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ABSTRACT: The prediction of drug-target interactions (DTIs) using 

machine learning techniques together with the proper representation of 

compounds can speed up the time-consuming experimental work in predicting 

DTIs especially when a large dataset is used. Hence, in this paper, we have 

proposed a new molecular descriptor based on LINGO Profiles known as 

LINGO Profiles Fingerprint (LPFP). LPFP is used together with machine 

learning to predict DTIs on a ChEMBL dataset. Dimensionality reduction 

using Association Rule Mining (ARM) is also introduced to overcome the 

high dimensionality suffered by LPFP. LPFP managed to reach an equal 

accuracy reading to the state-of-the-art descriptor called ECFP4 (Δ0.18%), but

it suffers in the time taken (Δ27 mins) due to the dimensionality problem

mentioned. Hence, three new smaller size LPFPs (s = 60%, s = 70%, s = 80%) 

were constructed by only extracting the important fragments using ARM and 

then a benchmark analysis with the original LPFP and ECFP4 fingerprints 

was done. This study not only solved the dimensionality problem, but also 

managed to excel in both the accuracy and time taken when predicting DTIs. 

An increase in the accuracy of over 250 times faster than the original LPFP 

was observed after the benchmark analysis is performed. Furthermore, an 

accuracy of over 80% was achieved in three new activity classes that are 

acquired from ChEMBL, further proving the promising performance of ARM 

which has made it favourable for LPFPs to be used in DTI prediction and in 

other drug discovery problems. 

KEYWORDS: LINGO Profiles Fingerprint (LPFP); Association Rule Mining 

(ARM); machine learning; dimensionality reduction; ECFP4; drug-target 

interactions 

1. Introduction

During the past centuries, effort to discover new types of drugs was initiated because there were diseases

or clinical conditions which required curable drugs to tackle the immediate menace as there was a shortage 

in the market for these medical products[1,2]. Due to the conventional methods of drug discovery as explained 

in the research of Hann and Green[3] are costly and time-consuming, the use of in silico methods to predict 

the interactions between drugs and target proteins provide a crucial leap for drug repositioning, as it can 

remarkably reduce wet-laboratory work and lower the cost of the experimental discovery of new drug-target 

interactions (DTIs)[4,5]. Tools such as machine learning created from the cheminformatics domain provide a 
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huge potential to go further in the drug design and discovery realm, as they serve the integration of 

information in several levels to enhance the reliability of data outcomes[4–7]. Generally, machine learning is 

used to develop classification models and these were used to distinguish active and inactive pairs of drug-like 

small molecule ligands and their respective target proteins with a higher accuracy[8]. The most common 

machine learning methods used in drug discovery are typically binary classifiers such as the Naïve Bayes 

classifiers used by Glick et al.[9] to predict DTIs, Artificial Neural Networks (ANNs) as depicted by Wen et 

al.[10] and Prado-Prado et al.[11], Support Vector Machines (SVM) by Nasution et al.[12] and Rodríguez-Pérez 

et al.[13], and Random Forests (RF) as observed by Riddick et al.[14] and Shi et al.[15]. 

In the works mentioned above[9–15], the use of the molecular descriptor, ECFP4 or Extended 

Connectivity Fingerprints of bond diameter 4 is very common. When the machine learning methods are 

evaluated, the superiority of ECFP4 can be seen clearly. In the SVM and Naïve Bayes classifiers, accuracy 

greater than 80% were recorded[9,12,13] while in ANN, the models developed with the use of ECFP4 managed 

to outperform other classification techniques such as Decision Trees and Random Forests[10]. The nature of 

ECFP4, which contains features that are significant to any type of compounds, allow the prediction of a drug 

to a protein target being made correctly. The convincing performance of ECFP4 makes other researchers in 

this field to use it as their main compound representation especially for the purpose of DTI prediction. 

However, in most chemical databases the compounds are usually represented in the SMILES format, or 

Simplified Molecular Input Line Entry System which is a string that represents a compound structure in the 

form of text[16]. SMILES is the most extensively used representation in drug discovery as it is easier to use 

and comprehend compared to other representations. The SMILES notation can be further converted into 

molecular descriptors such as ECFP4 for the purpose of drug-target interaction prediction, as briefly 

discussed above. 

LINGO is also another representation of chemical compounds that was introduced in the study of Vidal 

et al.[16]. LINGO is a simple text-based method that calculates the molecular similarities and predicts the 

structure-related properties using the SMILES representation of a compound[17]. The LINGO method breaks 

down the canonical SMILES string into a set of substrings of defined length of four characters in which they 

are called LINGO Profiles or LINGOs[17]. Recently, LINGO Profiles have come into view of the drug 

discovery community as it provides the simplicity when retrieving the molecules from a database[16]. Hence, 

in this paper, we will be proposing a new molecular representation based on LINGO Profiles called LINGO 

Profiles Fingerprint (LPFP). LPFP is a binary vector of 0 s and 1 s whereby each position in the vector 

indicates the absence (0) or presence (1) of features predetermined in the design of the fingerprint of a specific 

compound. 

Nonetheless, not much work has utilized LINGO Profiles in the prediction of DTIs, mainly due to the 

superiority of ECFP4. However, based on our previous work[18], we found out that LINGO Profiles gave a 

comparable performance to ECFP4 in the virtual screening experiment. Hence, we foresee the potential of 

LINGO Profiles to give a good accuracy in DTI prediction as well. The only drawback of the LINGO 

Profiles is that the number of LINGO Profiles generated depends on the length of the SMILES representation 

of a compound. Usually the longer the SMILES string, more LINGO Profiles are generated. Thus, the 

amount gets bigger when a greater number of compounds is used which will then burden the machine 

learning model even more as it had to process a huge number of fragments to predict DTIs. Therefore, it is 

often beneficial to reduce the dimension of the data that is being fed into the learning algorithms such as 
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adopting the Association Rule Mining (ARM) technique not only for reasons of computational efficiency 

but also to improve the accuracy of the analysis when high dimensional data is being used, as depicted in the 

studies of Siswanto et al.[19], Li et al.[20] and Malavika et al.[22]. Furthermore, dimensionality reduction can 

also help to deduce important facts and to discover new findings that might be useful for the drug discovery 

community in future[22–25]. 

Hence, in this paper we will benchmark our proposed molecular descriptor called LINGO Profiles 

Fingerprint (LPFP) with ECFP4 when performing DTI prediction and evaluate the performance of LPFP in 

terms of the accuracy and time taken as to how efficient LPFP works with the use of the Association Rule 

Mining (ARM) technique to reduce the dimension of LPFP to only include significant features for efficient 

prediction of drug-target interactions. 

