are underway in the domain of material-based chemical hydrogen storage that causes 

reactions to occur at temperatures below 200 ℃. This approach enables the utilization of 

existing infrastructure, such as fossil fuels and natural gas, while offering comparatively 

elevated hydrogen storage capacities. This study aims to introduce recent investigations 

concerning the synthesis and decomposition mechanisms of chemical hydrogen storage 

materials, including methanol, ammonia, and Liquid Organic Hydrogen Carrier (LOHC).  
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1. Introduction 

Conventional fossil fuels, while meeting global energy demand, generate carbon 
dioxide, a major contributor to global warming, making their limited resources and the 
quest for securing clean energy sources globally imperative [1–8]. Initially, research 
and industrial focus on environmentally friendly energy were primarily directed 
towards power production using renewable sources such as solar and wind energy. 
However, reliance on these sources can lead to unstable power production due to their 
susceptibility to environmental factors [9–18]. Furthermore, the storage of generated 
power is limited to short-term storage (~week) through Energy Storage Systems 
(ESS), necessitating alternative solutions for long-term (~season) and stable power 
supply. In this context, hydrogen has garnered attention as an environmentally friendly 
substance with a closed reaction cycle capable of producing water upon reaction, 
thereby facilitating the regeneration of hydrogen [19–28]. With significant chemical 
energy (142 MJ) and a high energy storage density per unit weight (three times that of 
gasoline), hydrogen serves not only as a fuel but also enables long-term storage 
(~year), making it viable for energy transportation. In view of the transportation sector, 
it is important to achieve sustainable goals by using hydrogen fuel. It also should 
consider the real data, which is collected from hydrogen commercial products, to 
evaluate direct and indirect effects [29]. However, hydrogen possesses a low 
volumetric storage density, posing a significant challenge in safely storing and 
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transporting large quantities, which is crucial for transitioning to a hydrogen-based 
society that efficiently utilizes renewable energy [30–39]. While hydrogen utilization 
technology for fuel, such as fuel cells, has reached a commercially viable stage with 
secured infrastructure, efficient large-scale hydrogen storage technology necessitates 
extensive research and development efforts for commercialization [40–45]. 

Various methods exist for hydrogen storage and transportation. Notably, storing 
gaseous hydrogen at high pressure (350~700 bar) in storage tanks and transporting it 
via tube trailers is a prominent approach, as is liquefying gaseous hydrogen (−253 ℃) 
and storing it in dedicated storage tanks. These methods require specialized 
infrastructure due to the high energy density of hydrogen, and liquefaction, in 
particular, incurs significant energy consumption [46–59]. As alternatives, research is 
underway on physically adsorbing hydrogen onto porous materials such as Metal 
Organic Frameworks (MOFs) and carbon nanotubes for storage and transportation, as 
well as chemically binding hydrogen to metals to enable solid-state storage and 
desorption, as seen in metal hydrides. Furthermore, compounds formed by combining 
hydrogen with carbon, nitrogen, or boron atoms, such as methanol, ammonia, and 
Liquid Organic Hydrogen Carriers (LOHCs), offer a chemical hydrogen storage 
system with high storage density and ease of storage compared to molecular hydrogen 
storage. Figure 1 illustrates these various chemical hydrogen carriers [60–81]. 
Utilizing such liquid compound-based hydrogen facilitates easy application due to its 
compatibility with existing fossil fuel or natural gas infrastructure, thus saving 
additional infrastructure construction costs and enhancing its commercial viability. 
The dehydrogenation reactions required to get hydrogen from chemical hydrogen 
carriers commonly employ catalysts such as Fe, Ni, Pt, and Ru to promote exothermic 
reactions. Therefore, the development of catalysts enabling higher hydrogen 
production rates and efficiency at lower temperatures, along with high-purity 
hydrogen extraction, is imperative [82–96]. The hydrogen produced requires 
refinement, with coupling to existing commercial hydrogen production methods such 
as Steam Methane Reforming (SMR) with separation and purification facilities 
allowing for cost savings in hydrogen production by separating carbon monoxide and 
carbon dioxide [97–111]. 

