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Abstract: We previously developed two AI-based medical automatic image classification tools 

using a multi-layer fuzzy approach (MFA and MCM) to convert image-based abnormality into 

a quantity. However, there is currently limited research on using diagnostic image assessment 

tools to statistically predict the hazard due to the disease. The present study introduces a novel 

approach that addresses a substantial research gap in the identification of hazard or risk 

associated with a disease using an automatically quantified image-based abnormality. The 

method employed to ascertain hazard in an image-based quantified abnormality was the cox 

proportional hazard (PH) model, a unique tool in medical research for identifying hazard 

related to covariates. MFA was first used to quantify the abnormality in CT scan images, and 

hazard plots were utilized to visually represent the hazard risk over time. Hazards 

corresponding to image-based abnormality were then computed for the variables, ‘gender,’ 

‘age,’ and ‘smoking-status’. This integrated framework potentially minimizes false negatives, 

identifies patients with the highest mortality risk and facilitates timely initiation of treatment. 

By utilizing pre-existing patient images, this method could reduce the considerable costs 

associated with public health research and clinical trials. Furthermore, understanding the 

hazard posed by widespread global diseases like COVID-19 aids medical researchers in prompt 

decision-making regarding treatment and preventive measures. 

Keywords: cox proportional hazards model; hazard ratio; CT scans; fuzzy system; survival 

analysis 

1. Introduction 

Physicians rely heavily on computed tomography (CT) scans to detect diseases 

like cancers. They spend much of their time observing one image to decide if the 

patient has cancer, and if so, the stage of the cancer. Qualitative analysis of an 

abnormality in a diagnostic image is not always a robust method of analyzing an 

abnormality and may be contribute to reduced inter-rater reliability. However, when 

the abnormality can be quantified as a percentage, this both improves consistency in 

the assessments performed by different healthcare practitioners, while also providing 

a more accurate method of evaluating the aberration. 

Our previous studies described methods for quantification of the abnormality in 

images [1]. A novel method, an AI-based medical image classification tool using a 

multi-layer fuzzy approach (MFA), was introduced in the first study. The second study 

focused on developing a more robust version of the MFA method using the many-to-

many relation [2] (MCM) (manuscript under review) to find the abnormality in the 
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images, which is the disease present in the objects in the images. In the first study, a 

simple process from cognitive science known as assessment was used, which involves 

comparison of a normal image with an abnormal image. In this process of comparison, 

the structural similarity index (SSI) between two images is the similarity among the 

images [3]. When this similarity in percentage form is subtracted from 100, the 

calculation quantifies the abnormality in the abnormal image. In our second study 

using MCM, the comparison was made more robust, such that instead of considering 

one image, multiple normal images were compared with a single abnormal image, and 

all the similarity scores were averaged to obtain the abnormality in the image. This 

process was continued for all of the abnormal images, which was a more robust and 

accurate method of analyzing the images. The images were then classified, which was 

performed using multilayer fuzzy systems, computational intelligence rules, computer 

vision from AI and manual testing tools. 

A literature search was conducted using the key words for any studies like MFA 

or MCM that is to convert the image based abnormality to quantity or finding the 

hazard ratio corresponding to the image based abnormality, but no similar studies were 

found [4,5]. 

1.1. The rationale of the study 

Currently, there is limited research on using diagnostic image assessment tools, 

particularly methods that can be used for small and large data sets like the MFA and 

MCM methods, for prognostic applications, such as prediction of mortality risk. 

Moreover, following the inspection of patient images, such as CT scans, the images 

are not typically used for subsequent research endeavours. In the present study, a novel 

method was developed using conversion of image-based disease severity quantity into 

the hazard ratio through the use of an Artificial Intelligence (AI) medical image 

classification-based multilayer fuzzy approach (MHM). In this method, the hazard 

ratio corresponding to an image-based disease severity quantity was found using an 

AI medical image classification-based multilayer fuzzy approach, and survival 

analysis, a domain of biostatistics, as well as concepts from MFA [1], and MCM, a 

modified version of MFA [2], were used. This study posits that quantifying 

abnormalities in these images and determining the associated hazard within a group of 

individuals could substantially contribute to public health efforts and research 

initiatives to optimize resource allocation, substantially improve treatment outcomes 

that increase survival and reduce the expenses incurred during the conduct of clinical 

trials involving patient studies. Furthermore, the simplicity of incorporating basic 

software code in this study renders it easily applicable with existing technologies. 