2. Proposed methodology 

The proposed methodology is depicted in Figure 1. 

 
Figure 1. The overall framework of the three main phases involved in all the experiments conducted in this study in generating 

LPFPs and using ARM to reduce the dimensionality of the fingerprints. 
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2.1. Phase 1: Generating Binary Fingerprints (LPFP) using LINGO Profiles 

The general idea of creating binary fingerprints using LINGO Profiles is to encode the structural 

information of a chemical compound into bit strings and then splitting the molecule into multiple fragments. 

If a fragment is present in the chemical compound, the corresponding bit will be assigned to ‘1’ and if a 

fragment is absent, the bit will be assigned to ‘0’ as depicted in Figure 2. The occurrence of a fragment 

determines the bit, not the number of times the same fragment occurs in the structure. For instance, a 

fragment will be set only to bit ‘1’ no matter if it is present once or ten times. Therefore, the number of 

different types of fragments decide the number of bits set in the binary fingerprints. The fragment here is 

referring to one LINGO Profile. From the LINGO Profiles generated, the duplicated ones are first removed. 

Then, we sorted the fragments based on the number of occurrences in a decreasing order. This is important 

as the fragment with a higher frequency sits on the lower bit position while the fragment with a lower 

frequency sits on the higher bit position of the respective fingerprint. The process of generating LPFPs are 

discussed in detail in the subsections that follow. 

 
Figure 2. Encoding a chemical compound structure into bit strings of 0 s and 1 s. 

2.1.1. Preparing ChEMBL dataset 

The first step in Generating Binary Fingerprints called LINGO Profiles Fingerprints (LPFPs) is to 

prepare the dataset. In this study, we have decided to use the ChEMBL database[26]. The database contains 

a huge number of drug-like compounds, including over 2.3 million compounds and over 15,000 target 

proteins and activity classes as well as information on the compounds that were tested and its structures and 

abstracted bioactivities. The special characteristics possessed by the activity classes in ChEMBL are due to 

the ligands within it that interacts with certain target proteins. 

There are two main categories to which a particular activity class can be classified into and they are 

known as homogenous and heterogenous. Classes whose compounds share a large number of common 

fragments are called homogenous. Whereas on the contrary, classes with fewer common fragments that are 

shared between their compounds are described as heterogeneous. The structure of the compounds within a 

particular activity class decides which category an activity class belongs to. Since it is a difficult task to 

observe and analyse each and every compound structure, we have calculated the Mean Pairwise Similarity 

(MPS) value for each activity class, which can be computed using Equation (1) that is also found and used 

in the study of Arif et al.[27]: 𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑁𝑁𝑉𝑉𝑆𝑆𝑁𝑁𝑉𝑉𝑖𝑖 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴𝑉𝑉𝐴𝐴 𝑆𝑆𝑖𝑖 𝑖𝑖ℎ𝑉𝑉 𝐴𝐴𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 (1) 
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The MPS value can be defined as the similarity of chemical structures within each activity class. The 

MPS reading for an activity class can be obtained by performing pairwise similarity between one random 

reference structure and every other compound in the activity class using the Tanimoto coefficient. A higher 

MPS value indicates homogenous activity classes while a lower MPS value indicates heterogeneous activity 

classes. Six activity classes with different number of compounds were selected and their respective MPS 

values were computed and they are shown in the table below. 

Table 1 shows the homogeneous and heterogeneous activity classes with their respective MPS values 

that were calculated. It is also important to note that intermediate activity classes refer to activity classes in 

which their MPS values ranges between the homogenous and heterogenous activity classes. After 

categorizing the activity classes into homogeneous, intermediate and heterogeneous classes, it is time for us 

to generate the LINGO Profiles for each compound in all the activity classes. 

Table 1. Homogenous and heterogeneous activity classes together with their respective number of compounds and MPS values. 

ID Type Activity classes Number of compounds MPS value 

12659 Homo Prostanoid DP receptor 204 0.21355893 

117 Somatostatin receptor 2 62 0.21584493 

20174 Inter G protein-coupled receptor 44 1244 0.17281741 

130 Dopamine D3 receptor 1540 0.17229444 

52 Hetero Alpha-2a adrenergic receptor 420 0.15204343 

11365 Cytochrome P450 2D6 534 0.15767914 

2.1.2. Generating LINGO Profiles 

The SMILES representation of each compound for each activity class, as depicted in Figure 3, is 

important for us in order to generate LINGO Profiles. 

 
Figure 3. An example of several compounds in our ChEMBL dataset with their respective SMILES notation. 
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With SMILES, we are able to fragment it into overlapping substrings of a fixed size known as LINGOs. 

In other words, LINGO Profiles are the hologram of the SMILES representation of a molecule in which they 

are generated by fragmenting the SMILES notation into a fixed size. Before fragmenting the SMILES 

notation, all element names composed of two characters in the original SMILES are substituted by the names 

of one character[17]. For example, the ‘Cl’ and ‘Br’ present in the SMILES notations are replaced with ‘L’ 

and ‘R’ respectively and the ring numbers are set to ‘0’. For instance, ‘c1ccccc1’ and ‘c2ccccc2’ will be 

represented as ‘c0ccccc0’. The reason for this normalization of the SMILES string is to reduce the number 

of possible LINGOs to be generated and it prevents, in general, a unique reconstruction of the original 

SMILES representation from its holographic representation (LINGOs). 

After the normalization process is completed, the simplified SMILES strings will then undergo the 

fragmentation phase. A total number of n − (q − 1) substrings (fragments) of length q is extracted from a 

SMILES string of length n. The length of q that we will be using is 4, as it is optimal and as every ASCII 

character can be encoded into 8 bits, a LINGO of size 4 can be encoded into 32 bits of information, which 

is precisely the size of a word on common hardware. A q-LINGO is a q-character string, including letters, 

numbers and symbols such as ‘(‘, ‘)’, ‘[‘, ‘]’ and ‘#’ and it is obtained by stepwise fragmentation of a canonical 

SMILES representation of all the compounds. This process was done using Java programming and at the 

end of the fragmentation process, the compounds in each of the activity class will have LINGO Profiles 

assigned to them in the output file as depicted in Figure 4. 

 
Figure 4. An example of several compounds in our ChEMBL dataset together with their respective LINGO Profiles and ID. 

