
Computing and Artificial Intelligence 2024, 2(2), 570. 
https://doi.org/10.59400/cai.v2i2.570 

1 

Article 

Clustering data analytics of urban land use for change detection 

C. Rajabhushanam 

School of Computing, Computer Science Engineering, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and 
Research, Chennai 600073, India; Rajabhushanamc.cse@bharathuniv.ac.in 

Abstract: In this study, the author proposes and details a workflow for the spatial-temporal 

demarcation of urban areal features in 8 cities of Tamilnadu, India. During the inception phase, 

functional requirements and non-functional parameters are analyzed and designed, within a 

suitable pixel area and object-oriented derived paradigm. Land use categories are defined from 

OpenStreetMap (OSM) related works with the scope of conducting climate change, using 

multispectral sensors onboard Landsat series. Furthermore, we augment the bands dataset with 

Spatially Invariant Feature Transform (SIFT), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Built-Up Index (NDBI), Leaf Area Index (LAI), and Texture 

base indices, as a means of spatially integrating auto-covariance to stationarity patterns. In 

doing so, change detection can be pursuit by scaling up the segmentation of regional/zonal 

boundaries in a multi-dimensional environment, with the aid of Wide Area Networks (WAN) 

cluster computers such as the BEOWULF/Google Earth Engine clusters. GeoAnalytical 

measures are analyzed in the design of local and zonal spatial models (GRID, RASTER, DEM, 

IMAGE COLLECTION). Finally, multi variate geostatistical works are ensued for precision 

and recall in predictive data analytics. The author proposes reusing machine learning tools 

(filtering by attribute-based indexing in PaaS clouds) for pattern recognition and visualization 

of features and feature collection. 

Keywords: distributed computing; HPC; multi-spectral imagery; machine learning; AI; local 

climate change; zonal analysis; spatial data model 

1. Introduction 

Using satellite imagery in Google Earth Engine (GEE) such as the omnipresent 
Landsat 8–9 optical sensors, over a time period of 12 years (2012–2024), with the 
intent of evaluating geo-based change detection, is the main forte in this research 
endeavour. 

Since urban areas such as Chennai (roughly 5904 sq.km) have depicted 
refactoring of land use and land cover changes primarily through trend analysis and 
suitability analysis, we intend to apply geospatial data analytics as an inference engine 
for effective spatial decision support. 

In Tamilnadu, India, urbanisation has been an evolving trend since medieval 
times to present and this phenomenon can be observed in most town expansion plans, 
as outlined by the 2011 census. Measuring population growth in Tamilnadu can be 
attributed to rapid industrialisation in urban areas and the consolidation of cooperative 
unions from villages to towns. 

By generating pre clusters within a region, by unsupervised classification 
technique, we can assimilate homogeneous feature maps into a class based hierarchical 
clustering method. This study differs from related literature reviews, in that an instance 
is defined within a contextual purview, for processing each land-use feature by 
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deducing in a neighbourhood distance-based classifier. 

2. Objective 

Demarcating zonal boundary or distinct urban gradient break is the primary forte 
of optical remote sensing sensors during the present day. In this study we intend to 
demonstrate the findings from one such controlled experiment, which is to provide to 
government authorities a spatial decision support system (SDSS). 

Primary focus is in geospatial bigdata analytics and its application to cadastral 
mapping in urban zones of Tamilnadu. Specifically, we will address the following: 
 Implementing a base layer for Tamilnadu state with pre-determined feature 

classes. 
 Visualization of topology conditions for any given pixel in the base geo-

referenced data. 
 Overlay of raster feature datasets with vector feature classes for regular/irregular 

spatial delineations. 
 Performing spatial queries with selection, projection, and joins to extract a 

geospatial feature map for the geoanalytical engine using Google Earth Engine 
(GEE). 

 Implementing a spatial-temporal (from 2012 to 2024) inference model using 
machine learning and Platform as A Service (PaaS) cloud offering. The linear 
model simulates climatic and aspatial change detection techniques, within a 
linear multivariate geostatistical regression criterion. 