Ultimately, the utilization of images acquired for the individualized treatment of 

patients can extend the scope of the study to encompass the health of larger 

populations, countries, or even the entire global patient demographic. This extension 

arises from the study’s classification of patients based on the hazard or risk associated 

with abnormalities resulting from various diseases. 

1.2. Aims of the study 

1.2.1. Primary aim 
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The primary aim of the study is the following: 

a) To quantify the abnormality in the form of images present in the objects of 

images. 

b) Finding the hazard ratio corresponding to this quantified abnormalities in a set of 

images as well as to classify the data into some sub-groups and to check the effect 

of the hazard due to the abnormality. 

c) To classify the abnormality based on the hazard or risk due to the abnormality. 

1.2.2. Secondary aim 

The secondary aim of the study is to apply the concepts of the primary aim to a 

medical CT scan image data set taken to diagnose the lung cancer, as described in 

section 1.1. The specific components of the second aim are as follows: 

a) To quantify the cancer or abnormality present in image form in a CT scans data 

set. 

b) To find the hazard ratio corresponding to the above-quantified abnormality of the 

data set, as well as to classify the data into some sub-groups and to check the 

effect of the hazard present in the images due to abnormality. 

c) To classify the abnormality based on the hazard ratio due to the abnormality 

present in the CT scans of the data. 

2. Materials and methods 

2.1. Materials 

2.1.1. Participants 

In the dataset [6] we considered, nothing was known about the age, gender, 

participants and ethnicity of the patient. The only information available was a 

confirmed lung cancer, and did not include the time of event, status or smoking status. 

To find the hazard ratios using the Cox PH model, few more variables were needed. 

That is in order to make the dataset a survival data set, some variables such as ‘time’, 

‘status’ were simulated and for the subgroup analysis ‘smoking-status’, ‘gender’, and 

‘age’ were simulated. 

2.1.2. Data set and data dictionary used in the current MHM study 

The number of CT scans in the data set used in this study was 67 [6]. Among the 

CT scans, images of the right lungs were extracted from the CT scan. The right lung 

was chosen at random for study due to the noise in the images. Additionally, the 

normal image data set was a small data set with 20 images, similar to the MCM study 

[2]. 

2.1.3. Variable description 

First, after finding the abnormality in the different images, they were classified 

as per the stages of abnormality (Table 1). Stage 1 has less abnormality than the other 

stages and more normality, and stage 4 has greater abnormality and less normality, 

such that from stages 1 to 4, the normality decreases or the abnormality decreases. 

Furthermore, the elements at each stage represent the normality percentage in the 

images. In addition, the variable ‘time’ is the time to event, ‘status’ is the occurrence 

of disease or death, ‘gender’ is whether the patient is male or female, and ‘smoking’ 
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is the smoking-status. 

2.1.4. Data types 

The variables ‘stage 1 to 4’ and time were continuous variables. Stages were in 

percentages and time was in time units, which can be days, months or years, while the 

rest were categorical variables. ‘Status’ can be categorized as live or dead, ‘gender’ 

was female (1) or male (0), and similarly for non-smoking or smoking- status. 

2.1.5. Survival analysis time data 

The survival analysis [7,8] data only has information on abnormalities in the form 

of CT scans. However, to find the hazard due to the cancer in that particular study, 

area or group, we need information on a few more variables, so these variables were 

simulated, because in order to find the hazard ratios, these variables are needed. Here, 

we included gender, age and smoking-status, and by using these variables the method 

was developed. 