2.1.3. Acquiring unique LINGO Profiles 

After generating LINGO Profiles for all the compounds in all activity classes, unique LINGO Profiles 

must be acquired. A Java program was developed for the purpose of extracting unique LINGO Profiles per 

compound. The unique LINGO Profiles in this context means that there will be no duplicates that will be 

generated at a different output file. These unique LINGO Profiles that will be produced are in distinct format 

as we have already removed an identical version of a specific LINGO Profile earlier. This procedure is 

important as the information obtained here will be used as an input when calculating the frequency of 
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occurrences for all the unique LINGO Profiles generated in order to create binary fingerprints of LINGO 

Profiles called LPFPs. 

2.1.4. Computing the frequency of unique LINGO Profiles 

The next step is to compute the frequency of the occurrences of each unique LINGO Profile because 

this will act as a template for us to generate the fingerprints. Besides, the information obtained here will allow 

us to determine specifically which LINGO Profiles are the most significant in the ChEMBL dataset. In order 

for us to compute the frequency of unique LINGO Profiles, two output files are compared whereby the list 

of LINGO Profiles obtained for all compounds in our ChEMBL dataset are considered as one file (refer to 

Section 2.1.2) and the other file contains only the unique LINGO Profiles for all compounds in our ChEMBL 

dataset (refer to Section 2.1.3). The final output file produced is a sorted list of unique LINGO Profiles based 

on their computed frequency. The results of the frequency of occurrences of all the unique LINGO Profiles 

are discussed in the results section later. 

2.1.5. Producing binary fingerprint for each compound in ChEMBL dataset 

The final step is to finally produce the binary fingerprints. The binary fingerprints will be of length 10,000 

and they consist of 0 s and 1 s, whereby the ‘0’ bit represents the absence of the unique LINGO Profile while 

the ‘1’ bit represents the unique LINGO that is present in the compound. The sample output of the LPFPs 

generated are as shown in Figure 5. 

 
Figure 5. Part of the ChEMBL dataset which display LINGO Profiles Fingerprints (LPFP) and its respective index number for 
several compounds. 

2.2. Phase 2: Evaluating the performance of LINGO Profiles Fingerprints (LPFPs) 

2.2.1. Selecting an appropriate machine learning model 

In this phase, four machine learning models are developed based on Artificial Neural Networks (ANN), 

Support Vector Machine (SVM), Naïve Bayes (NB) and Random Forest (RF). 

Table 2 shows the size of the machine learning models created when the two molecular descriptors, 

ECFP4 and LPFP are used. From Table 2, it is observed that when ECFP4 is used, we have managed to 

build all the four predictive models. SVM recorded the lowest model size of about 15 to 30 MB, while ANN 

registered the highest model size of over 1000 MB. Furthermore, the NB and RF classifiers both have a 

similar range of model size of about 100 to 200 MB. 
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Table 2. The comparison of the all the machine learning models’ size created using the molecular descriptors ECFP4 and LPFP. 

Machine learning models Size of the model when using ECFP4 (MB) Size of the model when using LPFP (MB) 

ANN >1000 N/A 

SVM 15–30 700–800 

NB 100–200 N/A 

RF 100–200 N/A 

On the other hand, it is interesting to note that only the SVM model was able to be developed using the 

compounds represented in LPFP. The huge number of features in LPFP, which is ten times more than the 

features of ECFP4, hindered us to develop the ANN, NB and RF models despite having a large storage space 

(1 TB) and a competent amount of memory (8 GB) in our machine. Upgrading our machine to a better 

specification might help us to overcome the problem. However, if the size of the ChEMBL dataset grows 

bigger, the number of features in the LPFP-represented compounds will also increase. 

In other words, the increase in the number of features in LPFP will result in the same problem whereby 

the machine learning models could not be built due to its huge size in MB. Thus, to perform the DTI 

prediction using our proposed molecular descriptor, LPFP, we should have a model which is available for 

this purpose. The unavailability of the ANN, NB and RF models in LPFP and the convincing performance 

of the SVM classifier in the studies of Nasution et al.[12], Rodríguez-Pérez et al.[13] and that of Heikamp and 

Bajorath[28] in terms of DTI prediction and drug discovery has convinced us to use the latter for later 

experiments. Additionally, from Table 2, it is also observed that the SVM classifier is the only classifier in 

which it could be developed for both ECFP4 and LPFP. Hence, SVM is our model of choice 

2.2.2. Measuring the performance of ECFP4 and LPFP 

To measure the performance of ECFP4 and LPFP in terms of drug-target interaction prediction, the 

ChEMBL dataset is split into training and testing sets respectively, whereby 70% off the dataset is put aside 

for training while the remaining 30% is for testing. Furthermore, k-fold cross-validation was also applied to 

the SVM model when performing DTI prediction with the value of k is 10 to avoid overfitting. The 

classification accuracy and the time taken for the compounds represented in LPFP will be recorded per 

activity class and this process is repeated six times to accommodate all the six ChEMBL activity classes 

selected as observed in Table 1. 

Since we have already converted the original SMILES notation of all compounds in our ChEMBL 

dataset to LINGO Profiles Fingerprints as proposed, it is also vital for us to convert the original SMILES 

notations of all the compounds in our dataset into ECFP4 fingerprints to be compared with LPFP. Hence, 

the Chemistry Development Kit (CDK)[29] was used to convert SMILES to ECFP4 and the classification 

accuracy and the time taken for the compounds represented in ECFP4 will also be recorded separately. Then, 

at the end of the experiment, the results of the performance and time taken for the compounds represented 

in LPFP will be benchmarked with the performance and time taken for the compounds represented in ECFP4 

respectively. 
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2.3. Phase 3: Reducing dimensionality of LPFP using Association Rule Mining (ARM) 

2.3.1. Implementation of the Apriori algorithm to generate significant patterns 

In data mining, association rules are rules that relate one thing to another thing in which two things are 

closely interrelated[19]. In the context of our work, drug-target interaction prediction is an association-based 

task in which we are to find drug-target pairs from a list of compounds. Since we have already represented 

the compounds of all six activity classes in our ChEMBL database as LINGO Profiles in Phase 1, we will 

now generate significant rules using the Association Rule Mining (ARM) technique. To do so, we have set 

the minsupp and minconf parameter to 0.6 and 0.8 respectively before implementing the algorithm on each of 

the activity class. It is also important to remember that each rule generated is not represented with their ID, 

since we have already removed the ID from each LINGO Profiles in Phase 1, before performing the 

experiment. Each LINGO Profile is then inserted into their respective vector space without their ID. 

Furthermore, rules that pass the threshold level are chosen at the end of the experiment because we believe 

that it may contain important knowledge in the prediction of DTIs. The rules obtained for each activity class 

are used to represent all the compounds available in the respective activity class. Additionally, the rules that 

meet the minimum support and confidence level are then divided into three main categories. 