 
Figure 1. Considered intercontinental transport options for hydrogen as a renewable 
energy carrier [81].  



Energy Storage and Conversion 2024, 2(2), 1136.  

 

3  

This study aims to provide a comprehensive overview of the synthesis methods 
and technological advancements for the efficient extraction of hydrogen from 
commercially researched and viable chemical hydrogen carriers such as methanol, 
ammonia, and LOHCs. It includes the various catalyst studies with hydrogen 
conversion rates. Additionally, it seeks to offer an economic analysis of these chemical 
hydrogen carriers, comparing them to shed light on factors to consider during the 
transition from fossil fuels to hydrogen applications. By doing so, it will contribute to 
elucidating the future direction of the chemical industry, which previously held a 
dominant position in petrochemistry, considering elements such as chemical hydrogen 
carriers. 

2. Chemical hydrogen carriers 

2.1. Methanol 

Methanol, a versatile raw material widely used in various industries such as 
hydrogen fuel (road, maritime, etc.), industrial fuel (boilers, etc.), and as a feedstock 
in the petrochemical industry (plastics, etc.), forms a large-scale market, producing 
approximately 65 million tons globally [21,23–24]. Methanol, being the simplest 
compound producible from natural gas and renewable energy sources, exhibits a high 
hydrogen storage density of 12 wt%. Utilizing methanol as hydrogen storage offers 
several advantages: 1) Methanol reforming can be conducted at much lower 
temperatures (150–450 ℃) compared to natural gas reforming; 2) It can leverage the 
infrastructure of fossil fuels such as gasoline, diesel, and kerosene for various 
applications (transportation, fuel, power generation, etc.); and 3) It is relatively stable 
as a liquid and easy to store under normal environmental conditions [25–27]. 
Researchers are actively exploring the utilization of methanol as a fuel synthesized 
from biomass and carbon-containing sources, including carbon dioxide, with the aim 
of enhancing its economic viability. Figure 2 shows the carbon cycle utilization of 
methanol [30,39,83–84]. The synthesis reactions of methanol are presented in Table 
1 [26]. 

 
Figure 2. Anthropogenic carbon cycle within the Methanol Economy [25]. 
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Table 1. Processes and Conditions for hydrogen production from Methanol [26]. 

Process T(K) Reaction Advantage/Disadvantage 

MSR 
(Methanol steam 
reforming) 

423-623 CH3OH + H2O ↔ CO2 + 3H2 Low Temperature 
High Methanol conversion 
Low CO content 
/Steam preheating 
Water waste management 

MD 
(Methanol 
decomposition) 

373-723 CH3OH ↔ CO + 2H2 /High CO content 

POM 
(Partial oxidation) 

300-723 CH3OH + 0.5O2 ↔ CO + 2H2 Reduction of heating cost 
/High CO content 

ATRM 
(Autothermal 
reforming) 