Survival time is defined as time until retrieval or time until an end point whether 

it is medical or industrial [9], and can also be called the ‘lifetime’. In the current data 

set, it is the time to disease (cancer), disorder occurrence or death. The units of the 

time in this study can be days, months or years. 

The variable, ‘status,’ is the status of the patient, which is the death of the patient. 

It is a binary variable, such that ‘0’ denotes being alive or not affected, and ‘1’ denotes 

being affected by abnormality or cancer or death. The next variable added was 

‘gender’, which is male or female, a binary variable. Lastly another variable ‘smoking-

status’ was added, which was also a binary variable. 

2.2. Methods 

2.2.1. Test statistic 

The test statistic used for the Cox PH model is the chi-square test for the p-value 

assessment of each variable or covariate used in the model. 

2.2.2. Finding the risk or hazard due to the quantified abnormality or disease 

A hazard represents any factor with the capability to cause damage, harm, or 

negative health consequences to an object or individual. The hazard ratio is also known 

as the relative risk [10]. The ratio compares the risk of disease or death between the 

exposed and unexposed populations, like, for example, the ratio of the number of 

patients in a country with lung cancer and the population of that country. The baseline 

hazard is the hazard when all the covariates are zero or at their reference levels. In 

medical sciences and epidemiology, the hazard ratio plays a very important role in 

helping assess potential patient outcomes and classify patients on the basis of the 

hazard. It explains how much risk is associated with a certain disease, drug or a habit 

like smoking. To find the hazard or risk due to the quantified abnormality or disease, 

the cox PH was used, which falls under the domain of survival analysis, a branch of 

statistics. The primary emphasis of survival analysis is on the time until an event, 

which is death, or until the disease occurs. This could be the time until a patient 

experiences a relapse or the time until a machine fails, depending on the application 

of the study. 
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2.2.3. Cox proportional hazard (PH) model to find the hazard ratios of variables 

The cox PH semi-parametric regression model has been widely used in the 

medical and clinical fields, as well as the industry [11,12]. Since the Cox PH model is 

a statistical model, certain procedures used with statistical models, like hypothesis 

testing, need to be implemented when calculating the coefficients obtained when Cox 

PH model is used. 

Normally, in clinical/medical, epidemiology, and industry studies, the Cox PH 

model is used in the context of treatment or intervention, age, gender, disease stage or 

severity, socioeconomic status, smoking-status, and other important factors. In 

addition to the mandatory variables to use or to calculate hazard ratios are time to 

event, and status of the disease (please clarify this sentence). In the current study, the 

covariates of the Cox PH model are the abnormalities in the images converted into 

percentages using MCM, a novel approach to find the hazard ratio, that provides 

information on mortality risk, corresponding to the abnormality obtained using MFA 

and MCM. 

2.2.4. Steps in using Cox PH model 

The steps in using Cox PH model to find the hazard due to image based quantified 

abnormality are the following: 

Step 1. The data was prepared to use with the Cox PH model, using the CRAN-

R software and with the proper libraries, which yielded the hazard ratios, p-values, and 

confidence intervals for hazard ratios. 

Step 2. Next, the PH model was tested for accuracy, which was done by checking 

the statistical significance of the coefficients. The p-value associated with each beta 

coefficient helps assess the statistical significance of the corresponding covariate. A 

small p-value (typically less than a chosen significance level, e.g., 0.05) indicates that 

the covariate is statistically significant in predicting the hazard, suggesting that it is 

likely not due to random chance. 

Step 3. The proportional hazards assumptions were checked. The Cox PH model 

was based on some assumptions [10–14], and when the model is used, the assumptions 

are to be checked. If the assumptions are not satisfied, then it means that the mode was 

not fit properly. At the same time, for all data sets, there is no need that all assumptions 

are to be checked. In this study, the only key assumptions that were checked were: 

1) The hazard ratio is presumed to be constant over time, which means that the 

ratio of the hazards for any two persons or patients or commodities is constant over 

time. 

2) The independence assumption, which states that the observations in the dataset 

are expected to be independent. This means that the incidence or non-incidence of an 

event for one patient, person or commodity does not provide information about the 

occurrence or non-occurrence of an event for any other subject. 

