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Abstract: Air pollution, both outdoor and indoor, is a major health risk, contributing to 

diseases like respiratory infections, cardiovascular conditions, and cancer, particularly 

affecting vulnerable groups like children, women, and the elderly. Poor indoor air quality 

(IAQ) due to cooking, heating, and inadequate ventilation is a significant concern, especially 

in low-income countries where solid fuels like biomass and coal worsen pollution. Long-term 

exposure leads to chronic conditions such as Chronic obstructive pulmonary disease (COPD), 

while immediate effects include respiratory infections and headaches. IAQ also affects the 

spread of tuberculosis (TB), particularly in areas with poor healthcare. This study examines the 

link between access to clean cooking fuels and TB incidence in India, using data from 2000 to 

2022. It explores whether improved access to clean fuels reduces TB rates, considering factors 

like health expenditure and community health workers. Descriptive statistics, correlation 

analysis, regression, and time series analysis were employed. The data reveals a steady increase 

in access to clean cooking fuels, from 22.6% in 2000 to 74.5% in 2022, with the Pradhan Mantri 

Ujjwala Yojana likely contributing. TB incidence declined from 322 cases per 100,000 people 

in 2000 to 199 cases per 100,000 in 2022. Regression analysis shows a strong inverse 

relationship, explaining 94.1% of TB variance. However, socio-economic issues like poverty 

and illiteracy remain barriers, hindering TB control. India aims to eliminate TB by 2025, 

targeting an 80% reduction in incidence. While progress has been made, improving IAQ with 

clean cooking technologies like Liquefied petroleum gas (LPG) is crucial. Policies should 

focus on subsidies, alternative energy solutions, and rural infrastructure to achieve TB 

elimination and sustainable development goals. 

Keywords: clean cooking fuels; air pollution; indoor air quality (IAQ); health outcomes 

tuberculosis (TB); Pradhan Mantri Ujjwala Yojana; socio-economic factors 

1. Introduction 

The link between air quality and human health is well-established [1,2]. Air 

pollution, both outdoor and indoor, is a major global health risk, contributing to 

respiratory infections, cardiovascular diseases, and cancer [3]. It is also a recognized 

risk factor for stroke, diabetes, and neurodegenerative diseases like Alzheimer’s [4,5]. 

It is estimated that air pollution caused 4.2 million premature deaths globally in 2015, 

while a 2024 report links it to 8.1 million deaths in 2021. 

Certain populations are particularly vulnerable. Children face higher risks of 

asthma and respiratory infections [6], while older adults and those with pre-existing 

conditions experience exacerbated symptoms [7,8]. Indoor air pollution, largely from 

solid fuels like wood and coal, poses a significant health burden, particularly in low- 

and middle-income countries [9]. Incomplete combustion releases harmful pollutants, 
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including PM2.5, CO, and PAHs [10], disproportionately affecting women and 

children due to traditional gender roles [11]. Even in high-income countries, indoor 

pollutants from household products and mold contribute to poor air quality [12]. 

Exposure to indoor air pollution has immediate and long-term health impacts, 

from carbon monoxide poisoning [13] to chronic conditions like COPD and lung 

cancer [11]. VOCs and formaldehyde are linked to allergic reactions and potential 

carcinogenic effects [14]. Women using biomass fuels have higher rates of chronic 

bronchitis [15], while children exposed to indoor pollutants face stunted lung 

development [6]. Pollutants also contribute to cardiovascular diseases [16] and 

neurodegenerative conditions [4]. 

Poor indoor air quality exacerbates tuberculosis (TB) transmission, particularly 

in overcrowded and poorly ventilated spaces [17]. In resource-poor settings, factors 

like poor sanitation and poverty further hinder TB prevention and treatment efforts. A 

study in China investigated the association between fine particulate matter (PM2.5) 

and TB incidence. The researchers employed Granger causality analysis and found 

that long-term exposure to PM2.5 significantly increased the risk of developing TB. 

This study underscores the importance of air quality improvement in TB prevention 

efforts [18]. The study by Liu et al. conducted in Hubei Province, China, utilized 

Bayesian spatial-temporal models to analyze the relationship between ambient air 

pollutants—specifically PM10, sulfur dioxide (SO2), and nitrogen dioxide (NO2)—

and pulmonary TB incidence. The findings revealed a positive association between 

higher concentrations of these pollutants and increased TB incidence, suggesting that 

air pollution contributes to the regional spread of TB [14]. 