473-823 CH3OH + rO2 + (1-2r)H2O ↔ (3-
2r)CO2 + 2H2 

Hydrogen-rich gas 
Reduction of heating cost 
/Need catalyst 

Methanol can be synthesized by the reaction of carbon dioxide and hydrogen 
through endothermic reactions in Methanol Steam Reforming (MSR) processes to 
produce hydrogen. Among the introduced processes, MSR has the longest history and 
operates at relatively low temperatures (200–350 ℃) without producing carbon 
monoxide. When carbon monoxide is present, it reacts with hydrogen to synthesize 
methanol, which is primarily employed in large-scale methanol production. Methanol 
Partial Oxidation (POM) methods, widely used in hydrogen production, offer the 
advantage of fast reaction rates and exothermic processes, enabling cost savings 
through heat application. However, POM entails complex oxidation, steam reforming, 
and decomposition reactions and tends to produce relatively impure hydrogen due to 
its high carbon monoxide content. A hybrid process combining MSR and POM, 
known as Autothermal Reforming (ATR), utilizes the heat generated in the exothermic 
POM reaction to drive the MSR reaction, simplifying the process. ATR offers 
advantages such as low energy requirements and rapid gas generation compared to 
other processes but needs optimized catalysts for obtaining appropriate products [84–
91]. Catalysts used in the reforming reaction of methanol should possess excellent 
catalytic activity and stability to ensure large-scale hydrogen production and high 
conversion rates. Additionally, considering the generation of carbon monoxide during 
reforming, which can affect the purity of hydrogen, it is necessary to inhibit its 
formation by having high selectivity. Up to now, catalysts primarily based on Cu, Ni, 
and Pd have been utilized in methanol reforming reactions, and various research 
efforts are underway to enhance these catalyst properties. For instance, although 
Cu/ZnO/Al2O3, commonly used in commercial methanol synthesis, exhibits high 
activity, its stability decreases at high temperatures, leading to natural ignition, 
sintering, and deactivation. Consequently, various studies have been conducted to 
improve stability [94,95,104]. Cu-based catalysts typically involve a reaction between 
oxygen and hydrogen at two adsorption sites, as shown in Figure 3 [89]. 
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Figure 3. Catalysis cycle for MSR over Cu-based catalysts including two different 
kinds of reactive sites SA (adsorption and desorption of oxygenates) and SB 
(adsorption and desorption of hydrogen) [89]. 

Cu-based catalysts, commonly supported on materials such as Cu/ZnO or 
Cu/TiO2 using Al-based supports, undergo research involving the addition of elements 
to improve methanol conversion rates and stability. Additives such as Mg and Ni 
enhance catalyst particle nanostructuring, dispersion, and activity. Notably, the 
addition of optimized Mg to Cu/ZnO/Al-5Mg catalysts has shown a reduction in 
particle size from 7.8 nm to 3.5 nm and an improvement in methanol conversion rates 
from 56% to 68% [96–98].  

Similarly, Ni-based catalysts, predominantly supported on Al-based supports, 
exhibit enhanced catalytic performance with various additives. Using Ti oxide-based 
materials instead of Al-based supports in Ni catalysts revealed superior properties such 
as excellent oxidation-reduction characteristics, high concentrations of chemisorbed 
oxygen, and a hierarchical porous structure. Through simulations of methanol steam 
reforming reactions on Ti oxide-based catalysts using the Vienna Ab initio Simulation 
Package (VASP), NiTiO3 catalysts were found to enhance the adsorption energy and 
activation of methanol molecules on the Ni-Ti-Ox catalyst surface (Figure 4), 
exhibiting methanol conversion rates (873 K) and H2 selectivity of 99.9%. This 
demonstrates superior catalytic characteristics compared to Ni-Al2O3 catalysts mixed 
with Al-based materials, which exhibit methanol conversion rates of 77% and H2 
selectivity of 91.2% [97,99–102]. 

 
Figure 4. Scanning of particle size in the follow research: (a) Field emission 
scanning electron microscopy (FESEM) image; (b) Transmission electron 
microscopy (TEM) image; (c) Typical Dislocation free zone in fine particle [96–98]. 
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Recent research in methanol reactions has witnessed active investigations into 
Pd-based catalysts, comparing the methanol reactions of Pd and PdZn catalysts using 
various supports. Comparisons of methanol production with Pd/TiO2 and Pd/Al2O3 
catalysts with and without Zn inclusion at constant pressure (20 bar) in the temperature 
range of 175~250 ℃ revealed increased methanol production and decreased methane 
selectivity when Zn was incorporated into the catalysts. This demonstrates the superior 
stability of PdZn alloys compared to other bimetallic alloys. Pd/Ga2O3 catalysts, 
regardless of the presence of Zn, exhibited high methanol selectivity when using 
Ga2O3 as a support material [95]. Methanol production using various Pd-based 
catalysts can be compared in Figure 5, and the various characteristics of catalysts used 
in methanol reactions are summarized in Table 2. 

 
Figure 5. Reaction mechanism diagram of Ni–Ti–Ox catalyst [93]. 

Table 2. Comparison of catalytic performance of Methanol production [30–32,96–102]. 