2.3. Statistical procedures used in MHM 

2.3.1. The software used 

The software used in the current study were Python with Anaconda as the 

backend and spider as the frontend. Python was utilized to compare images and to 

acquire the similarity indices as described in our previous MCM study [2] using 
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OpenCV from AI. Python was also used to plot some graphs. Next, CRAN-R was used 

to calculate the hazard ratios using Cox PH model and to plot some additional graphs. 

2.3.2. Data cleaning 

The most important step in the MHM method was ensuring that when two images 

were compared, only the object, lungs, were compared. Parts of the image other than 

lungs were avoided, so that only the normal lung was compared with the abnormal 

lung in order to avoid any noise when obtaining the similarity index. 

2.3.3. Statistical tests and tools used 

As the secondary aim involves the application of the current study MHM to CT 

scans of lung cancer, in order to find the hazard due to the abnormality in CT scans, 

the Cox PH model was used. The hazard ratios were obtained by using the COX PH 

model on the abnormality data. First, the global model was tested for statistical 

consistency followed by the coefficients. Lastly, the confidence intervals were 

examined to check the model for goodness of fit or not. 

2.3.4. Method to establish the primary aim 

All the steps in the primary aim are shown in the schema in Figure 1. These steps 

are the same as the MFA or MCM method [1,2] for obtaining the fuzzy set. The general 

form of the fuzzy set obtained is {Patients’ ID, abnormality score}. Next, the Cox PH 

model was used together with some basic statistics to get hazard ratios and the survival 

probabilities on graphs for the variables. The rest of the method from the fuzzy logic 

steps until the end of the method was similar to the MCM method. 

 

Figure 1. The schema for the study MHM. 

2.3.5. Method to establish the primary aim 1.2.1 (a) 

To quantify the abnormality in the form of images, MCM [2] was used. That is, 

a few normal images were compared with the abnormal image to get the SS followed 

by taking the mean of all the SSs to get the final SS of the abnormal image. The 

abnormality was obtained by subtracting the normality in percentage form from 100, 

which was the process used to quantify the abnormality in the form of an image. 

2.3.6. Method to establish the primary aim 1.2.1 (b) 

The data classified in the above section was used with the Cox PH model to 

calculate the hazard ratios as discussed in section 1.4.4, and three steps were used with 

the Cox PH model. 

Step 1: The model is h(t/X) = h0(t)exp(β1Stage1 + β2Stage2 + … + βkStagek), 

where the required hazard ratios are exp(βk). To get the specific βk the data has to be 

used, which was carried out in the subsequent sections using CRAN-R software. 
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Step 2: The global statistical tests, the likelihood ratio test, Wald test, and logrank 

tests were used to check for the significant overall association between the variables. 

The p-value for each variable was used to check if the coefficients occurred by chance 

or if there is statistical consistency depending on the obtained p-value being less than 

or greater than a standard value (0.05). 

Step 3: The Cox PH model’s assumptions were checked as mentioned in section 

1.4.7 (b) above. The first assumption is the constant hazard ratio (proportionality), 

which states that the hazard ratio should remain constant over time. A rule of thumb 

to prove the above is that the hazard curves for the groups should be proportional and 

cannot cross each other [9]. The second assumption is that the observations in the 

dataset are expected to be independent, and in the currently used data set, neither the 

patients nor their data are related to each other. Confidence intervals are discussed in 

detail numerically while discussing the secondary aim. 

2.3.7. Methods to establish the primary aim 1.2.1 (c) 

In the previous section, the hazard ratio was obtained as exp(βi), the hazard ratio 

or the relative risk based classification is as follows [8–11]: 

If exp(βi) < 1, then the hazard or risk is reduced. 

If exp(βi) = 1, then there is no effect on hazard or risk. 

If exp(βi) > 1, then there is increase in hazard, where ‘exp’ stands for the 

exponentiation of βi. 