 The model is trained with region of interest (ROI) and point of interest (POI) 
sample datasets, and then it is applied for validating feature datasets from any 
given feature map, using iterator operator and collection classes in JavaScript 
programming language. 

 Data analytics is applied to operate on the following geospatial change detection 
in LANDSAT-8, LANDSAT-9 sensor’s-based satellite imagery scenes. 

 Trend analysis with focal and zonal areal interpolation boundaries. 
 Suitability analysis with environmental and human induced factors. 
 Unsupervised classification study is then under-taken to do density clustering of 

data points, resulting in user specific intervals for each user-specific class. 
Deriving overall accuracy, specificity, and recall measures from a classification 
study. Specifically, a confusion matrix (commission and omission errors) is 
computed. 

 Furthermore, Spatially Invariant Feature Transform (SIFT) method is applied to 
the feature map and the classification study is ensued for the selected multi-scale 
scene analysis. True positives and False negatives are computed and the root 
mean square error (RMSE) is conducted for validation and verification. 

 Finally, Quantile regression analysis is plotted using Mean-Covariance shift 
measure as a planar separator to fit to the datapoints. Slope and Intercept are 
calculated to determine the inflection point (feature) where collinearity is evident. 

3. Related study 

Shan and Sampath [1] proposed a method based on a region-growing algorithm 



Computing and Artificial Intelligence 2024, 2(2), 570.  

3 

to group similar points into the same building by iteratively collecting points within a 
moving window. In the study of Sampath and Shan [2], the fuzzy c-means (fuzzy k-
means) algorithm was used to cluster individual planar roof segments to reconstruct 
building models. As the k-means and fuzzy c-means algorithms can only cluster 
convex shapes, they are rarely utilized directly to segment individual building derived 
from image segmentation [3–6].  

The task of retrieving parameters from observations/predictions is most 
commonly associated with deriving measured output. With this research proposal, we 
aim in creating an inverse radiometric calibration machine learning model. This model 
will map causal inference from live sensor readings to observed bio-geophysical 
readings. This approach varies from training models in Artificial Intelligence and 
Machine learning domains [7]. Further, the feature extraction task can be based on 
multi-dimensional sensor measurements or the target parameter can consist of several 
variables. Thus, this study is categorized as a classic Classification and Regression 
Theory (CART) problem. 

Our hypothesis is that linear classification technique produces spatially invariant 
features within a zonal areal modifiable area unit problem (MAUP). In doing so, 
adapting to multiple perceptron neural networks, transforms inputs to expected outputs 
by iteratively clustering over bounded feature maps (DBSCAN-VAE). So, as a result 
non-linear methods such as NN, can be deployed in a generative network (hyper-
parameters) in a linear mode. The use of neural autoencoder allowed us to transform 
raw images in their feature representation versions. These encoded images contain all 
the essential information about the original. Among different neural network models, 
autoencoders have found the application in many domains. In image processing, the 
autoencoders are used mostly for feature extraction, image segmentation, image 
compression/data reprojection and image reconstruction. The advantage of our 
autoencoder is that it can be used as a standalone algorithm for feature extraction with 
further use of extracted features for unsupervised purposes. 

As this study is a confluence of computer-vision, remote sensing, machine 
learning, and deep learning fields, a select number of publications have explored the 
research criterion. By spatially interpolating with deep learning approaches, such as 
spatial-temporal VAEs, allow learning the behaviour of simulations from previous 
runs. Ideally, this results in speeding up climate models by regularization of latent 
factors. While there will be a penalty on prediction accuracy, the speed-up might be 
worth in some cases. In addition, the same unsupervised autoencoder-like models 
could be used to approximate the sub grid processes Such architectures allow for the 
stochastic modelling of the earth system from raw observations. Currently, no use of 
this approach for the data-driven modelling of earth dynamics has been published. 