Catalyst T(K) Electrochemical surface area (m2/g) Cycle(hour) H2 selectivity (%) Conversion (%) 

NiPd-C 298 14.5 2 N/A N/A 

NiPd-MSN 298 19.53 2 N/A N/A 

Pd-NiOx-P/C 298 5.76 3 N/A N/A 

Pd/C 298 2.56 3 N/A N/A 

Pd-NiOx/C 298 4 3 N/A N/A 

Pd/ZrO2-TiO2 523 N/A 5 66 22 

MoC 573 N/A 12 N/A 30 

Cu/ZnO/Al2O3 523 N/A 1 82.3 98.8 

Ni/Al2O3 773 N/A N/A 91.2 77 

Ni-Cu/Al2O3 773 N/A 24 99.1 86.3 

10La-10Ni/Al2O2 300 N/A 3 68 99 

Cu-Ni/TiO2 573 N/A 10 92.7 92.6 

Cu/TiO2 573 N/A 10 90 90.2 

Pt/TiO2 573 N/A 10 94 95.5 

Ru/TiO2 573 N/A 10 97.8 98.9 

Furthermore, the cost of methanol production is heavily dependent not only on 
catalysts but also on the costs of hydrogen and carbon dioxide. Economic analysis 
conducted on the utilization of methanol produced from renewable sources (clean 
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methanol) as an energy carrier indicates that to ensure methanol production within the 
current market price range, hydrogen costs must be below 2.5 €/kg within ten years. 
Therefore, improvements in catalyst performance should be accompanied by 
reductions in raw material costs. The cost analysis of methanol is shown in Figure 6 
[81].  

 
Figure 6. Methanol productivity as a function of CO2 hydrogenation reaction 
temperature over Pd and PdZn supported catalyst [95]. 

2.2. Ammonia 

Ammonia is one of the oldest and most widely produced compounds in the world, 
with sufficient infrastructure established for its production, transportation, and 
distribution. Currently, over 85% of the ammonia production in most plants (more 
than 200 million tons annually) is used as fertilizer, with the remainder primarily 
utilized in the chemical and processing industries. Ammonia (NH3) is a stable binary 
hydride and the simplest hydride of nitrogen. From the perspective of hydrogen 
production, ammonia serves as an excellent hydrogen carrier, demonstrating a 
hydrogen storage capacity of 17.7 wt% at 20 ℃ and existing in a liquid state at around 
−30 ℃, making it easy to store and transport. Consequently, there is active 
development of storage compounds and fuel cell technologies utilizing ammonia 
[103–122]. 

However, due to the substantial emission of carbon dioxide during the synthesis 
process and its inherent toxicity, technological development to address these issues is 
essential to utilizing ammonia as an environmentally friendly hydrogen energy carrier. 
The comparison of hydrogen storage capacities using ammonia is shown in Figure 7 
[104]. 

Currently, most of the ammonia is produced using the Haber-Bosch process, 
which utilizes catalysts based on Fe catalysts at high- temperatures (above 673 K) 
under high pressure (20–40 MPa). The synthesis and decomposition mechanisms of 
ammonia are shown in Figure 8 [107]. 
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Figure 7. Hydrogen and methanol production and distribution costs for the four 
investigated origin/destination combinations [81]. 

 
Figure 8. Mass and volume of 10 kg hydrogen stored reversibly by 8 different methods, based on the best obtained 
reversible densities without considering the space or weight of the container [104]. 

Ammonia synthesis is an exothermic reaction between nitrogen and hydrogen, 
requiring high temperatures and pressures to break the chemical bonds within nitrogen 
molecules. Due to the significant emission of carbon dioxide and the need to reduce 
energy consumption caused by the high temperatures and pressures required for 
ammonia synthesis, the development of new production processes is essential for 
using ammonia as an environmentally friendly hydrogen energy carrier. Research is 
actively underway to utilize catalysts to lower reaction temperatures and increase 
reaction rates to reduce energy consumption. Various ammonia synthesis processes 
are summarized in Table 3 [106–109]. 

Table 3. Processes and Condition of Ammonia reaction based hydrogen Production [106–109]. 