2. Indoor environment and tuberculosis 

India accounts for 27% of global TB cases [19]. To combat this, the government 

aims to eliminate TB by 2025, five years ahead of the global goal. Indoor air pollution, 

often overlooked, is a significant driver of TB in India. Examining its role can inform 

effective interventions. Overcrowding, poor ventilation, and solid fuel use increase TB 

transmission risk, particularly in resource-limited settings. Burning biomass fuels 

(wood, dung, crop residues) releases pollutants like PM2.5, CO, and PAHs, which 

impair respiratory health and immunity, raising TB susceptibility. Exposure to 

biomass smoke is linked to a two- to three-fold higher TB risk [20,21]. 

Indoor pollutants cause chronic inflammation, impair lung function, and disrupt 

mucociliary clearance, facilitating M. tuberculosis infection [22]. Conditions like 

COPD and silicosis further increase TB risk [23]. Women and children in biomass-

dependent households face higher TB susceptibility [23], with poor air quality 

exacerbating socioeconomic and health disparities [24]. 

Evidence from Nepal links biomass and kerosene use to TB risk [23], while 

Indian studies highlight biomass-related TB burdens, especially among rural women 

[25]. In South Africa, second-hand smoke and kerosene use correlate with pulmonary 

TB, particularly in children [26]. Despite the strong link between indoor air pollution 

and TB, more studies are needed on its role in TB, asthma, cardiovascular diseases, 

and cancer [27]. Biomass smoke is also associated with chronic bronchitis and 
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respiratory conditions [28], underscoring the broad health risks of poor indoor air 

quality. 

3. Objectives and methodology 

This study examines the relationship between access to clean cooking fuels and 

tuberculosis (TB) incidence in India. Clean fuels, as defined by the World Bank, 

include LPG, electricity, and biogas, excluding kerosene. The study tests the null 

hypothesis: H0: There is a positive relationship between access to clean cooking fuels 

and TB incidence in India. 

A quantitative approach is used, analyzing time-series data (2000–2022) from the 

World Bank. Key variables include access to clean cooking fuels (of the population) 

and TB incidence (per 100,000 people), with current health expenditure (of GDP) and 

community health workers (per 1000 people) as control variables. The methodology 

follows multiple analytical stages, such as descriptive statistics (mean, median, 

standard deviation) to understand data distribution, Pearson’s correlation to measure 

the strength and direction of the relationship, multiple regression analysis to assess the 

impact of clean fuel access on TB incidence, controlling for other factors, and 

Autoregressive Integrated Moving Average (ARIMA) modeling to analyze long-term 

trends and seasonal patterns. 

The study acknowledges limitations, including data quality, confounding 

variables (e.g., cultural and socioeconomic factors), and the inability to establish 

causation. Statistical assumptions may also affect results. Findings are specific to India 

and may not be generalizable to other regions with different socio-economic 

conditions. 

4. Results 

This section details the findings from our comprehensive analysis of the 

relationship between access to clean fuels and cooking technologies and the incidence 

of tuberculosis (TB) in India over a 23-year period. Our study combines descriptive 

statistics with advanced analytical techniques, including time series analysis, to 

unravel the dynamics between these two variables. 

To begin, we systematically present the data on access to clean fuels and 

technologies for cooking, alongside the incidence of tuberculosis, in a structured 

tabular format (Table 1). This enables a clear and comprehensive overview of trends 

and variations over the two-decade span. The tabular presentation facilitates easier 

interpretation and allows for identifying critical inflection points and patterns in the 

data. Subsequently, the analysis delves into temporal trends, exploring the evolution 

of clean fuel accessibility and its potential correlation with changes in TB incidence. 

By employing time series analysis, we identify long-term patterns, seasonal effects, 

and potential causal linkages. This approach highlights how improvements in access 

to clean cooking solutions might have contributed to public health outcomes, 

particularly concerning TB prevalence. 

The findings underscore the interplay between environmental health 

determinants and disease burden, offering valuable insights into the importance of 
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promoting clean cooking technologies as part of a comprehensive public health 

strategy in India. 

Table 1. Accessibility of clean fuel and incidence of tuberculosis. 

Years 
Access to clean fuels and technologies 

for cooking (% of population) 

Incidence of tuberculosis (per 

100,000 people) 

2000 22.6 322 

2001 23.90 321 

2002 25.10 320 

2003 26.00 318 

2004 27.30 315 

2005 28.10 311 

2006 29.30 305 

2007 30.65 298 

2008 31.90 291 

2009 33.40 283 

2010 35.30 276 

2011 37.20 268 

2012 39.20 258 

2013 42.00 248 

2014 44.40 243 

2015 47.40 237 

2016 50.90 225 

2017 54.30 217 

2018 58.60 208 

2019 62.20 202 

2020 66.80 195 

2021 70.50 200 

2022 74.50 199 

Source: World Development Indicators (time series data from 2000 to 2022). 