The first category gathers all the rules that have a support level of over 60% (s = 60%). Then, it is followed 

by the second category whereby it gathers all the rules that have a support level of over 70% (s = 70%) and 

finally rules that have a support level of 80% (s = 80%) are accumulated together. From each category, 

fragments are filtered accordingly to eliminate duplicates, and then the unique fragments are used to 

represent all the compounds in the ChEMBL dataset by encoding them in a binary format. Once the unique 

fragments are encoded in a binary format, the data is separated into training and testing sets of proportion 

70:30, similar to the previous phase and the data is fed into a machine learning algorithm (SVM) in order to 

predict DTIs. The performance of the model is evaluated in terms of its accuracy and it is then compared 

with the accuracy of the compounds represented in LPFP which was recorded in Phase 2. In other words, 

the comparison is done between the compounds represented in significant patterns generated using ARM 

and the compounds represented in LPFPs. 

3. Results and discussion 

3.1. Frequency of occurrences of unique LINGO Profiles 

The results in this section pertains to the output file obtained from the sorted list of unique LINGO 

Profiles based on their computed frequency (refer to Section 2.1.4) and they are divided into two categories; 

the Higher Category and Lower Category. In Figure 6, we discovered high frequency (Higher Category) 

fragments that are frequently present in almost all of the compounds in the ChEMBL dataset. 
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Figure 6. The frequency of occurrences of LINGO Profiles in the ChEMBL dataset (Higher Category). 

In addition, repeated occurrence of a particular fragment can be seen in a compound. The fragment with 

highest frequency of occurrences is ‘c0cc’, which occurs 2,923,854 times. It was then followed by the 

fragments ‘(=O)’, ‘0ccc’, ‘C(=O’ and ‘cccc’ appearing exactly 2,878,863, 2,436,870, 2,299,177 and 2,176,560 

times respectively. A significant change can be observed in the figure wherein the difference between one 

fragment to another is between the range of 100,000 to 400,000. Nonetheless, there are still other fragments 

that are in the million range and they are ‘ccc0’, ‘ccc(’ and ‘)c0c’ occurring at 1,367,947, 1,194,443 and 

1,137,386 times respectively. Going down the list are the fragments that exist in the hundred-thousand range. 

The ‘@H](’ fragment is the highest in this sub-category appearing 965,532 times followed by the fragments 

‘=O)N’, ‘[C@@’, ‘CCCC’, ‘C@H]’, ‘[C@H’, ‘C@@H’, ‘@@H]’, ‘cc0)’, ‘Cc0c’, ‘)C(=’ and ‘NC(=’, whereby 

the differences between them are recorded at a range of 100,000 to 300,000. Thus, we can simply conclude 

that the fragments in this category are gradually changing at a very high rate. 

Next, Figure 7 visualises the frequency of occurrences of the Lower Category fragments or fragments 

that appear less frequently in all the compounds in our ChEMBL dataset. In other words, the fragments that 

belongs to this category does not occur as much as those fragments in the Higher Category did. In fact, the 

probability of the presence of these fragments in any of the compounds in ChEMBL are very low. There are 

certain compounds which do not even have the fragments depicted in Figures 6 and 7. Apart from this, it is 

also observed that there are no repeated occurrences involving fragments from this category. The fragments 

from this category are ‘[Hg+’, ‘Hg+]’, ‘g+]c’, ‘(O[H’, ‘-]B0’, ‘]B0O’, ‘O=[F’, ‘=[Fe’, ‘Fe]O’, ‘e]O[‘, ‘]O[F’, 

‘O[Fe’, ‘Fe]=’, ‘[Au-‘, ‘Au-]’, ‘u-]S’, ‘-]SS’, ‘]SS(’, ‘.O[H’, ‘Hg]C’ and ‘g]C0’. Interestingly, they all share the 

same occurrence frequency which is ‘1’. This means that the fragment only appears once in any of the 

compounds in the dataset and once they appear in any of the compounds in the dataset, they will not appear 

again in the remaining compounds. The difference in the occurrence frequency between the fragments in this 

category (Lower Category) and the fragments from the Higher Category is very large. 
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Figure 7. The frequency of occurrences of LINGO Profiles in the ChEMBL dataset (Lower Category). 

Moreover, the fragments with a higher frequency of occurrence (Higher Category) tells us that despite 

the extensive diversity of the ChEMBL dataset, they are present in the majority of the compounds, thus, they 

play a crucial role in determining the behaviours and characteristics of the compound itself. For example, 

one of the techniques in virtual screening called similarity searching requires the comparison between a 

reference structure and the compounds from the database to be done in order to determine the properties of 

the reference structure. In this case, the fragments that exist in both the reference structure and the database 

compound plays a huge role as higher coefficient scores between both of them proves that they share certain 

chemical properties together. Besides, the majority of the compounds in the activity classes that we have 

selected in this study contains those fragments. This means that the interaction between the compounds with 

a particular target protein (activity class) are affected by the presence of these fragments. 

For the fragments with a lower frequency of occurrence (Lower Category), the extremely low probability 

of their occurrence in the compounds proof that these fragments did not play a part in determining the 

behaviour or characteristics of a compound in the ChEMBL dataset. In addition, the lower number of 

repeated fragments from this category in a particular compound gives us the evidence that those fragments 

do not solely involve in determining the behaviour or characteristics of a specific compound as it is constantly 

outnumbered by the fragments from the Higher Category. In terms of drug-target interactions, some activity 

classes do not even have the fragments from this category in their compounds. The absence indicates that 

some compounds do not even need those fragments in order to establish an interaction with a particular 

target protein. Hence, we can conclude that, the fragments from the Higher Category are much more 

important than the fragments in the Lower Category. From the information that we have obtained above, 

we have created binary fingerprints or LPFP which consists of unique fragments ranging from the Higher 

and the Lower categories as to represent the compounds involved in the predicting DTIs and assessing their 

performance using LPFPs. 

3.2. LINGO Profiles Fingerprints (LPFPs) generated 

As discussed in Section 2.1.5, binary fingerprints of length 10,723 are generated at the end of Phase 1 

(refer to Figure 5). The binary fingerprints consist of 0 s and 1 s, in which the ‘0’ bit indicates the absence of 

a unique LINGO Profile while the ‘1’ bit indicates the presence of a unique LINGO Profile. A sample portion 

of the LPFP of a compound with the presence and absence of a unique LINGO Profile is visualised in the 

figure below (refer to Figure 8). 
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Figure 8. A portion of a LINGO Profile Fingerprint (LPFP) obtained from a compound from our ChEMBL dataset. 