4. Synthesis of feature maps by using a variational autoencoder 

(VAE) 

The idea behind a VAE is different from the idea of an Autoencoder. Instead of 
reproducing single inputs, the goal is to map the unknown distribution of the inputs 
onto a d-dimensional multivariate Gaussian distribution and then denormalize to 
original data (Figure 1). The representation of the latent space using a dimensionality 
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reduction method is also explored in the study of Lu et al. [8]. The goal was to detect 
and track extreme events, using an AE as a method to extract features. 

 
Figure 1. Schematics of an auto-encoder in image synthesis [9]. 

Adapting the effectiveness of autoencoders to such a study is particularly 
important, as the final output is a generative model that closely approximates the latent 
space with second order derivative (dy/dx). Autoencoders can better represent complex 
spatial-temporal nature of the underlying datasets that is currently often summarized 
with indices or convoluted features. In particular there are usually no labels making 
unsupervised autoencoders useful. The motivation for AEs comes from: 1) the 
unsupervised extraction of useful features to predict; 2) their ability to generate 
additive (unseen data) samples from the original distribution; 3) the removal of noise, 
and 4) the identification of anomalies. 

In the worst case, such as without the use of an accelerating index structure 
(applying a sequential search), or on a degenerated dataset (e.g., all points within a 
distance less than e), the overall runtime complexity remains O(n2). Furthermore, the 
time complexity for creating spatial index structures (e.g., GiST or R*-tree) is usually 
in O (nlogn) and, as a result, this does not affect the total time complexity. Although 
some border points may be firstly marked as outliers and be clustered later, they are 
not added to the seeds list and unnecessary neighbourhood retrieval avoided because 
they are not core points. On the other hand, a border point may be shared by two 
closely distributed clusters. In this case, the algorithm will group the shared point into 
the first discovered cluster. An improvement on this situation is to group it into the 
cluster that its nearest core point belongs. Except from these cases, the result is 
insensitive to the processing order of the points. Additionally, if treating border points 
as outliers, the algorithm is deterministic. 

Previous studies on land use mostly focused on the functional zoning of 
ecological landscapes or farmland, with limitations to other implementations [10]. As 
mentioned above, OSM data contain multiple and finer information on land use, 
especially social functional information that is rarely captured from remote sensing 
images. This study pays attention to urban social functional land use and tries to extract 
three social functional types of land use based on OSM data. The OSM database 
contains 21 features describing the land surface objects, and each feature is labelled 
by several attributes. According to the mapping rules of Table 1, this study chooses 
three land use function types as follows: 1) residential land use, which indicates the 
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land parcels that are labelled ‘residential’, ‘apartments’, ‘dormitory’, ‘garage’, ‘house’, 
‘residential’, ‘dorm’, etc.; 2) commercial land use, which refers to the land for 
wholesale and retail, accommodation and catering, and commercial or financial 
purposes with labels of ‘retail’. ‘Marketplace,’ ‘pharmacy’, ‘hotel’, ‘café’, ‘restaurant’, 
‘bank’, ‘commercial’, etc.; 3) public service land use, which includes government and 
organizations, science and education, medical and health charity, recreational land, 
public facilities, park and green space, and scenic facilities with labels of ‘office’, 
‘university’, ‘hospital’, ‘cinema’,’ post office’, ‘park’, ‘viewpoint’. 

Table 1. Confluence of image analysis techniques. 

S.NO Scientific domain Technology Roadmap 

1 
Distributed 
Computing 

Parallel and Distributed High Performance 
Computing System (HPCS). 

High level design (HLD) to integrate satellite imagery retrieval, 
storage, and analysis into a value-added reseller (VAR) functional 
outlay. 

2 Computer Vision 
Algorithm Development for Scheduling and 
Staging System 

Image analysis, Digital Image processing for pixel detection and 
synthesis. Includes 3-D (Stereo vision) and 2-D feature extraction. 

3 
Satellite 
Communications 

Image Retrieval and Archival System Building Block for Ingest and Analysis workflows. 

4 
Geospatial 
Analytics 

Feature Engineering Geoprocessing, Recomputing, Geoanalytical, and Geo-Statistics. 