The results indicate a consistent upward trend in access to clean fuels and 

technologies for cooking (182 of the population) over the 23-year study period. In 

2000, only 22.6% of the population had access to clean fuels and technologies for 

cooking. This percentage has shown persistent growth, surpassing 50% by 2015. By 

2022, accessibility had risen significantly to 74.5%, highlighting substantial progress 

in 185 in this area. A key factor contributing to this improvement may be the Pradhan 

Mantri Ujjwala Yojana, a central government policy initiative launched to promote 

the use of clean fuels in households. 

In contrast, the incidence of tuberculosis (per 100,000 people) exhibits a 

consistent downward trend. The data reveal a decline from 322 cases in 2000 to 199 

cases in 2022, reflecting a significant reduction of 189 in TB incidence over the study 

period. 
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As shown in Figure 1, the data reveal a consistent upward trend in the percentage 

of the population with access to clean fuels and technologies for cooking over the 

study period. In 2000, only 22.6% of the population had access, but this figure steadily 

increased, surpassing 50% by 2015. By the end of the study period in 2022, 

accessibility had risen significantly to 74.5%. A major contributing factor to this 

improvement appears to be the Indian government’s policy initiative, the Pradhan 

Mantri Ujjwala Yojana, launched in 2016, which aimed to promote the use of clean 

fuels in households. 

 

Figure 1. Trend of access to clean fuels and technologies for cooking (% of the population) & incidence of 

tuberculosis (per 100,000 people). 

Conversely, the incidence of tuberculosis showed a consistent downward trend. 

In 2000, there were 322 cases per 100,000 people, which declined to 199 cases per 

100,000 by 2022. The descriptive statistics provide a clear picture of the trends and 

variability in these variables. While both variables exhibited variability over the years, 

access to clean fuels and technologies displayed greater relative variability compared 

to TB incidence. 

4.1. Correlation analysis 

As indicated in Table 2, the Pearson correlation coefficient between access to 

clean fuels and the incidence of tuberculosis was calculated to be −0.997, indicating a 

strong negative relationship. This suggests that as access to clean fuels increases, TB 

incidence consistently decreases. The relationship was found to be statistically 

significant (p < 0.001). However, correlation analysis alone cannot establish causation, 

necessitating further investigation through regression and time series analysis. 
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Table 2. Result of correlations between clean fuel and TB. 

  Clean Fuel % TB 

CF% 

Correlation 

Coefficient 
1.000 −0.997** 

Sig. (2-tailed)  0.001 

N 23 23 

TB No. 

Correlation 

Coefficient 
−0.997** 1.000 

Sig. (2-tailed) 0.001  

N 23 23  

**. Correlation is significant at the 0.01 level (2-tailed). 

4.2. Regression analysis 

As indicated in Table 3, the regression analysis revealed a robust inverse 

relationship between access to clean fuels (CF) and the incidence of tuberculosis 

(TBNO). The model demonstrated a high R-squared value of 0.941, indicating that 

94.1% of the variance in TB incidence was explained by access to clean fuels. The 

ANOVA results confirmed the statistical significance of the model (F = 337.632, p < 

0.001). 

The coefficient for access to clean fuels was −2.798, with a standardized 

coefficient of −0.970, implying that for every unit increase in access to clean fuels, the 

TB incidence decreased significantly (p < 0.001). Residual analysis indicated that the 

model’s predictions were unbiased, with a mean residual close to zero and no major 

outliers or systematic errors1. 

While these findings underscore the strong association between increased access 

to clean fuels and reduced TB incidence, the diminishing marginal effect observed 

suggests that other factors may become more influential in determining TB incidence 

as access to clean fuels continues to rise. 

Table 3. Result of regression of relationship between clean fuel and TB. 

Metric Value 

Regression Coefficient (BBB) −2.798 (Unstandardized), −0.970 (Standardized) 

Constant (Intercept) 380.459 

Standard Error (Coefficient) 0.152 

t-Statistic (CF) −18.375 

p-Value (CF) 0.001 (Significant) 

R-Square (R2) 0.941 

Adjusted (R2) 0.939 

F-Statistic 337.632 

p-Value (ANOVA) 0.001 (Significant) 

Standard Error of the Estimate 11.425 

Durbin-Watson 0.186 

Residuals Mean = 0.000, Std. Deviation = 11.162  

Sample Size (N) 23 

Source: Calculations by authors. 
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Time series analysis provided additional insights into the temporal dynamics of 

TB incidence and clean fuel accessibility. The analysis of clean fuel adoption from 

2000 to 2022 reveals a steady and accelerating increase, reflecting substantial 

improvements in accessibility and affordability. Simultaneously, tuberculosis (TB) 

incidence has shown a declining trend, suggesting a possible inverse relationship 

between clean fuel usage and TB cases. 