3.3. Comparison between the performance of ECFP4 and LPFP 

As discussed in Section 2.2, the results of the performance and time taken for the compounds represented 

in LPFP will be benchmarked with the performance and time taken for the compounds represented in ECFP4. 

In this section, the said results will be compared, discussed and analysed thoroughly. 

From Table 3, it is evident that different categories of activity classes (homogenous, heterogeneous and 

intermediate) produce distinct accuracy values for both descriptors, ECFP4 and LPFP. When LPFP is used, 

the activity class, Somatostatin receptor 2, recorded the highest accuracy value of 99.01% while Dopamine 

D3 receptor managed to only achieve 62.81% accuracy (the lowest among all the six activity classes) when 

SVM was used for its classification purposes. Further investigation led us to the observation of the pattern 

created among all the activity classes. It turns out that the SVM classifier together with the proposed LPFP 

representation of the compounds work best on homogenous activity classes, followed by heterogeneous 

activity classes and finally the intermediate activity classes. There was only a small difference between the 

average accuracy of heterogeneous and homogenous activity classes. However, a huge gap was recorded 

between the intermediate activity classes and the homogeneous and heterogeneous activity classes when 

LPFP was used, as shown in Table 4. 

Table 3. The classification accuracy and time taken between the compounds represented in LPFP and ECFP4 for each activity 
class. 

Activity class Accuracy (LPFP) Time taken for LPFP 
(mins) 

Accuracy 
(ECFP4) 

Time taken for ECFP4 
(mins) 

Cytochrome P450 2D6 0.8669 33.5629 0.8711 6.1744 

Alpha-2a adrenergic receptor 0.8926 33.8055 0.8967 6.5885 

G protein-coupled receptor 44 0.6926 33.7916 0.7099 6.4987 

Dopamine D3 receptor 0.6281 33.8152 0.6132 6.2299 

Somatostatin receptor 2 0.9901 33.0538 0.9901 6.88 

Prostanoid DP receptor 0.9554 33.3866 0.9554 6.5764 

Average 83.76% 33.5692 83.94% 6.3878 

Table 4. The differences in classification accuracy between three categories of activity classes when compounds are represented 

using LPFPs and ECFP4. 

Type of activity classes Difference in accuracy (ECFP4) Difference in accuracy (LPFP) 

Homogenous 0.000 0.000 

Heterogenous −0.089 −0.093 

Intermediate −0.311 −0.312 
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Table 4 shows that the SVM classifier used did not perform well when compounds from intermediate 

classes were used with the LPFP representation. We identified that the main factor which led to this 

drawback was the nature of the activity classes chosen for this experiment. The majority of the compounds 

in the ChEMBL dataset belongs to either the heterogeneous or intermediate activity classes. To be specific, 

the Dopamine D3 receptor contains the highest number of compounds (1540 compounds) followed by the 

G protein-coupled receptor 44 (1240 compounds), as shown in Table 1 and both of these activity classes have 

lower accuracy values (refer to Table 3). These activity classes contain compounds that are also present in 

other activity classes as well. In other words, the group of fragments that are necessary to determine the 

interactions is not unique to one target protein (activity class), but to various other targets as well. When the 

machine learning experiment was conducted, the rules inside the SVM model that were generated were not 

accurate enough to predict the interactions since the rules were made up of fragments that were mixed with 

other target proteins. For example, in an attempt to predict the accuracy of the Dopamine D3 activity class, 

the rules to create the model should not be made up of fragments that are solely unique to this activity class. 

There is no specific target protein or a ‘set of fragments’ that the model can use to create the rules to determine 

the interaction between them when using heterogeneous and intermediate activity classes in our experiment. 

As expected, a much lower accuracy was observed in the intermediate activity classes as they are made up 

of compounds from homogeneous and heterogeneous classes. On the other hand, homogeneous activity 

classes, which have a lower number of compounds, managed to obtain a very high accuracy value. This is 

due to the compounds in this category are unique only to its activity class whereby they do not contain 

compounds similar to other activity classes. Moreover, the rules created by the model are solely based on 

fragments derived from those unique compounds itself. When the SVM classifier model was used for DTI 

prediction, a high accuracy was recorded because the necessary fragments to predict the interactions were 

present in the rules. Based on this insight, it can be concluded that the nature of the ChEMBL dataset affects 

the accuracy value of a specific activity class when it is used in predicting DTIs using the SVM classifier. 

Furthermore, there were not much of a difference among all the activity classes in terms of the time 

taken in predicting DTIs using LPFPs. On an average, 33.57 mins was needed to build one classifier model 

(SVM) using compounds represented in LPFPs and to predict DTIs for each activity class. The 

heterogeneous activity class, Dopamine D3 receptor took the longest time to build the model and predict 

DTIs with the total time of 33.8152 mins while the Somatostatin receptor 2 took the fastest to build the model 

and predict DTIs, totalling to 33.0538 mins. As mentioned earlier, the difference is very minimal, hence, it 

is apparent that the nature of the ChEMBL dataset does not affect the total time taken. However, it is 

definitely a possibility that the descriptor used is a factor in the total time taken recorded. The proposed LPFP 

contains a huge number of features (10,763) which then affects the predictive model to generate a high 

number of rules for predicting DTIs for each activity class. This is reflected in Table 2, where the size of the 

SVM classifier model built is between the size of 700 to 800 MB. Thus, many rules were generated due to 

the high number of features present in LPFP. Additionally, some fragments which were not involved in the 

prediction were necessarily eliminated, leaving only the chosen set of fragments (that were significant) for 

the prediction to be made for all the compounds in all the six activity classes in our ChEMBL dataset. 

In terms of the usage of ECFP4, the Somatostatin receptor 2 activity class recorded the highest accuracy 

value of 99.01% while the Dopamine D3 receptor managed to only achieved an accuracy value of 61.32%, 

which is the lowest value among all the other activity classes (refer to Table 3). Similar to the case of using 



Computing and Artificial Intelligence 2023; 1(1): 99. 

14 

LPFP, the SVM model worked the best with homogeneous activity classes as well, followed by the 

heterogeneous activity classes and then the intermediate activity classes. A similar pattern was also recorded 

for the huge difference in the accuracy between the intermediate activity classes and the homogenous and 

heterogeneous activity classes (refer to Table 4). However, the average time taken recorded for the prediction 

of DTIs for all the activity classes when using ECFP4 is recorded at 6.3878 mins, which is almost five times 

faster than LPFP. This is probably due to the lower number of features in ECFP4 (1024) which is about ten 

times less than LPFP’s number of features (10,723). Based on Table 3, the heterogenous activity class Alpha-

2a adrenergic receptor took the longest time to build the SVM model and predict DTIs while the Cytochrome 

P450 2D6 activity class managed to complete the classification task the fastest with just 6.1744 minutes in 

predicting DTIs. From the observations, it is obvious that the nature of the ChEMBL dataset do not affect 

the time taken. The ECFP4 descriptor used, as mentioned above, is of a smaller size in comparison to LPFP, 

which is the reason why when ECFP4 is used, the average time taken is five times lesser than the average 

time taken when LPFP is used. This is also reflected in Table 2, whereby the size of the SVM model built is 

only within the range of 15 to 30 MB, meaning that lesser rules were generated when the model was built 

and DTIs were predicted. 