3. Results 

3.1. Methods to establish the secondary aim 1.2.2 (a) 

The secondary aim is the application of the primary aim to a data set of CT scans 

taken for the diagnosis of the lung cancer. To quantify the abnormality in the form of 

CT scans or images of the data set, that is, to quantify the abnormality or cancer in the 

form of images present in the CT scans, the abnormality present in the lung in the CT 

scan images of the data set was quantified by using the MCM method [2] and the 

method presented in the primary aim 1.2.1 (a). 

In addition, a few more variables were simulated for the full application of the 

primary aims. The new sample data set for stage 4 lung cancer is show in Table 1. The 

only variable that was not simulated was ‘stages’. This variable consisted of the 

abnormalities obtained by using MCM to get SSI and subtracting the SSI from 100. 

The Cox PH model can be used on the data set to find the hazard ratios (Table 1). 

Table 1. A sample of the data with simulation for variables and abnormality classified 

as stage 4. 

Patient Time Status Stage 4 Age Gender Smoking-status 

1 6.6 0 48.80 50 Female Smoker 

2 6.05 1 46.69 50.05 Female Non-Smoker 

3 2.75 0 52.40 50.12 Male Non-Smoker 

4 49.67 1 36.76 50.04 Female Non-Smoker 
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Table 2. The p-values for global statistical tests for stage 3. 

Test Calculated value Degrees of freedom p-value 

Likelihood ratio test 13.98 4 0.0007 

Wald test 10.7 4 0.03 

Score (Logrank) 13.36 4 0.01 

3.2. Methods to establish the secondary aim 1.2.2 (b) 

The Cox PH model has to be used in three steps to find the hazard ratio 

corresponding to the above-quantified abnormality of the dataset, which is described 

below for the current data set: 

Step 1. The hazard ratios, and p-values attached with the covariates ‘stage1–4’, 

‘gender’, and ‘smoking-status’ were calculated by applying the Cox PH model using 

the CRAN-R packages. Since this model is a statistical model, basic statistical 

concepts like global study’s p-values, and the p-values for the covariates were also 

obtained to check the significance of the model fit to the data. The results were 

tabulated below. In these tables all the hazard ratios were related to the covariates or 

variables. 

Step 2. The statistical significance of each of the coefficients in the table and 

whether they formed due to chance or not was checked. The global statistical 

significance was checked in Table 2. Subsequently, the statistical significance of the 

variables, and the confidence intervals for the good fit of the parameters were also 

checked. 

Firstly, the tables for all stages and the statistical analysis of the global model 

with p-values, for example, are given in Table 2. 

The p-values for the three overall tests (likelihood, Wald, and score) for stages 

1–4, showed significance, suggesting that the model holds importance. These tests 

assess the general null hypothesis that all beta coefficients (β) equal 0. In the given 

instance, the test statistics closely aligned, leading to a firm rejection of the general 

null hypothesis. That is, the coefficients were existing non zeros. 

Secondly, the statistical significance of each covariate in the partially simulated 

data was checked, which in the below discussion are the hazard ratios or the values 

under the column with the title ‘exp(coefficient)’, ‘exp(β)’ or ‘eβ’ (Tables 3–6). 

Table 3. Full Cox PH model-hazard ratios and p-values for variables of stage 1 lung 

cancer data. 

Covariate Coefficient Exp (coefficient) Standard Err. (coefficient) Z Pr (> |Z|) 

Stage 1 −0.85790 0.42405 0.38745 −2.342 0.0192 

Age −0.06678 0.93540 0.01762 −1.861 0.0627 

Gender male −1.57594 0.20681 0.32392 −2.051 0.0403 

Smoker 1.69714 5.45834 0.32379 2.190 0.0285 
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Table 4. Full Cox PH model–hazard ratios and p-values for variables of stage 2 lung 

cancer data. 