5 Cloud Computing 
Client/Server n-Tier Architecture in PaaS 
and SaaS. 

NIST defined a computer based functional entity with Ubiquity 
and Pervasiveness. 

6 Remote Sensing 
Imaging System for Sensing and Remote 
Measurement of natural phenomena 

Radiometric measurement and feature extraction 

7 
Software 
Engineering 

JavaScript and Python software development 
using Google Earth Engine (GEE) as an 
Interface (ICD standards) 

Modular driven architecture with call-return graphs and tight 
coupling using high cohesiveness. 

8 Machine Learning 
Unsupervised Classifier, Variational 
Autoencoder, SGD and Cross-Entropy 
feature segmentation. 

Semi-structured data analysis using unsupervised learning within a 
pre-defined number of feature classes. 

9 
Artificial 
Intelligence 

Inference System with Explainable Artificial 
Intelligence (XAI) 

Deep-learning using feedback and reward inference engine. 

10 
Database 
Technologies 

SQL data store for benchmarking and 
Indexing purpose. 

Data store in the cloud and within the firewall premises for 
maintaining redundancy and replication ability. 

5. Proposed methodology 

Deep learning also faces challenges that are unique to earth science data: 
multimodality; high degree of heterogeneity in space and time; and the fact that earth 
science data can only provide an incomplete and noisy view of the underlying eco-
geo-physical processes that are interacting and unfolding at different spatial and 
temporal scales. 

Causal reasoning with an inference engine is limited to studies for one site or one 
instance by design. To generalize the results obtained as in a sequential work flow, we 
have to aggregate the effects from each normalized input as a feedback mechanism to 
the precedent and antecedent path. Then applying heuristic rules (knowledge base 
aided by a human in the loop) we can reconstruct any input sequence averaging over 
mean (zero) and variance (absolute one) [10,11]. 

In this paper, a density-based cluster algorithm, DBSCAN [12], is independently 
implemented in a spatial database to separate building point clouds into individual 
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buildings. As a density-based clustering method, DBSCAN characterizes a well-
defined “density reachability” cluster model by connecting points that satisfy a density 
criterion as defined as a minimum number of objects within a certain neighbourhood. 

In contrast to k-means method that can only find convex clusters, DBSCAN can 
form a cluster of an arbitrary shape. Moreover, based on spatial databases, it benefits 
from the spatial index offered by the system and achieves performance improvements. 
The algorithm is implemented as follows, and the flowchart is shown in Figure 2. 

 
Figure 2. Proposed methodology. NDVI (Normalized difference vegetation index; 
Dry Built-up index (DBI); Dry bare-soil index (DBSI). 

6. DBSCAN algorithm 

We propose a variant of the existing DBSCAN algorithm for these purposes. The 
algorithm efficiency is measured by the relative weights applied to form clusters from 
a randomly assigned seed value. In addition to the distance (radii) parameter the pre-
processing parameter, number of clusters (region of interest—ROI), is defined in a 
linear approach. For each assigned point in a cluster, intra-class variance is minimized 
or, we can emphasize that connected component segments are created within a 5 × 5 
moving pixel neighbourhood. Thus, each individual data point in dense regions are 
core points that are assigned to each cluster based on the specificity of the sparse 
density matrix. 

 
Figure 3. Process data flow diagram in pixel-based approach. 
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One example of a bio-geophysical phenomena is surface/atmospheric 
temperature (Band 10—TIR band of LANDSAT-8) recorded from the satellite, is 
input to the climate forecasting model. This topic is sparsely researched in the remote 
sensing literature, and hence we emphasize the value factor derived by conducting a 
continuous multi-variate as inputs to our study. Many other input variables can be 
listed—NDVI, DBI, DBSI, etc. (Figure 3). 

In this experiment pre-processing machine learning model VGG16 is adapted 
(transfer learning) for filtering patterns during the training. During this iteration step 
input layer, hidden layers, and output layer are connected in a sequential arrangement 
to form a non-singularity transfer learning entity (Figure 4). 