To summarise, the performance of LPFP fell short in comparison to ECFP4 by 0.18% in terms of the 

accuracy. This small difference proves that LPFPs are able to represent and hold important information 

pertaining to the compounds that will be used in the next experiment. However, for both homogeneous 

activity classes, LINGO Profiles Fingerprints managed to achieve the same accuracy values as when ECFP4 

was used. Additionally, the accuracy of the Dopamine D3 receptor activity class using LPFP surpassed the 

accuracy when ECFP4 was used by about 1.49%. It is believed that the differences occur due to the 

mechanism that was used to encode the fragments that were present in a particular compound. Unlike LPFP, 

ECFP4 constitutes compound structures by methods of circular atom neighbourhoods. This method allows 

it to represent both the existence and the non-existence of functionality since both are circumstantial in 

examining molecular activity. Moreover, the excellence of ECFP4 when performing DTI prediction was also 

due to their ability to represent an essentially infinite number of different molecular features (including stereo 

chemical information) and this is crucial in creating an accurate SVM model. On the other hand, LPFP fell 

slightly in terms of the accuracy scores to ECFP4 due to containing some fragments which were not 

significant for purpose of DTI prediction. We have taken into account on all the fragments that exist in the 

ChEMBL dataset and this led to the creation of a SVM model which was less accurate due to the mixture of 

significant and insignificant features. In terms of the time taken, it was discussed above that there was a huge 

difference between the LPFP and ECFP4 representation of compounds whereby LPFP took almost five 

times longer than ECFP4 to predict DTIs for each activity class in the ChEMBL dataset. This is due to the 

number of features present in the fingerprints with LPFP containing 10,723 features and ECFP4 with 1024 

features. In simpler words, the higher the number of features, the longer it takes to predict DTIs. Thus, in the 

next section, we will be discussing the results on the effects of dimensionality reduction of LPFP using ARM, 

to improve the performance of our proposed molecular descriptor. 

3.4. Dimensionality reduction of LPFP using ARM 

As discussed in Phase 3, significant rules for all the compounds in all of the six activity classes are 

generated using the Association Rule Mining (ARM) technique. The rules generated by ARM possesses 
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information about known DTIs and they are adhered by the minimum support and confidence level whereby 

the support level values are categorized into three main categories; 60%, 70% and 80% respectively. In other 

words, the minimum support level set for the experiment is 60% (s = 60%). The support variable reflects on 

how frequent a particular item set appears in a transaction meanwhile the confidence variable is used to 

further highlight how important a frequent item set is by taking into account the specific fragments into the 

frequent item set. Furthermore, the fragments within the generated significant rules from LPFP were then 

used to create a new, compact molecular representation which is lower in size compared to the original LPFP 

in order to overcome the dimensionality problem in the latter. From the rules generated, the significant ones 

are agglomerated and the unnecessary rules are removed. This is because the significant rules are the ones 

containing important fragments which may determine the interaction of a compound with a particular target 

protein. Moreover, the unnecessary or insignificant rules contain fragments which are also found in the 

significant rules. Thus, they can be eliminated accordingly as well. By adopting this idea, it is believed that 

the important fragments chosen can improve the accuracy value and overcome the time consumption 

problem of LPFP when it is used to represent the compounds in an activity class. 

For example, Figure 9 shows the significant group of fragments generated using ARM that were 

interacting with the Prostanoid DP receptor activity class with their respective values of support and 

confidence levels. 

There were 162 rules generated in total, but many of them were filtered out since only the significant 

fragments that are present in the frequent itemset shown in Figure 9 are considered. Two of the fragments in 

Figure 9 managed to achieve a support level higher than 70% while the remaining fragments surpass the 

minimum support level value of 60%. The fragments such as ‘0ccc’, ‘C(=O’, ‘c0cc’, ‘(=O)’, ‘ccc(’, ‘)c0c’, 

‘0)c0’, ‘)cc0’ and ‘=O)O’ appeared frequently among the compounds available in this activity class. 

Furthermore, it is also important to note that the maximum length for all the significant rules is 4 (refer to 

Section 2.1.2). Hence, three of the fragments exist as antecedents and the remaining fragment exists as a 

consequent. Since the significant rules that were identified consist of fragments which are only significant to 

the Prostanoid DP receptor activity class, we can conclude that the presence of any one of the group of 

fragments shown in Figure 9 in an unknown ligand will most probably interact with the Prostanoid DP 

receptor activity class. The same process of generating significant fragments using ARM was also applied to 

all the other activity classes (Cytochrome P450 2D6, Alpha-2a adrenergic receptor, G protein-coupled 

receptor 44, Dopamine D3 receptor and Somatostatin receptor 2) and the analysis on the significant group 

of fragments generated that were interacting with these activity classes were also comprehensively discussed 

in the supplementary materials provided (refer to Supplementary Materials). 

 
Figure 9. The group of fragments (rules) observed in the Prostanoid DP receptor activity class with the support level higher than 
the minimum value of 6.0.% (s ≥ 60%). 
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3.4.1 Comparison between the performance of LPFP, ECFP4 and the new and compact 

representation of compounds using ARM 

From the significant fragments obtained earlier for each activity class (refer to Figure 9 and 

Supplementary Materials), they were classified into three different groups. The first group contains fragments 

which have a support level value of above 60% while the second group contains fragments support level 

value of above 70% and finally, the third group comprises of fragments that have a support level value of at 

least 80%. These categorisations were made in an attempt to reduce the dimensions of the original LPFP 

representation. By encoding the compounds using these fragments, an alternative compound representation 

that met our objective was created and the results of their performance are depicted in Tables 5 and 6. 

Table 5. The comparison of the accuracy between ECFP4, LPFP and LPFP with a support level value of at least 60%, 70% and 

80%. 