Covariate Coefficient Exp (coefficient) Standard Err. (coefficient) Z Pr (> |Z|) 

Stage 2 0.89030 2.43585 0.3874 2.298 0.0216 

Age 0.01564 1.01576 0.0176 0.888 0.3746 

Gender male 0.19913 1.22034 0.3239 0.615 0.5387 

Smoker 0.72066 2.05579 0.3237 2.226 0.0260 

Table 5. Full Cox PH model—hazard ratios and p-values for variables of stage 3 

lung cancer data. 

Covariate Coefficient Exp (coefficient) Standard Err. (coefficient) Z Pr (> |Z|) 

Stage 3 0.04527 1.04631 0.01990 2.275 0.0229 

Age 0.20473 1.22762 1.6417 0.125 0.9008 

Gender male −0.27398 0.76035 0.30131 −0.909 0.3632

Smoker −0.53360 0.58647 0.30069 0.30069 0.0760 

Table 6. Full Cox PH model—hazard ratios and p-values for variables of stage 4 

lung cancer data. 

Covariate Coefficient Exp (coefficient) Standard Err. (coefficient) Z Pr (> |Z|) 

Stage 4 −0.16303 0.84857 0.06953 −2.234 0.0190

Age 0.09225 1.096642 0.04497 2.051 0.0402 

Gender male −0.08372 0.91969 0.56618 −0.148 0.8824

Smoker −0.39789 0.67174 0.61522 −0.647 0.5178

*where Err is the error.

Table 3 shows that the variables ‘stage 1’ and ‘smoking smoker’ (wherein 

patient is a smoker) had p-values less than 0.05, that is, these values did not exist by 

chance. The hazard ratio for the variable stage 1 was exp(β) = 2.43585 and for the 

variable, ‘smoking smoker’, this value was 2.05579, and the p-values for other 

variables were less than 0.05. We can also consider the hazard ratios of those variables 

for which the p-value is greater than 0.05, but they could have occurred by chance, 

that is it suggests that the observed data is not consistent with the null hypothesis. 

Similarly, from Table 4, the variables ‘stage 2’, ‘gender male’, and ‘smoking 

smoker’ had p-values less than 0.05, which is to say that they were statistically 

significant, and in Table 5, the variables ‘stage 3’ and ‘age’ had p-values less than 

0.05, while Table 6 shows that the variable ‘stage 4’ had a p-value less than 0.05. 

To conclude, the spread of the cancer as seen on CT scans were converted to 

quantities and the hazards corresponding to the cancer were calculated. These models 

can be used to predict the trends in hazard or risk due to lung cancer and the other 

variables. Some variables had statistical significance and others did not. The variables 

that were not statistically significant were dropped from the Cox PH model. 

The only specific models with statistical significance for the stages of lung cancer 

were as follows: 

For stage 1: h1(t/X)/h0(t) = e(0.89030Stage 1+0.01564Age + 0.72066Smoking smoker), 

where h1(t/X)/h0(t) can be interpreted as the ratios of infected to non-infected, smoking 
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to non-smoking, and female to male. 

Step 3. The 3rd step in finding the hazard ratios is using the confidence intervals 

to check if the parameters, that is, hazard ratios are effective for prediction using the 

above models for all stages of lung cancer. The following rules of thumb apply only 

to parameters or hazard ratios that are in the model, which were the variables that were 

statistically significant. Firstly, the parameters should lie inside the confidence 

intervals, and we can observe from Table 7 that the parameters are lying in the 

corresponding confidence intervals. Secondly, the width of the confidence intervals 

should be very narrow, and this can also be observed. 

Table 7. Full Cox PH model—confidence intervals for stage 4. 

Covariate Exp (coefficient) Lower limit 0.95 Upper limit 0.95 

Stage 4 0.8496 0.7413 0.9736 

Age 1.0966 1.0041 1.1977 

Gender male 0.9198 0.3032 2.7898 

Smoker 0.6717 0.2012 2.2432 

The hazard gradually increased as time passes as seen in Figure 2. At 45 units of 

time, the hazard increases very steeply, leading to the next stage of cancer. Here, if the 

advancement of the spread of lung cancer or abnormality is increased, then the hazard 

increases with time. 