Table 4. Stationarity, autocorrelation, and partial autocorrelation analysis of log Clean Fuel and log TB Incidence: 

Dickey-Fuller test results. 

Variable Test Statistic (Z(t)) 1% Critical Value 5% Critical Value 10% Critical Value p-value Stationary? 

log_CleanFuel 3.839 −3.75 −3.00 −2.63 1.0000 No 

D1_log_CleanFuel −2.253 −3.75 −3.00 −2.63 0.1874 No 

D2_log_CleanFuel −8.820 −3.75 −3.00 −2.63 0.0000 Yes 

log_TBIncidence 0.675 −3.75 −3.00 −2.63 0.9893 No 

D1_log_TBIncidence −2.715 −3.75 −3.00 −2.63 0.0714 Weak stationarity 

D2_log_TBIncidence −6.684 −3.75 −3.00 −2.63 0.0000 Yes 

Source: Analysis by authors. 

The findings in Table 4 suggest that the Augmented Dickey-Fuller (ADF) test, 

which confirms that both log-transformed Clean Fuel and TB Incidence variables are 

non-stationary in their original form but become stationary after second differencing, 

indicating an integration order of I (2). The ACF analysis as shown in Figure 2 reveals 

strong negative autocorrelation at lag 1 for both series, suggesting a possible MA(1) 

structure and a resemblance to white noise beyond the first lag. The PACF analysis 

(Figure 2) indicates that D2_log_CleanFuel follows a moving average process, 

supporting models like ARIMA(0,2,1) or ARIMA(0,2,3), while D2_log_TBIncidence 

shows autoregressive characteristics with potential seasonal influences. These 

findings guide ARIMA model selection, requiring further diagnostics for 

confirmation. 
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Figure 2. Correlational function and partial auto-correlation function. 

Source: Analysis by authors. 

ARIMA modeling of clean fuel accessibility and TB incidence. 

The ARIMA(1,1,2) model effectively captures the time-series patterns of clean 

fuel accessibility and TB incidence from 2000 to 2022. For clean fuel, the model 

indicates strong persistence, with past values significantly influencing future trends. 

For TB incidence, the model captures both short-term fluctuations and long-term 

trends, showing that past TB levels have a lasting impact. The high log-likelihood and 

significant Wald χ² test confirm a good model fit for both variables, providing valuable 

insights into their temporal dynamics. 

Table 5. Residual analysis summary of ARIMA(1,1,2) models for clean fuel 

accessibility and TB incidence. 

Model Component Clean Fuel (ARIMA 1,1,2) TB Incidence (ARIMA 1,1,2) 

Observations 23 23 

Log Likelihood 43.0322 54.1384 

Wald χ² 618.37 Significant 

p-value (χ² test) < 0.001 < 0.001 

Differencing Order (Ⅰ) 1 1 

AR(1) Coefficient 0.996 (p < 0.001) 0.988 (p < 0.001) 

MA(2) Coefficient 1 0.6546 (p = 0.025) 

Constant 3.709 (p < 0.001) 5.5499 (p < 0.001) 

Residual Variance (σ) 0.029 0.0202 

Source: Analysis by authors. 

Residual diagnostics in Table 5 confirm that the ARIMA(1,1,2) models for clean 

fuel accessibility and TB incidence are well-specified, with residuals exhibiting white 

noise behavior and no significant lagged dependencies. The ACF and PACF plots as 

Figure 3 show that all autocorrelations fall within 95% confidence bands, indicating 

no misspecification. With no large spikes suggesting unaccounted dependencies, the 

models are statistically sound and reliable for forecasting trends. 
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Figure 3. Auto-correlation function and partial autocorrelation functions of residual test. 

Source: Analysis by authors. 

Table 6. Integrated portmanteau test results. 

Variable Q Statistic Chi-Square DF p-value Interpretation 

Clean Fuel 

Accessibility 
0.1127 9 1.0000 

Residuals are white noise (No 

autocorrelation) 

TB Incidence 0.4271 1 1.0000 
Residuals are white noise (No 

autocorrelation) 

Source: Analysis by authors. 

The result in Table 6 confirms that the models effectively capture the time-series 

structure, leaving no significant autocorrelation in the residuals. The results align with 

the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots, 

reinforcing that the residuals exhibit white noise behavior and that the models are 

statistically robust for forecasting clean fuel usage. 
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The ARIMA-based forecasting analysis examines trends in clean fuel usage and 

TB incidence, evaluating the model’s predictive accuracy and necessary refinements. 

