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ABSTRACT: In the following contribution, the control design of CPSs 

(Cyber Physical Systems) usually consists of an observer to estimate the 

state of the physical system and a controller to compute the control 

commands based on the state estimation studied. Our objective is to 

design control methods that are robust against attacks in the model, 

attenuating their effect and ensuring at the same time a reliable state and 

attack estimation allowing their detection and isolation while maintaining 

the system stability, integrity, and performance. The considered approach 

is based on the Lyapunov theory and LMI resolution approach in order to 

deduce the observers-controller gains. A robust output H∞ control and 

quadratic stabilization for nonlinear systems subject to actuator and sensor 

data deception attacks (cyber-physical-attacks) is proposed. The detection 

& identification issues are also reconsidered since the system states and 

the malicious signals will be reconstructed via a Polytopic-based T-S 

(Takagi-Sugeno) observer. An innovative design method where the 

attacked system is presented as an uncertain one subject to external 

disturbances is developed. A robust polytopic state feedback stabilizing 

controller based on a polytopic observer with disturbances attenuation for 

the resulting uncertain system is considered. To illustrate our proposed 

approach, we present a numerical example. An algorithm based on a 

robust polytopic controller ensuring asymptotic stability despite data 

deception attacks and external perturbations attenuation guaranteed by 

the H∞ norm will be given. Indeed, a PDC (Parallel Distributed 

Compensation) controller coupled with a polytopic observer to estimate 

the unmeasurable state variables and actuator/sensor attack signals will 

be designed for nonlinear systems subjected to data deception attacks. 

KEYWORDS: polytopic fuzzy representation; cyber-physical-systems; 

state and attack reconstruction; robust stabilizing control; disturbances 

attenuation 

1. Introduction 

In recent years, many scholars have presented reliable control strategies against various cyberattacks, 

such as false data injection attacks, time-delay switch attacks, and denial-of-service attacks. Indeed, since 

there are numerous physical sensors, complex interaction mechanisms, and massive signals, the security 

of cyber-physical systems (CPSs) is inevitably threatened. In order to tackle these threats, we need 

advances in detection, feedback control, and estimation with built-in resilience to cyber-attacks, to 
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maintain system integrity and reliability at all times, by providing uninterrupted, equipment-safe, and 

controlled operation. 

The development of control and estimation algorithms resistant to faults and failures is a 

longstanding challenge. In fault detection and isolation, the goal is to identify one or more components 

that have malfunctioned within a system. Conventionally, this involves comparing sensor measurements 

with a model and generating what is known as a residual signal. The resulting signal is subsequently 

examined to ascertain the occurrence of a fault. One of the interesting approaches, based on both model-

based, nonlinear modeling, robust control, and state and unknown parameters estimation, isolation, and 

reconstruction is the so-called polytopic one. This approach is the one to be considered in the following 

contribution. 

This class of systems can indeed represent numerous nonlinear systems. Furthermore, it shows in 

the technical development similarities with the well-studied linear models where it extends existing results 

established for linear systems into the nonlinear domain. 

2. Literature review 

Cyber-Physical security extends beyond the scope of cyber-security, offering an additional layer of 

defense. As an extension of the previous contribution[1], where an event-based approach was considered; 

in the following paper, a robust control design is developed by applying a fuzzy robust control and attack 

resilient estimation algorithm for nonlinear system stabilization. Indeed, neutralizing attacks through 

resilient estimation and control enhances the system’s ability to withstand damage and sustain operation, 

even in the presence of adversarial threats. The domain of cyber-security and resilience encompasses 

various stages, including detection (discerning if an attack has occurred), isolation (identifying the 

elements under attack, such as sensors, actuators, or control nodes), identification/estimation, and 

resilience[2]. 

In order to tackle this threat, we need advances in detection, feedback control, and estimation with 

built-in resilience to cyber-attacks, to maintain system integrity and reliability at all times, by providing 

uninterrupted, equipment-safe, and controlled operation[2,3]. 

Numerous approaches for detecting attacks found in the literature rely on classical fault detection 

techniques[4–9]. Viewed from a physical process standpoint, cyber-attacks can be perceived as stealthy and 

malicious disturbances. Addressing cyber-physical attacks requires surpassing traditional methods 

derived from fault diagnosis such that novel techniques become imperative to handle attacks that appear 

in mathematical models. Consequently, to overcome the conservative mathematical conditions, there is 

a growing interest in merging advanced nonlinear approaches with conventional control theory-based 

techniques; this method is gaining a lot of interest as a promising approach and interesting solution. 