 

Figure 2. Hazard for smoking status among stage 1 lung cancer patients. 

In Figure 2, the data for the variable, smoking-status, is available until 35 units 

of time (what is the specific unit here?). The fluctuation in hazard in males and females 

can be observed in Figure 3. Males have a lower hazard than females. The other 

variable that had a p-value < 0.05 was ‘gender male’ which had a hazard of 0.2068, 

and this indicates that males had a decrease of lung cancer by 0.2068 compared to 

females. Similarly the pattern in hazard can be noticed for the variables in Figures 2–

4. 
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Figure 3. Hazard for the variable, gender. 

 

Figure 4. Hazard for the variable age for stage 3 of lung cancer. 

3.3. Methods to establish the secondary aim 1.2.2 (c) 

Firstly, stage 1 of lung cancer was considered (Table 3). The hazard ratio for the 

variable ‘stage 1’ was 2.4359 > 1. This implies that for every unit increase in the 

abnormality, the hazard increases by 2.4359. In addition, this decrease was not by 

chance as the variable, ‘stage 1’, was statistically significant. Next, at this stage 1, the 

other variable, smoking, a categorical variable, had a p-value < 0.05 with a hazard 

ratio of 2.0558 > 1. This also indicates that being a smoker has 2.0558 times greater 

risk or hazard than being a non-smoker. 

Secondly, the variables ‘stage 2’ (Table 5), ‘gender male’ and ‘smoking smoker’ 

had p-values < 0.05, and hence, were statistically significant. The hazard ratios and 

the classification for these variables were as follows: 

Variable ‘stage 2’ had a hazard ratio of 0.4241 < 1, which indicates that the hazard 

decreases by 0.4241 for every unit of abnormality. Normally, stage 2 should have a 

hazard greater than 1. This decrease in hazard may be attributed to treatment used if 

any. The last variable considered in the stage 2 category of lung cancer was the 

variable, smoking. Table 4 shows the hazard for the variable, ‘smoking smoker’, 

indicating that a person who smokes has a hazard ratio 5.4583 times greater than that 

of non-smokers at stage 2 as depicted in Figure 5. 
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Figure 5. Hazard for the variable, ‘stage 4’. 

Thirdly, at stage 3 of lung cancer (Table 5), the variables for which the p-value 

< 0.05 were for the variables, ‘stage 3’ and age. The hazard for the variable stage 3 

was 0.8496, which means that the hazard is decreased in the patients who were 

affected. This decrease might be attributed to treatment for cancer. Next, the variable, 

age, had a hazard of 1.0966, indicating that the hazard was slightly increasing with the 

age of the patient. 

Lastly, the only statistically significant variable is stage 4, for which the p-value 

is < 0.05, with a hazard ratio of 1.0463. This signifies that there is increase in hazard 

due to cancer. 

In this section, lung cancer in CT scans was classified on the basis of the hazard 

due to the lung cancer as follows: 

A hazard ratio of < 1 implies a decrease in the hazard due to cancer. 

A hazard ratio > 1 implies an increase in hazard due to lung cancer. 

The hazard ratio for stage 1 > 1, and the hazard ratio for smokers at stage 1 lung 

cancer > 1. 

The hazard for stage 2 < 1, and the hazard ratio for gender male of stage 2 < 1. 

The hazard ratio for smokers with stage 2 lung cancer > 1. 

The hazard ratio for stage 3 < 1, and the hazard ratio for age at stage 3 lung 

cancer > 1. 

The hazard ratio for stage 4 (Table 6) lung cancer > 1. 

The assumptions of the PH model were checked. For the first assumption, the 

hazard curves were not intersecting each other for the stage 1 variable. In addition, this 

has been verified for other stages, and the PH assumptions were met (Figures 6 and 

7). This indicates that the Cox PH model fit was successful. 

 

Figure 6. The hazard curves for the variable, ‘stage 1’. 
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Figure 7. The hazard curves for the variable, ‘smoking’. 

For the second assumption, the patients were independent of each other, so the 

second PH assumption was also met. 