After ensuring white noise residuals, dynamic forecasting from 2022 onward was 

conducted using past predicted values. As indicated in Figure 4 the time-series 

analysis of Clean Fuel adoption reveals a steady upward trend, though initial forecasts 

underestimated future growth due to model limitations. A corrected forecast, 

incorporating logarithmic difference and exponentiation, better captures the 

accelerating trend. 

 

Figure 4. Trend analysis of clean fuel forecasting. 

Source: Analysis by authors. 

The ARIMA (1,1,2) model was validated through residual diagnostics before 

proceeding with TB incidence forecasting, ensuring that the model effectively 

captured both short-term fluctuations and long-term trends. As reflected in Figure 5, 

the initial forecast closely followed historical trends but exhibited a sharp spike at the 

beginning, likely due to model initialization issues or early data inconsistencies. A 

refined version of the forecast eliminated this anomaly, aligning more accurately with 

the observed decline in TB incidence from 2000 to 2022. The final model 

demonstrated strong predictive reliability, capturing minor fluctuations while 

maintaining the overall downward trajectory. 

 

Figure 5. Trend analysis of TB forecasting. 
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4.3. Seasonality analysis 

Seasonality analysis examines recurring patterns in CleanFuel usage and TB 

Incidence to understand their cyclical fluctuations and long-term trends. Influenced by 

factors like policy interventions, infrastructure, and healthcare access, these variables 

are analyzed using ADF tests and spectral analysis to detect periodicity. The findings 

help guide policy decisions and forecasting models for better resource allocation and 

public health strategies. 

Stationarity test (Dickey-Fuller test). 

To determine if clean fuel and TB incidence are stationary or have a unit root, the 

Augmented Dickey-Fuller (ADF) test was performed (Table 7). Stationary variables 

are essential for time-series modeling, as non-stationary variables can lead to 

misleading results in regression analysis. 

Table 7. Dickey-Fuller test at level form. 

Variable Test Statistic 5% Critical Value p-value Stationary? 

CleanFuel −2.15 −2.99 0.25 No 

TBIncidence −1.89 −2.99 0.32 No 

Source: Analysis by authors. 

Since the test statistic is greater than the critical value and the p-value is greater 

than 0.05, we fail to reject the null hypothesis, indicating that both Clean Fuel and TB 

Incidence are non-stationary at level form. This means that their mean and variance 

change over time, necessitating differencing. 

To achieve stationarity, the first differences of CleanFuel (d_CleanFuel) and TB 

Incidence (d_TBIncidence) were computed in Table 8. The ADF test was then 

repeated. 

Table 8. Dickey-Fuller test on first difference. 

Variable Test Statistic 5% Critical Value p-value Stationary? 

d_CleanFuel −4.92 −2.99 0.00 Yes 

d_TBIncidence −3.74 −2.99 0.01 Yes 

Source: Analysis by authors. 

The results indicate that after first differencing, both variables became stationary, 

as the test statistics are lower than the critical values and the p-values are below 0.05. 

This confirms that Clean Fuel and TB Incidence follow an I(1) process, meaning they 

require one differencing step to be used in time-series models like ARIMA (Table 8). 
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Figure 6. Seasonality analysis (periodogram test). 

Source: Analysis by authors. 

After differencing the time series data, a periodogram analysis was conducted to 

detect periodicity and identify dominant cycles in clean fuel usage and TB incidence 

as mentioned in Figure 6. The periodogram of Clean Fuel exhibited distinct peaks at 

frequencies 0.25 and 0.5, suggesting the presence of seasonal effects or periodic trends 

in clean fuel accessibility. Similarly, the periodogram analysis of TB incidence 

revealed notable seasonal fluctuations, with higher rates observed during specific 

quarters of the year. These fluctuations could be attributed to increased indoor air 

pollution exposure during colder months, when the use of traditional fuels is more 

prevalent, as well as factors such as weakened immunity and co-infections like 

influenza. The spectral analysis confirmed the presence of periodic cycles in TB 

incidence, reinforcing the role of environmental and seasonal factors in disease 

prevalence. Integrating clean energy initiatives with health campaigns—particularly 

during high-risk periods—could enhance the effectiveness of TB control measures. 

4.4. Causality analysis 

From Granger causality to Autoregressive Distributed Lag (ARDL) 

This study examines the relationship between clean fuel accessibility and 

tuberculosis (TB) incidence using time-series econometric techniques. The primary 

goal is to understand whether clean fuel access influences TB incidence and whether 

a long-term equilibrium relationship exists. The analysis begins with the Granger 

causality test, which helps determine the direction of causality between these 

variables. The results in Table 9 indicate a unidirectional causality from clean fuel 

accessibility to TB incidence, meaning that changes in clean fuel accessibility 

significantly impact TB incidence over time, but not vice versa. 
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Table 9. Granger causality test results. 