Process Condition Reaction Advantage/Disadvantage 

Haber-Bosch method 573–773 K 
200–350 atm 

N2 + 3H2 ↔ 2NH High conversion rate/High CO2 content 
High temperature and pressure 

Photocatalysis method 300–500 K 
1 atm 

N2 + 3H2O ↔ 2NH3 + 1.5O2 Low temperature and pressure/Need catalyst technology 

Electrocatalysis 
method 

773 K 
1 atm 

1) 3H2 ↔ 6H+ + 6e− 

2) N2 + 6H+ + 6e− ↔ 2N2 H 
3) N2 + 3H2 ↔ 2NH3 

Low energy consumption/Low efficiency 
Low production rate of ammonia 
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Ammonia catalysts typically use carbon-based supports and employ a variety of 
materials such as Pt, Rh, Co, Cs, Fe, and Ru as catalysts. Researches have been 
conducted on various carbon-supported catalysts, including carbon nanotubes, 
graphene, and carbonaceous materials doped with boron or nitrogen. Studies have 
shown that when using supported catalysts, a uniform dispersion of catalytic particles 
can be achieved, leading to improved catalyst activity and durability. Indeed, when 
boron-doped carbon materials were used as catalysts for synthesizing ammonia, a 
decrease in activation energy was observed, as depicted in Figure 9 [108]. 

 
Figure 9. The life-cycle of hydrogen stored as ammonia in metal ammines, 
M(NH3)yX2 [107]. 

Research on nanostructuring previously used Fe-based catalysts has 
demonstrated improvements in efficiency and long-term stability during operation. 
Moreover, introducing Cs into Fe catalysts has been shown to increase the rate of 
ammonia production, as depicted in Figure 10 [110]. 

 
Figure 10. Free-energy diagrams of Boron-doped carbon samples for 
electrochemical Nirogen Reduction Reaction (NRR) [108]. 

In addition to carbon-based supports, research on catalysts using various supports 
is also underway. One such study aimed to enhance stability using a catalyst supported 
on MgO for Cs/Ru alloy, comparing the catalytic activity over 680 h of operation. It 
was observed that while the catalyst exhibited consistent activity at an initial 
temperature of 325 ℃ for 150 h, the activity decreased at higher temperatures, 
maintaining only 42% of its initial activity after 680 h. Therefore, the development of 
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long-term active catalysts for ammonia production as energy carriers is crucial. 
Structural changes in the catalyst over time are shown in Figure 11 [111]. 

 
Figure 11. Structural changes in the catalyst over time for the ammonia synthesis 
reaction. (A) Pressure effect at 400 ℃; (B) Temperature effect at 1 MPa; (C) 
Specific at 400 ℃ and 3 MPa; (D) Time dependence of the catalytic activities for 
stability testing in the range of 400–520 ℃ and 3–7 MPa [110]. 

Research has also been conducted on Ni-based catalysts, such as Ni2Mg3Al2-HT, 
which demonstrated the highest NH3 conversion rate and H2 productivity at 500 ℃. 
The ammonia conversion rate is shown in Figure 12. The structural characteristics of 
the catalyst significantly influence its activity, with parameters such as particle size, 
dispersion, crystalline structure, surface area, acidity, and thermal stability playing 
important roles. Optimization of structural characteristics enhances catalyst activity; 
for example, smaller particle size, higher dispersion, and acidity lead to increased 
catalytic activity, while higher thermal stability extends catalyst lifespan [112]. 

 
Figure 12. HAADF-STEM images with elemental mapping for Mg, Ru, and Cs: (a) 
as-synthesized catalyst; (b) after a time on stream of 680 h [111]. 
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Research focusing on the durability of catalysts has proposed the use of pellet-
shaped catalysts instead of powdered forms. By synthesizing highly durable Ru/La-
Al2O3 pellet catalysts and designing catalyst reactors accordingly, a high catalyst 
activity and stability of 83.6% for reforming efficiency were achieved (Figure 13). It 
was confirmed that there was almost no CO2 emission during the reaction process, 
introducing an environmentally friendly ammonia synthesis process [113]. 

 
Figure 13. The influence of the reaction temperature on NH3 conversion over 
NixMgyAl2-HT catalysts [112].  