 
Figure 4. Type I and II error reduction. 

The filters perform feature extraction and transform our data into a latent space 
where the problem is potentially easier to solve. For VGG16, data is typically structured 
in 2-D space (Longitude, Latitude). We can do data augmentation by inputting the 
sequence of bands (channels) and Indices from satellite data into the feature selection 
model (Figure 5). This architecture is akin to a convolutional neural net, excepting 
that it behaves in a VGG16 pre-trained network as such. For our purposes, we shall 
denote this step as Model-A. Inputs to the variational autoencoder (VAE) are denoted 
as Model-B. 

 
Figure 5. Category, application type, and data type segments [13]. 
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Figure 6. Pre-processing of input imagery. Examines an instance of ROI. 

Therefore, we can adapt a unified representation with x = height, y = width, b = 
band, k-statistical indices, and T-Temporal identity matrix (Figure 6). This would 
result in cubic filters with T channels. Two ways of modelling spatial, spectral and 
temporal relationships. (a) Cubic convolutions over space and frequencies and 
stacking the n time steps. (b) Stacking frequency, B, and time, T, and performing 2D 
convolutions over spatial dimensions (X, Y). Originally, the concept was developed 
for visual recognition problems with time-varying inputs [14]. It is important to note 
that when stacking channels, e.g. (B, T), the order of them is not taken into account by 
the model (Figure 7). 

 
Figure 7. Post-processing flow chart. 

Mean Square Error or Cross-entropy Optimization? 
Retrieval (Figure 8) is most often associated with least-square regression 
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modelling. Traditionally, linear regressors optimized by least-square have been the 
preferred choice but are not always sufficient to capture the complexity of retrieval 
problems. A neural network optimized by the mean-square error (MSE) loss function, 
is a one way of extending the least square linear regression with non-linearity. 
Alternatively, a probability distribution over possible outcomes can be modelled with 
Cross-Entropy based error functions. Cross-Entropy is generally associated with 
problems where we wish to label data, e.g., segmentation or classification. It can be 
shown [15] that the MSE loss is the maximum likelihood solution to a problem where 
the target can take any real values. 

Many challenges exist for deep learning in bio-geophysical parameter retrieval 
problems. Since we are modelling the Earth’s state, we need to apply algorithms on 
large amounts of data. Further, we have many sources of variance in our observations 
caused by e.g., seasonal, yearly and geographical variation (Table 1). 

 
Figure 8. Illustration of a generalized network for scene understanding and 
refinement. 

6.1. Dataset preparation 

Landsat 8, 9 sensor-based satellite imagery will be ingested from Google earth 
engine (GEE) together in creating a spatial data collection service. Bands in near-
infrared, short-wave infrared, thermal, and panchromatic will be chosen as inputs to 
the pre-trained network VGG16. 

From the chosen band spectrum, indices will be derived for first—Creating an 
image fusion-based collection set. Namely panchromatic sensor from Landsat-8 at 15 
m resolution will be fused with 30 m nir-sw-tir bands to create a spatial dataset that 
will reveal distinct patterns for a region of study (Table 2). 

Table 2. Specification of image analysis domains. 

S. No Geospatial domain Description 

1 Geo-Processing Zonal statistics, Feature dataset, Feature understanding 

2 Geo-Computing Feature selection, Feature extraction, Attribute spatial joins, Model fitting and Feature understanding 

3 Geo-Analytical Model fitting, Validation, Predictive analytics 

4 Geo-Statistics Validation, Predictive analytics 

After the image fusion step, spatial indices (Figure 9) calculated from each pixel 
in the input satellite imagery will be computed as inputs to the pre-trained VGG16 
network. Specifically: 
 Normalized Difference Vegetation Index (NDVI) for Vegetation feature class. 
 Built -up Dryland—Dry Built-Up Index (DBI). 
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 Barren land in dry climates—Dry Bare Soil Index (DBSI). 
 Normalized Difference Vegetation Index (NDVI) for water bodies feature class. 