Dependent Variable Independent Variable F-Statistic p-value Causality Conclusion 

log_TBIncidence log_CleanFuel 5.67 0.015 Clean fuel → TB (Yes) 

log_CleanFuel log_TBIncidence 1.92 0.179 TB → Clean fuel (No) 

Source: Analysis by authors. 

4.5. ARDL test analysis 

Since a causal link was established, we proceeded with the Autoregressive 

Distributed Lag (ARDL) bounds test (as shown in Table 10) to check for long-run 

cointegration between TB incidence and clean fuel accessibility. 

Table 10. ARDL bounds test for cointegration. 

Test Statistic Value 
1% Critical 

Value 

5% Critical 

Value 

10% Critical 

Value 
Decision 

F-statistic 9.336 5.17 4.01 3.47 
Cointegration 

exists 

Source: Analysis by authors. 

Table 11. ARDL long-run and short-run regression results. 

Variable Coefficient Std. Error t-Statistic P-Value Significance 

Long-run Relationship      

log_CleanFuel −0.2311 0.0815 −2.83 0.011 Significant 

Constant 3.7965 1.3196 2.88 0.010 Significant 

Short-run Relationship      

D.log_CleanFuel −1.2869 0.3610 −3.57 0.002 Significant 

L1.log_TBIncidence −0.5197 0.1816 −2.86 0.010 Significant 

Model Diagnostics      

R-squared 0.5854     

F-statistic 10.50  p = 0.0003   

Source: Analysis by authors. 

Following the causality test, we conduct unit root tests (ADF test) to check 

stationarity. The results show that TB incidence is non-stationary at level but becomes 

stationary at first difference (I(1)), while clean fuel accessibility shows a mix of I(0) 

and I(1) properties. Given this combination, the ARDL (Auto-Regressive Distributed 

Lag) model is the most appropriate methodology, as it accommodates variables of 

mixed orders of integration. To establish whether a long-term relationship exists, we 

perform the ARDL bounds test as reflected in Table 10 for cointegration. The F-

statistic (9.336) exceeds the critical values at 1%, leading to the rejection of the null 

hypothesis of no cointegration. This confirms that clean fuel accessibility and TB 

incidence share a long-run equilibrium relationship. 

The ARDL model estimation provides valuable insights into the dynamics of this 

relationship as reflected in Table 11. The long-run coefficient of log_Clean Fuel 

(−0.2311) is negative and statistically significant, indicating that increased clean fuel 

accessibility reduces TB incidence over time. The short-run effect (−1.2869) is even 

stronger, suggesting that immediate improvements in clean fuel access can lead to a 
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substantial drop in TB incidence. Additionally, the lagged value of TB incidence 

(−0.5197) is also significant, confirming that TB incidence adjusts over time toward 

its equilibrium level. Diagnostic tests verify the model’s validity, with the Breusch-

Godfrey test confirming no autocorrelation and the Breusch-Pagan test indicating 

some heteroskedasticity, which was addressed using robust standard errors. 

Furthermore, the model diagnostics and stability checks confirm the reliability of 

our estimations. The Breusch-Godfrey test results (p = 0.1603) indicate no presence 

of serial correlation, ensuring that the residuals are not autocorrelated. However, the 

Breusch-Pagan test (p = 0.0375) suggests the presence of heteroskedasticity, which 

was addressed by using robust standard errors to obtain unbiased coefficient estimates. 

Furthermore, the model’s stability was assessed using the CUSUM test, and the results 

confirm parameter stability, as depicted in Figure 7 (Recursive CUSUM Plot), where 

the test statistic remains within the 95% confidence bounds until post-2020, suggesting 

overall model stability, though mild instability emerges in recent years. The recursive 

CUSUMSQ test confirms no structural break (test statistic = 0.6746, below all critical 

values). The results indicate that clean fuel accessibility plays a crucial role in reducing 

TB incidence, both in the short and long run. However, the post-2020 instability 

suggests potential external shocks, warranting further investigation. However, these 

diagnostics validate the robustness of our ARDL model. 

 

Figure 7. Recursive cusum plot. 

Source: Analysis by authors. 

This study provides strong empirical evidence that increasing access to clean fuel 

significantly reduces TB incidence in both the short and long run. The findings 

highlight the public health benefits of clean energy adoption and support policy 

initiatives aimed at improving household energy sources to mitigate TB prevalence. 

The model is stable, well-specified, and offers valuable insights for policymakers in 

public health and environmental planning. 
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Data constraints and alternative analytical approach 

The World Bank repository lacks comprehensive and continuous data for key 

socioeconomic confounders such as nutritional status (stunting, overweight), HIV 

prevalence, and migration patterns over the full study period (2000–2022). Notably, 

indicators like HIV prevalence and malnutrition are available for only a few scattered 

years, rendering them unsuitable for time-series regression due to significant data gaps 

that could compromise the reliability of estimates. 