Such reactors are capable of reforming processes for systems ranging from 10 
kW to 10 MW for ammonia, showing significant potential for reducing CO2 emissions. 
Ultimately, an investigation and analysis of the technical and economic feasibility of 
ammonia reforming for hydrogen production have been reported, showing the 
possibility of obtaining hydrogen at relatively similar prices to conventional 
production pathways (fossil fuels), as shown in Figure 14 [112]. Various catalysts for 
ammonia synthesis are summarized in Table 4 [114–123]. 

 
Figure 14. (a) NH3 reformer efficiency over NH3 flowrate using iso-butane and a 
product mixed gas of the system (H2: 75%, N2: 25%) as heat sources; (b) H2 
production flow and power generation (fuel cell equivalent) of the operated system 
continuously over 2 h [113]. 
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Table 4. Comparison of catalytic performance of reported Ammonia catalysts [114–123]. 

Catalyst T(K) Electrochemical Surface Area (m2/g) Cycle(hour) Conversion (%) H2 production rate(ml/min) 

PtCO 473–573 74.48 30 N/A N/A 

Pt/C 823–973 74.7 30 N/A N/A 

Ir/C 353 85 24 N/A N/A 

Rh/C 353 67 24 N/A N/A 

Pt-NiO/C 298 7.2 500 N/A N/A 

NiMg4Al2-HT 773 N/A 5 20.7 16.6 

Ni2Mg3Al2-HT 773 N/A 5 29.6 23.8 

Ni0.6Mg0.3Al0.6On 773 N/A 5 42 14.1 

Ru-Cs/MIL 673 N/A 10 98 25 

Co/CNT 723 N/A 2 30 0.02 

Cs2O/Ru/Pr6O11 623 N/A 75 45 10 

Cs-Ru/graphene 723 N/A 4 85.8 N/A 

Fe/CNT 873 N/A 4 51.3 N/A 

CoFe5/CNT 873 N/A 17 24 36 

Ru/CNT 573 N/A 2 95.69 50 

2.3. Liquid organic hydrogen carrier 

In recent research and development fields, there has been attention drawn to the 
technology of synthesizing and storing hydrogen in the form of liquid organic 
molecules due to its relatively low cost and compatibility with existing fuel 
transportation infrastructure. Among various liquid compound-based hydrogen 
storage technologies, liquid organic compounds containing C-C double bonds have 
been extensively researched for their ability to store and transport large amounts of 
hydrogen at ambient pressure. These liquid organic compound-based hydrogen 
carriers are referred to as Liquid Organic Hydrogen Carriers (LOHC) [124]. LOHCs 
have several advantages: 1) They possess a high hydrogen storage capacity of 
approximately 7 wt%; 2) hydrogenation/dehydrogenation reactions occur reversibly 
under certain conditions; and 3) they are similar to gasoline and can utilize existing 
fossil fuel storage and transportation infrastructure without significant initial 
investment costs [123–127]. LOHCs allow for the repeated binding and release of 
hydrogen through chemical reactions without performance degradation. Therefore, 
optimization studies for LOHC-based hydrogen storage and transportation systems are 
actively conducted worldwide, and demonstration projects are underway to integrate 
LOHC systems with existing hydrogen infrastructure. However, continuous research 
and development efforts are needed due to the relatively low hydrogen density and 
availability compared to other hydrogen storage compounds (such as methanol and 
ammonia) [124,128–135]. Various LOHCs based on substances including benzene 
and toluene have been researched, and their characteristics are summarized in Table 
5 [126]. 
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Table 5. Typical examples of potential LOHCs and their physicochemical properties [136]. 