Activity class Accuracy of LPFP 
(s = 80%) 

Accuracy of LPFP 
(s = 70%) 

Accuracy of LPFP 
(s = 60%) 

Accuracy of 

ECFP4 

Accuracy of 

LPFP 

Cytochrome P450 2D6 0.8669 0.8835 0.8909 0.8711 0.8669 

Alpha-2a adrenergic receptor 0.8943 0.9099 0.9124 0.8967 0.8926 

G protein-coupled receptor 44 0.7661 0.9149 0.9281 0.7099 0.6926 

Dopamine D3 receptor 0.7008 0.8579 0.8727 0.6132 0.6281 

Somatostatin receptor 2 0.9884 0.9884 0.9884 0.9901 0.9901 

Prostanoid DP receptor 0.9554 0.9554 0.9587 0.9554 0.9554 

Average 86.20% 91.83% 92.52% 83.94% 83.76% 

Table 6. The comparison of the time taken between ECFP4, LPFP and LPFP with a support level value of at least 60%, 70% and 
80%. 

Activity class Time taken for 
LPFP (s = 80%) 

(mins) 

Time taken for 
LPFP (s = 70%) 

(mins) 

Time taken for 
LPFP (s = 60%) 

(mins) 

Time taken 

for ECFP4 

(mins) 

Time taken 

for LPFP 

(mins) 

Cytochrome P450 2D6 0.1238 0.1519 0.1640 6.1744 33.5629 

Alpha-2a adrenergic receptor 0.0965 0.1291 0.1425 6.5885 33.8055 

G protein-coupled receptor 44 0.2038 0.1168 0.1305 6.4987 33.7916 

Dopamine D3 receptor 0.2563 0.1659 0.1850 6.4987 33.8152 

Somatostatin receptor 2 0.0505 0.0536 0.0670 6.4987 33.0538 

Prostanoid DP receptor 0.0765 0.0890 0.1000 6.5764 33.3866 

Average 0.1346 0.1177 0.1315 6.3878 33.5692 

3.4.2. Analysing compacted LPFPs generated using ARM (s = 80%) 

The compounds that are represented with the refined LPFPs with a support level of over 80% (s = 80%) 

performed better than ECFP4 and LPFP, as shown in Table 5. Similar to the situation observed in Section 

3.3, the SVM classifier model together with the refined and compact LPFP generated using ARM worked 

the best on homogeneous activity classes, followed by heterogeneous and intermediate activity classes 

respectively. Similar to the discussion in Section 3.3 as well, the nature of the activity classes is the factor 

that affects the outcome of the accuracy regardless of the classification technique used and the type of 
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compound representation implemented. However, the compounds represented using the refined LPFP (s = 

80%) managed to outperform other descriptors in both the intermediate activity classes. In addition, the 

refined LPFP also managed to achieve similar accuracies with the rest in the Prostanoid DP receptor activity 

class. Overall, in terms of the average accuracy, this refined and compact LPFP is better than ECFP4 and 

LPFP in terms of its classification accuracy whereby it is 2.24% better than ECFP4 and 2.44% better than 

LPFP. The improvement in terms of accuracy is due to the significant features that were derived from the 

significant rules that were used to encode the compounds. Despite having a much lower number of features 

than ECFP4 when performing the classification task, those significant features predicted the outcome 

accurately. In other words, the features contained in this group of fragments were sufficient to determine the 

interaction between a compound and a target in any of the six activity classes in our ChEMBL dataset. 

Furthermore, it is also observed that ECFP4 fell slightly behind the refined LPFP because it contained 

insignificant features that were not essential for the prediction of DTIs. 

On the other hand, this refined LPFP (s = 80%) took lesser time to predict DTIs as shown in Table 6. 

For every activity class involved, it took only less than a minute for the model to classify and predict DTIs. 

When compounds from the Somatostatin receptor 2 activity class were used, the SVM model only took 3.034 

s to complete the whole classification process which was the fastest among all the other activity classes 

involved. Subsequently, the model took the longest time when compounds from the Dopamine D3 receptor 

were used. Nonetheless, this new and compact LPFP was 47 times much faster than ECFP4 and 249 times 

much faster than the original LPFP when both of them were put into implementation. It is believed that the 

important features (fragments) of the compounds that were encoded using this new and compact-sized 

fingerprints attributed in achieving a higher accuracy value and a shorter time taken in predicting DTIs. 

3.4.3. Analysing compacted LPFPs generated using ARM (s = 70%) 

Unlike the new LPFP (s = 80%) as discussed above, the compounds that are represented with the refined 

LPFPs with a support level of over 70% (s = 70%) contained 13 fragments (7 more than LPFP (s = 80%)). 

From Table 5, LPFP (s = 70%) managed to outperform ECFP4 and LPFP by 7.89% and 8.07% respectively. 

Additionally, this new LPFP also managed to achieve a higher accuracy reading in each activity class with 

an exception for the Somatostatin receptor 2, which differs from ECFP4 and LPFP by 0.17%. In addition to 

that, LPFP (s = 70%) performed better than LPFP (s = 80%) by 5.63%. The increase in the number of 

significant features in LPFP (s = 70%) has caused the accuracy to be higher than LPFP (s = 80%). This means 

that there were more significant features that was being used in order to encode the compounds and when 

these compounds were used to predict the interactions, they were able to predict more accurately. 

Alternatively, similar to the LPFP (s = 80%), LPFP (s = 70%) also took a shorter time to predict DTIs, 

which was approximately 7.062 s on an average to complete the whole classification process as shown in 

Table 6. In fact, it was also much faster than LPFP (s = 80%) by 1.014 s. For each of the activity class, LPFP 

(s = 70%) took merely a minute to build the classifier model and accurately predict DTIs. Similar to the 

situation observed previously, when compounds from the Somatostatin receptor 2 activity class were used, 

SVM only took 3.213 s to complete the whole classification process, which was the quickest among all the 

other activity classes involved. Furthermore, SVM when set aside took the longest time to finish the entire 

procedure when compounds from the Dopamine D3 receptor were utilised. In general, LPFP (s = 70%) was 
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54 times considerably quicker than ECFP4 and 285 times significantly faster than LPFP when two of them

were inculcated into usage.

3.4.4. Analysing compacted LPFPs generated using ARM (s = 60%)

Moving on, another LPFP was also created based on the rules that had a support level value of above

60%. In this new LPFP (s = 60%), a total of 17 fragments were extracted (4 more than LPFP (s = 70%) and

11 more times than LPFP (s = 80%). The increase in the number of fragments was attributed by the increased

number of rules that belonged to this category. As shown in Table 5, LPFP (s = 60%) overcame the accuracy

values of ECFP4 and LPFP by 8.58% and 8.76% respectively. Additionally, LPFP (s = 60%) also managed

to accomplish a higher accuracy value for each activity class with the exception of the Somatostatin receptor

2 which differs from the other two descriptors (ECFP4 and LPFP) by 0.17%, similar to the case observed in

LPFP (s = 70%). Besides, LPFP (s = 60%) is also deemed superior to LPFP (s = 70%) and LPFP (s = 80%)

by 0.69% and 6.32% respectively. The improvement in terms of accuracy is due to the increase in the number

of significant features that were derived from the significant rules that were used to encode the compounds

earlier. Despite having a much lower number of features than ECFP4, LPFP, LPFP (s = 80%) and LPFP (s

= 70%), when performing the classification task, those significant features extracted predicted the outcome

accurately, resulting in a higher accuracy value.