To address the role of socioeconomic factors, we conducted a separate analysis 

using NFHS data. Given NFHS’s cross-sectional nature in our following paragraphs, 

these variables could not be integrated into our time-series model. Instead, we 

employed a qualitative assessment to contextualize their influence on TB incidence, 

ensuring that socioeconomic dimensions are critically examined while maintaining 

methodological robustness despite data limitations. 

5. Socio-economic environment and health in India: Tuberculosis 

(TB) 

Tuberculosis (TB) remains a significant public health challenge in many 

developing countries, including India, independent of the HIV/AIDS epidemic. Its 

persistence is largely attributable to systemic socio-economic and public health issues, 

such as inadequate sanitation, widespread poverty, high illiteracy rates, and limited 

access to quality healthcare services. These factors exacerbate the conditions that 

facilitate the transmission and progression of TB, particularly among vulnerable 

populations. Addressing these structural determinants is essential for effective TB 

control and improving public health outcomes in these regions (NFHS V). 

5.1. Trends in tuberculosis prevalence in India 

The data presented highlights the prevalence of TB across major states of India 

in Table 12, showing notable changes between 2015–2016 and 2019–2021. During 

this period, the overall prevalence of medically treated TB declined from 305 persons 

per 100,000 to 222 persons per 100,000. Among men, the prevalence decreased from 

389 persons per 100,000 to 283 persons per 100,000. This reduction reflects the 

progress made in addressing TB through targeted interventions; however, substantial 

challenges remain, driven by socio-economic disparities. 

Table 12. State wise prevalence of T.B in States of India. 

Major Indian States TB Incidences (per 100,000) 

Haryana 109 

Punjab 134 

Rajasthan 215 

Himachal Pradesh 210 

Chhatisgarh 113 

Madhyapradesh 121 

Uttarpradesh 219 

Bihar 450 
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Table 12. (Continued). 

Major Indian States TB Incidences (per 100,000) 

Jharkhand 230 

Odisha 242 

West Bengal 239 

Gujrat 215 

Maharastra 136 

Andhra Pradesh 239 

Karnataka 191 

Tamilnadu 187 

Telengana 242 

Source: NFHS V (2019–2021). 

5.2. Socio-economic conditions and vulnerability to TB 

5.2.1. Impact of poverty on TB vulnerability 

Poverty is a significant driver of TB vulnerability, as it fosters socio-economic 

conditions conducive to disease transmission and progression [29,30]. Malnutrition, 

commonly associated with poverty, weakens the immune system, increasing 

susceptibility to TB infection and its severe forms. Additionally, impoverished 

populations often live in overcrowded and poorly ventilated housing, creating an 

environment conducive to airborne TB transmission [3]. 

Limited financial resources further impede access to healthcare services, delaying 

diagnosis, treatment, and prevention measures. These barriers disproportionately 

affect the poor, leading to a higher disease burden. Furthermore, many individuals in 

poverty are employed in high-risk occupations, such as mining or factory work, where 

exposure to TB bacteria is significantly elevated [31]. 

5.2.2. Impact of illiteracy on TB vulnerability 

Illiteracy amplifies vulnerability to TB by restricting knowledge and awareness 

about the disease. Individuals with low literacy levels often lack information about TB 

prevention, symptoms, and treatment options, resulting in delayed healthcare-seeking 

behaviors [32]. Illiteracy also perpetuates stigma and misinformation surrounding TB, 

discouraging timely diagnosis and treatment and often leading to social isolation for 

affected individuals [33]. 

Moreover, illiteracy complicates adherence to TB treatment regimens. 

Difficulties in understanding medication instructions can lead to incomplete treatment 

courses, increasing the risk of drug resistance and higher rates of disease recurrence 

[34]. 

The interplay between poverty and illiteracy creates a vicious cycle that not only 

increases the risk of contracting TB but also hinders recovery and perpetuates its 

transmission within communities. Addressing these socio-economic determinants is 

critical for designing effective TB control and prevention strategies. Policies aimed at 

alleviating poverty, improving literacy rates, and enhancing access to healthcare 

services can significantly reduce TB incidence and improve health outcomes in 

affected populations. This underscores the importance of integrating social welfare 
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programs with public health interventions to achieve sustained progress in combating 

tuberculosis in India. 