4. Discussion 

The hazard ratio is an important indicator of mortality risk that provides 

information on disease prognosis and helps inform decisions about treatment made by 

healthcare professionals. There is limited literature on using biostatistics in 

combination with AI-based automated image analysis methods, particularly methods 

that can be used to analyse small data sets without the need for a training data set. The 

purpose of the current study was to find the hazard or risk due to the abnormality 

present in the images of a group of people or commodities using a quantified 

abnormality score calculated from the previously developed MFA and MCM methods 

[1,2]. This is a novel approach to using AI-based automated image analysis methods 

to determine the mortality risk associated with disease and was used for the first time. 

The MFA or MCM method was used successfully to first find the cancer in the 

CT scans together with some simulated variables and to classify them on the basis of 

lung cancer (Tables 1–4), which would give the physician information on the cancer 

spread in the form of a numerical quantity, leading to a better understanding of a 

patient’s disease progression. Secondly, for the group of patients at the different stages 

of cancer, the hazard ratio was found using techniques from survival analysis in a 

novel approach. Furthermore, the hazard was studied within subgroups of patients, 

like, for example, on the basis of smoking. Thirdly, the groups of patients with lung 

cancer were classified on the basis of hazard due to the cancer affecting them, or any 

association with their gender or smoking status. There is no other research in the 

literature like the current study that calculates the hazard corresponding to the 

converted cancer in image form to a quantified hazard. Moreover, none of the results 

contradict the hypotheses of this MHM study. 

The clinical significance of the current study is that typically in medicine, the 

hazard due to cancer is attributed to deaths, and here, for the first time, the hazard due 

to cancer has been estimated using information on cancer in image form before the 

death of the patients. With this, the physician not only has information about the cancer 

in image form, but also new information on the numerical hazard due to the cancer, 

and this could potentially lead to improved treatment. Another significant finding of 

this study is that the CT scans taken to study the particular patient can be useful to 
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study the public health of the group. This can impact medicine by allowing healthcare 

professionals to provide better, earlier treatment and save more lives. Furthermore, the 

MHM method not only saves a lot of physicians’ time, but it can also provide a means 

of increasing inter-rater reliability. In addition, normally when cancer is studied, other 

variables or symptoms are mixed with cancer and increase the number of confounding 

variables. This method does not involve any confounding with other variables, because 

in the CT scans, the cancer is visible and is converted to number, and then its 

corresponding hazard is calculated. Hence, there are no confounding variable 

interactions in this study of cancer. 

One limitation of this study is that it needs a considerable amount of data; 

however, it does not require data sets of a thousand or more, because the Cox PH 

model only needs enough data points for its assumptions to be met. In addition, the 

idea of the study has greater generalizability to other fields, but if the images are from 

a different area of science then the thresholds of classification must be found again. 

However, the thresholds obtained for cancer in the current study can be used for other 

CT scans of cancer or other populations with lung cancer. The recommendations for 

future research are to use the same CT scans or original format of the images instead 

of conversion to other formats. This will enhance the study and remove extra fuzziness 

due to the conversion of images. 

The key findings of this MHM study are the better understanding of the cancer 

or abnormality because of its ability to find the hazard ratio corresponding to the 

cancer. There is also no need to devote extra funding for the study of cancer, as existing 

CT scans were used in this study. Moreover, the method is simple to write using a 

CRAN-R package. Overall, MHM is based on the simple idea of converting 

abnormality in image form to a number, and in turn, finding the hazard due to the 

abnormality. 

5. Conclusion and future directions 

To conclude, this is a cross application study where AI, fuzzy systems, and 

computational intelligence techniques were used to convert abnormality or cancer in 

the form of an image to a quantity, and subsequently find the hazard resulting from 

the abnormality or cancer using the Cox PH model of survival analysis, after which 

the hazard was classified into categories. This was a novel approach that was used for 

the first time in the literature. Moreover, as very little software was used along with 

existing images, this study has practical applications. Future research will focus on 

classifying abnormality in images into survival probabilities. 
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