LOHC System 
H2 Capacity Enthalpy  Melting Point (K) Boiling Point (K) Flash Point (K) 

(wt.%) (kJ/mol) H2-Rich H2-Lean H2-Rich H2-Lean H2-Rich H2-Lean 

Methylcyclohexane → Toluene 

 

6.2 68.3 147 178 378 384 270 279 

Decalin → Naphthalene 

 

7.3 63.9 236 352 462 491 330 353 

Perhydro-dibenzyl toluene → dibenzyl 
toluene Perhydro-benzyl  

 

6.2 65.4 N/A 239 N/A 671 N/A 463 

toluene → benzyl toluene 

 

6.2 63.5 N/A 243 443 553 N/A N/A 

Dodecahydro-N-ethyl carbazole → N-ethyl 
carbazole 

 

5.8 50.6 188 343 N/A 439 N/A 459 

1-methylperhydro indole → 1-methy indole  

 

5.8 51.9 N/A 368 453 511 333 383 

2-methylperhydro indole → 2-methy indole  

 

5.8 N/A N/A 333 451 545 331 414 

1,2-perhydrodimethyl indole → 1,2 dimethyl 
indole 

5.23 N/A <258 328 >533.5 533.5 >503 >503 

Perhydro-phenazine → phenazine  

 

7.2 N/A N/A 447-450 N/A 630.2 N/A 433.3 

Perhydro-2-(n-methylbenzyl pyridine) → 2-
( n-methylbenzyl pyridine) 

 

6.15 67.3 253.7 222.9 566 564 N/A N/A 

Various catalysts are being researched to enhance the hydrogen density of 
LOHCs and facilitate hydrogen adsorption-desorption reversible reactions. Metal-
based catalysts such as Pt, Ru, Pd, and Ni are primarily used, and typically, inorganic 
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oxides such as Ti and Si are used as supports. Studies using Pt catalysts supported by 
γ-Al2O3 and TiO2 have been conducted, revealing that γ-Al2O3 enhances the dispersion 
of highly nanosized Pt catalyst particles. Additionally, sulfurization improves 
hydrogen desorption reactions, with desorption rates of 97% and 87% reported for γ-
Al2O3 and TiO2 as support materials, respectively. Because the addition of sulfur 
seems to enhance the catalyst activity, leading to an extension of the fast 
dehydrogenation period. The structure and hydrogen desorption of these materials are 
shown in Figures 15 and 16 [137]. 

 
Figure 15. (a) The scale-up effect on minimum hydrogen selling price (MHSP). The 
error bars represent the average values of sensitivity parameter. Sensitivity analysis 
for 10 kW to 10 MW systems for parameters; (b) ammonia bulk price; and (c) 
reformer efficiency variation around a given data point [113]. 

 
Figure 16. Reversible Dehydrogenation and Hydrogenation Scheme of the Perhydro 
Dibenzyltoluene/Dibenzyltoluene LOHC System [137]. 

Research on Pd catalysts supported by Al2O3 supports, specifically on Pd/a-Al2O3, 
investigated the coking of the catalyst due to hydrogen adsorption-desorption reactions 
with Methylcyclohexane (MCH)-based LOHCs. Under varying Ar flow conditions, 
two sizes of catalysts (6 nm and 15 nm) were compared, showing that smaller Pd nano-
particles (6 nm) decomposed after generating the Pd6C phase and carbon deposition 
due to carbon separation, while larger Pd nano-particles (15 nm in diameter) coexisted 
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with two Pd carbide phases, Pd6C and PdxC, upon exposure to MCH, followed by 
carbonaceous precipitation and carbide decomposition (Figure 17). Consequently, it 
indicates that catalysts may exist in various carbide forms with different carbon 
contents under LOHC dehydrogenation conditions, and structural changes in catalyst 
nanoparticles are highly reversible. Other types and characteristics of LOHCs and 
catalysts are summarized in Table 6 [124,131–132,135–136,138–146]. 

 
Figure 17. Hydrogen productivities normalized to metal dispersion (left column of 
each catalyst) in comparison to total Pt amount (right column of each catalyst) of the 
four catalysts [137]. 

Table 6. Comparison of catalytic performance of reported LOHC catalysts [124,131–132,135–136,138–146]. 