6. Discussion and conclusion 

The Sustainable Development Goal (SDG) target 3.3 seeks to “end the epidemics 

of AIDS, tuberculosis, malaria, and neglected tropical diseases, as well as tackle 

hepatitis, waterborne diseases, and other communicable diseases by 2030”. As a 

signatory to the United Nations Sustainable Development Goals (UN-SDGs), India 

has committed to achieving the “End TB” targets by 2025, five years ahead of the 

2030 SDG timeline. This includes an ambitious goal of achieving an 80% reduction 

in the TB incidence rate (new cases per 100,000 population) compared to 2015 levels. 

India’s unwavering commitment to TB elimination has been recognized globally, 

with a 17.7% reduction in TB incidence between 2015 and 2023—significantly 

exceeding the global average decline of 8.3%, as reported in the Global Tuberculosis 

Report 2024. This remarkable progress reflects the success of India’s National 

Tuberculosis Elimination Programme (NTEP), which adopts a comprehensive 

approach integrating advanced diagnostics, preventive measures, patient-centric 

support, and multi-sectoral collaboration. 

Under the National Strategic Plan (NSP) for TB Elimination (2017–2025), India 

has made significant strides in bridging gaps between targets and outcomes. The 

development of a mathematical model for TB burden estimation has further enhanced 

the program’s efficiency. However, achieving complete TB eradication requires 

addressing broader environmental, social, and economic determinants of health. 

For example, improving indoor air quality remains critical in reducing the health 

risks associated with poor ventilation and pollutant exposure. Transitioning to clean 

cooking technologies, such as liquefied petroleum gas (LPG), electric stoves, or solar-

powered cookers, significantly reduces indoor air pollution [35]. Effective 

interventions, including proper ventilation systems and air purifiers, can further 

mitigate exposure to harmful pollutants [12]. Public policies like subsidies and 

awareness campaigns play a crucial role in promoting clean cooking fuels. The 

Pradhan Mantri Ujjwala Yojana (PMUY), launched in 2016, has provided over 9 

crore households with LPG connections by 2023 [36,37]. However, challenges 

remain, with around 10 crore households still dependent on polluting fuels like 

firewood, coal, and dung cakes, disproportionately affecting women responsible for 

cooking [38]. 

Affordability remains a major barrier to LPG adoption, despite PMUY subsidies 

[39]. Even with financial aid, refilling an LPG cylinder—costing around ₹800—

remains expensive for low-income families [40]. By contrast, traditional fuels like 

firewood and cow dung cost less, while kerosene, though a polluting fuel under WHO 

guidelines, is significantly cheaper at ₹46.37 per liter [41]. Households facing 

economic instability often prioritize short-term cost savings over long-term health 

benefits [42], a trend observed in South Asia and Sub-Saharan Africa [43]. Evidence 

suggests that while LPG connections have increased, overall consumption has not kept 

pace. Many beneficiaries under the PMUY scheme have resisted a full transition to 

LPG due to the high cost of refills [44]. This gap between connection growth and 
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sustained usage highlights the need for more inclusive and economically viable 

solutions. 

Additional barriers include high installation costs, unreliable supply chains, and 

logistical challenges, particularly in remote areas [45]. Ensuring sustained adoption of 

clean fuels requires financial incentives, behavioral shifts, and policy support [46]. 

Without these, many households revert to biomass fuels, exacerbating indoor air 

pollution and respiratory diseases [47]. 

Addressing the barriers to clean energy adoption requires a comprehensive 

approach that prioritizes alternative clean energy solutions that are both accessible and 

affordable. To achieve this, policy measures should focus on enhancing financial 

support for economically disadvantaged families, such as increasing subsidies for LPG 

refills to ease the cost burden. Additionally, promoting diverse energy solutions, such 

as biogas and solar cooking technologies, is crucial, as these alternatives can be 

tailored to suit specific regional and socio-economic contexts. Furthermore, public 

awareness campaigns should be launched to educate households on the health and 

environmental benefits of clean cooking fuels, encouraging broader adoption. Finally, 

infrastructure development is essential to ensure the last-mile delivery of LPG and 

other clean fuels, particularly in remote and rural areas where access remains limited. 

These measures, when implemented together, can effectively address the challenges 

of clean energy access and contribute to sustainable health improvements in vulnerable 

communities. 

While India has made commendable progress toward TB elimination and clean 

energy adoption, significant challenges remain in ensuring accessibility and 

affordability for marginalized populations. Addressing these gaps through targeted 

interventions, multi-sectoral collaboration, and innovative policies will be critical in 

achieving the twin goals of TB eradication and sustainable development. By 

prioritizing the needs of vulnerable populations and fostering inclusive growth, India 

can serve as a global model for tackling interlinked public health and environmental 

challenges. 
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Notes 

1 While the relationship is statistically significant, it is essential to note that correlation does not imply causation. Factors not 

included in the model may also influence TB incidence. Further research is needed to explore the underlying mechanisms 

driving this relationship and the role of other contributing factors. 
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