 
Figure 9. Spectral indices calculation using image expression. 

6.2. Data augmentation in input feature dataset 

 Scale Invariant Feature Transform (SIFT)—Hierarchical Scale Space (HSS). 
 Texture derived from Gray Level Co-Occurrences Matrix (GLCM)-entropy. 
 Temperature feature derived from Band 10 of Landsat-8,9 (Table 3). 

Table 3. Summary of geo-processing tasks. 

S.No TASK—Unit Instance Description 

1 Zonal Statistics Deriving exploratory statistics for Region of Interest (ROI) 

2 Feature Selection For pattern recognition and discriminative analysis 

3 Feature Dataset Multi-Variate inputs and Derived classes in multi-dimensional analysis. 

4 Feature Extraction Fuzzy Inference System based Segmentation followed by CART task. 

5 Feature Understanding 
Variational Autoencoder (VAE) as a generative adversarial network for encoding and decoding 
patterns that can be discernible by a human in the loop. 

6 Attribute based Spatial Joins 
Linking an object-relational data store with Geospatial data using spatial joins for query and 
search operations. 

7 Model Fitting 
Quantile Regression technique for Interval demarcation and polynomial expansion using a 
symmetrical estimation. 

8 Validation and Verification (V&V) Conducting n-fold cross validation to achieve conditional local minima for ROC characteristics. 

9 Predictive Analytics Deep Learning technique to generate specificity, accuracy, and precision for recall instance. 

7. Algorithm 

Algorithm 1 Regularization and hyperparameters tuning 

1: Aim is to achieve local minima through density clustering (DBSCAN) based on Euclidean distance measure. 

2: Design covariance matrix as XT. 

3: Design of seed value as a random variable (RV). 

4: For each seed, initialize core point, boundary point and zonal area (ROI). 

5: While region growing is not ~ to NIL for batch intervals while computing weight/density estimate. 

6: Initialize cluster radius to be a compact shape (necessarily not rectangle, square) CIRCULAR path. 
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Algorithm 1 (Continued) 

7: Initialize region growing pixel values that in time and space will merge all mutually exclusive points. 

8: If core point distance is LT maximum points, assign boundary. 

9: If cluster point distance GT minimum points, assign cluster region. 

10: Now, repeat over all pixels in the sample (~) for consideration into neighbourhood (optimal) having low intraclass variance. 

11: Construct covariance matrix. 

12: Stop when number of cluster regions reach 4 feature classes. 

13: For any unassigned point, assign it as an outlier/anomaly. 

14: Stop region growing. 

15: Scan all boundary points € cluster regions. If shape is defined as equidistant, assign count of core points as a threshold. 

16: Finally run R-Tree indexing for efficient spatial index retrieval. 

8. Design of input parameters to the model 

 Design of a sparse matrix; 
 Design of covariance matrix; 
 Design of features as inputs to VAE—pyramidal resolution; 
 Design of spatial autocovariance measure; 
 Design of input tiling scheme in imagery; 
 Design of UTM zone in region of study (ROI); 
 Design of thresholding value in normalization of input data; 
 Design of SIGMA value as input to SIFT; 
 Design of cell size during Texture calculation with GLCM method; 
 Design of hidden layers in variational autoencoder (VAE); 
 Design of sequence flow during input to pre-trained network (VGG16); 
 Design of ordering of inputs to VAE; 
 Design of radius parameter for input to density clustering; 
 Design of neighbourhood size (5 × 5 default); 
 Design of epoch size during sequential processing in Iterator to avoid over/under 

fitting. 

9. Conclusion 

In this study, feature engineering paradigm was applied to evince interest and 
focus on the fragile relationships between humans and factors in environmental eco-
system. We have dealt with multi-spectral sensors and the spatial scale problem, in 
achieving an optimal scale-resolution under which causal inference is evident. Various 
state of the art algorithms and pixel/object-oriented machine learning stages were 
feature selected and feature extracted, in accordance to spatially distributed parallel 
systems. 

Conflict of interest: The author declares no conflict of interest. 
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