LOHCs T (K) Capacity (wt%) Enthalpy (kJ/molH2) Conversion (%) Catalysts Yield (%) 

N-ethylcarbazole 543 5.8 50.6 90 

Ru 
Ru/TiO2 

Ni 
Pd/SiO2-TiO(OH)2 

85 
95 
86.2 
98.72 

MCH-Toluene 593 6.2 68.3 95 
Pd-Pt/SiO2 
Pd/SiO2 
Pt 

91.4 
85.4 
90.8 

Naphthalene 553 7.3 63.9 99 
Pt 
Pd 

97.6 
73.15 

Dibenzyl toluene 583 6.2 65.4 97 
Ni/AlSiO 
Pt/Al2O3 

85 
92 

Benzene 453–593 5 686 N/A 
Pd-Pt/ SiO2 
Pd/SiO2 

90.8 
84.1 

Additionally, a comparative analysis of the technology and economic prospects 
of hydrogenation systems using high-density storage technologies and liquid organic 
hydrogen carriers (primarily ammonia or methanol) for large-scale hydrogen storage 
was conducted. Through analysis of the main system components of each technology, 
it was found that the cost of conventional liquid hydrogen storage is more than twice 
that of gaseous storage methods and more than four times that of storage methods 
using LOHCs. Although ammonia and methanol are considered suitable for large-
scale hydrogen transportation as they can utilize existing fossil fuel infrastructure, they 
have the drawback of consuming energy and capital for synthesis and decomposition 
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compared to LOHCs. The comparison of energy consumption and equipment costs for 
storage is shown in Figure 18 [134]. 

 
Figure 18. Schematic representation of the structural changes in the model 
Pd/Al2O3(0001) catalysts as a function of the flow rate of the reactant, size of 
supported Pd nanoparticles, and time of the catalyst on stream at 500 K [133]. 

LOHCs appear to be an economically producible technology for large-scale fixed 
hydrogen storage, but they must overcome the challenge of lower hydrogen storage 
density compared to other hydrogen carriers in Figure 19. The hydrogen storage 
densities of each material are compared in Figure 20. There is an urgent need for high-
efficiency catalyst development, enhancement of durability for reversible reactions, 
and the development of synthesis processes from small to large-scale production for 
LOHCs. 

 
Figure 19. Hydrogen storage technologies and their energy densities [134]. 
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Figure 20. Estimation of power and capital cost for NH3, CH3OH, and LOHC 
hydrogenation plants [134]. 

3. Conclusions 

The global shift from conventional fossil fuels to hydrogen as a clean energy 
alternative is gaining momentum, driven by growing environmental awareness and the 
imperative to reduce greenhouse gas emissions. However, the widespread adoption of 
hydrogen as a primary energy source faces significant challenges, particularly in the 
realm of storage and transportation infrastructure. Despite substantial research efforts 
directed towards developing viable storage solutions, such as porous carbon-based 
materials, metal-organic frameworks (MOFs), zeolites, and chemical hydrogen 
carriers, the scalability and efficiency of these options remain limited due to factors 
like low hydrogen capacity, high costs, and the lack of appropriate infrastructure. 

As we strive to harness hydrogen’s potential as a clean energy carrier, it becomes 
increasingly evident that technological innovation is essential to overcome these 
obstacles. Key considerations for hydrogen storage materials include their ability to 
maintain a liquid state during hydrogenation and dehydrogenation processes, operate 
at temperatures below 200 ℃ to minimize energy consumption, and ensure safety and 
environmental sustainability throughout their lifecycle. Chemical hydrogen carriers 
present a particularly promising avenue, offering lower energy losses, compatibility 
with existing infrastructure, and simpler handling compared to conventional storage 
methods. However, realizing their full potential hinges on advancing various 
technologies, including production, separation, catalyst development, and recovery, as 
well as refining dehydrogenation processes. 

In essence, achieving a sustainable hydrogen economy requires a multifaceted 
approach that extends beyond mere technological advancements. It necessitates 
strategic collaborations between governments, industries, and research institutions to 
drive innovation, streamline regulatory frameworks, and invest in critical 
infrastructure. By continuously pushing the boundaries of scientific knowledge and 
engineering expertise, we can optimize catalysts and reaction systems, enabling the 
reversible, stable, and economically viable utilization of chemical hydrogen carriers 
for storage and transportation purposes. This holistic approach not only addresses the 
energy-intensive compression or liquefaction processes but also minimizes hydrogen 
loss, paving the way for a cleaner, greener future powered by hydrogen. 
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