In terms of the time taken, from Table 6, LPFP (s = 60%) took 7.89 s on average to complete the whole

classification process. It was also much faster than LPFP (s = 80%) by 0.186 s, but it is slower than LPFP (s

= 70%) by 0.828 s. For every activity class involved, it also took merely s to build the classifier and precisely

predict DTIs. Similar to the circumstances illustrated by the previous two new LPFPs, when compounds

from the Somatostatin receptor 2 activity class were utilised, SVM only took 4.02 s to complete the whole

classification process. This was the fastest among all the other activity classes involved. In addition,

Dopamine D3 receptor took the longest time to complete its predictions. All in all, LPFP (s = 60%) was 48

times impressively faster than ECFP4 and 255 times faster than LPFP when two of them were implemented.

Hence, it is prominent that the vital features (fragments) of the compounds that were encoded using this

unique smaller size fingerprint accomplished higher accuracy values and reduced the time taken in predicting

DTIs. Henceforth, by presenting LPFP (s = 60%), this study has successfully figured out on how to beat the

dimensionality issues as specified before.

3.4.5. Testing the performance of LPFP on three new activity classes

As thoroughly discussed in the earlier sections of this paper, the convincing performance of the three

new LPFPs generated (s = 60%), (s = 70%) and (s = 80%) for all the six activity classes previously has led us

to further test and investigate their performance in three new activity classes obtained from ChEMBL, which

are the Urotensin II receptor, Focal adhesion kinase 1 and Vanilloid receptor activity classes. These activity

classes are selected and categorized into their homogenous, intermediate and heterogeneous nature

respectively and the results of the testing are summarized in the table below.

As observed in Table 7, all the three new activity classes achieved an accuracy of over 80%. However,

in terms of the average, LPFP (s = 60%) outperformed the other LPFPs (s = 70% and s = 80%) by 0.79% and

2.15% respectively. When the homogeneous activity class Urotensin II receptor was used, the accuracy

recorded for all the three LPFPs were the highest (over 98%), while the lowest accuracy recorded was when
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the heterogeneous activity class Vanilloid receptor was utilized. The difference in terms of the results is due 

to the nature of the activity class itself whereby variations in terms of the number of compounds and the 

property associated with each activity classes causes the classification accuracy to be different than one 

another. Conclusively, it is proven that these new LPFPs (s = 60%), (s = 70%) and (s = 80%) were not only 

able to overcome the high dimensionality problem, but they can also be used to accurately predict the 

outcome of any activity class with an average classification accuracy of over 90%. 

Table 7. The comparison of the classification accuracy of three new activity classes using the three new LPFPs generated earlier. 

Type of activity class Activity class Accuracy for LPFP 
(s = 60%) 

Accuracy for LPFP 
(s = 60%) 

Accuracy for LPFP 
(s = 80%) 

Homo Urotensin II receptor 0.9885 0.9872 0.9866 

Inter Focal adhesion kinase 1 0.9643 0.9643 0.9617 

Hetero Vanilloid receptor 0.8787 0.8564 0.8188 

Average 94.38% 93.59% 92.23% 

4. Conclusion 

To conclude, LINGO Profiles can be used to perform DTI prediction by representing the compounds 

in a binary fingerprint format called LINGO Profiles Fingerprint or LPFP. LPFP is developed by considering 

all the unique fragments available in the compounds of all the activity classes in the ChEMBL dataset. From 

the experiments conducted on all six target proteins (activity classes) using the SVM classifier, LPFP was 

observed to perform quite well alongside the state-of-art ECFP4 fingerprints. However, there is a slight 

difference in terms of the accuracy and the time taken is much longer when DTIs were predicted using the 

compounds that are represented using LPFP. This is due to high number of features (high dimensionality) 

of LPFP that are associated with the compounds in the activity classes. These features are made up of 

significant and insignificant features respectively. To solve this problem, Association Rule Mining or ARM 

was used to overcome the dimensionality problem in LPFP. ARM provides knowledge pertaining to the 

prediction of drug-target interactions based on the rules that are generated. The rules generated using ARM 

contains significant fragments that are believed to hold important information about the compounds that 

exist in all the activity classes involved. Hence, three new variants of LPFPs were developed using features 

identified by ARM with support values of 60%, 70% and 80%. As a proof, the accuracy obtained using these 

three new LPFPs; LPFP (s = 60%), LPFP (s = 70%) and LPFP (s = 80%) managed to surpass the accuracy 

of the original LPFP as well as the ECFP4 fingerprints (over 80% consistently). Besides, the time taken to 

build the classifier model are also significantly reduced (250 times faster than ECFP4 and LPFP) when 

compounds are represented with a lower number of features. To put it briefly, the ARM technique can act 

as an alternative to other in silico methods when predicting DTIs. In the near future, there are various other 

experiments that could be conducted as expansions to the ones depicted in this paper. For example, more 

activity classes from various categories are to be included to assess the performance in terms of the accuracy 

and the time taken to predict DTIs. Furthermore, the reduced LPFPs can also be benchmarked with different 

kinds of molecular descriptors such as ECFP2, ECFP6, ECFP8, MACCS as well as FCFP. Since different 

molecular descriptors have different algorithms in encoding the compounds, the variation in the accuracy 

scores ranging across different activity classes can be observed accordingly. It is also proven that the 
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significant fragments contained within the rules are vital because the presence of any group of fragments

within a compound will determine the interaction between the said compound with a specified target protein.

Supplementary materials

Figure S1: the group of fragments (rules) observed in the Somatostatin receptor 2 activity class for s ≥
60%; Figure S2: the group of fragments (rules) observed in the Alpha-2a adrenergic receptor activity class for

s ≥ 60%; Figure S3: the group of fragments (rules) observed in the Cytochrome P450 2D6 activity class for s

≥ 60%; Figure S4: the group of fragments (rules) observed in the Dopamine D3 receptor activity class for s ≥
60%; Figure S5: the group of fragments (rules) observed in the G protein-coupled receptor 44 activity class

for s ≥ 60%.
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