Applying robust control and attack-resilient estimation algorithms seems to be of great interest in 

recent research. Indeed, Zhu et al.[10] considered an L2 state estimation issue for a class of discrete time-

invariant systems subjected to both randomly occurring switching topologies and deception attacks over 

wireless sensor networks. Lu et al.[11] tried to compensate DoS attacks and save network bandwidth 

resources by combining event triggered mechanisms and the Lyapunov function method. Zhu and 

Basar[12] proposed a set of coupled optimality criteria for a holistic robust and resilient design for cyber 

physical systems with an application to power systems. A model-based approach coupled with deep 

neural network was also proposed by Moazeni and Khazaei[13] where a cyberattack detection procedure 

was applied on the tank’s level measurements of a water distribution system. 
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Developing control and estimation algorithms resilient against faults and failures is a well-

established challenge. In fault detection and isolation, the goal is to identify if one or more components 

of a system have failed. Conventionally, this involves comparing sensor measurements with an analytical 

model of the system and generating a residual signal. This residual signal is then analyzed in order to 

determine if a fault has occurred. 

Nevertheless, in these algorithms, typically, there is one residual signal per failure mode. In certain 

problem formulations, the number of failure modes can be extensive, making it impractical to generate 

and analyze a residual signal for each possible failure mode[13]. For instance, in a study by Bezzaoucha 

Rebai[14], a novel detection criterion based on state residuals, utilizing real-time observed state data, was 

applied to an intelligent transportation system. To expedite detection, an adaptive detection threshold 

was introduced to replace the pre-existing computed threshold. 

One of the interesting approaches, based on both model-based, nonlinear modeling, robust control, 

and state and unknown parameters estimation, isolation, and reconstruction is the so-called polytopic 

one. This approach is the one to be considered in the following contribution. 

To address challenges introduced by various nonlinearities, such as time-varying parameters, 

saturation, hysteresis, and sine and cosine functions, among others, the concept behind Fuzzy Takagi-

Sugeno Polytopic models is to extend the well-established linear results/approaches into the nonlinear 

domain. The polypotic Takagi-Sugeno approach was already applied for state and stealthy attack 

estimation[1,14–16]. In the present contribution, as a natural extension of research work, the robust control 

side will be considered. 

Impact and contribution 

The present article addresses the stability, estimation, and control aspects of cyber-physical systems 

subject to false-data injection attacks from a pure automation and control point of view. The proposed 

approach is based on the so-called Model-based Attack Detection Identification and Isolation strategy, 

which incorporates a system model in the processes of detecting, isolating, and identifying. 

In the following paper, the control design of CPSs computing the control commands based on the 

state estimation is studied. Our objective is to design control methods that are robust against attacks in 

the model, attenuating their effect and ensuring at the same time a reliable state and attack estimation 

allowing their detection and isolation while maintaining the system stability, integrity, and performance. 

The considered approach is based on the Lyapunov theory and LMI resolution approach in order to 

deduce the observers-controller gains. A robust output H∞ control and quadratic stabilization for 

nonlinear systems subject to actuator and sensor data deception attacks (cyber-physical-attacks) is 

proposed. The detection & identification issues are also reconsidered since the system states and the 

malicious signals will be reconstructed via a Polytopic-based T-S (Takagi-Sugeno) observer. An 

innovative design method where the attacked system is presented as an uncertain one subject to external 

disturbances is developed. A robust polytopic state feedback stabilizing controller based on a polytopic 

observer with disturbances attenuation for the resulting uncertain system is considered. 

The paper is organized as follows: After a brief introduction with a short literature review of related 

works and impact and contribution sections, presented in section 1; the Polytopic representation is 

applied to the malicious attacks, the system modeling with the actuator and sensor data deception attacks, 

followed by the uncertain system representation are then detailed respectively in section 2, i.e., Materials 

and Methods. Section 3 is about the main Results of the following paper, presenting the robust output 
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H∞ observe-based T-S controller. Sections 4 and 5 are about the approach illustration through a numerical 

example, discussion, and conclusion. 

3. Materials and methods 

The design of control and estimation algorithms resilient to faults and failures is an important 

challenge in control engineering. In prior works, Teixeira et al.[19] and Oudghiri et al.[20] delved into fault 

detection and identification, focusing on detecting component failures by comparing measured output 

signals with expected ones. In our current study, our objective goes beyond mere detection; we aim to 

not only identify attacks but crucially to estimate them. This estimation is used for fault/attack-tolerant 

control design that is robust and stable. Without effective detection and estimation strategies, attacks can 

lead to undesirable consequences, potentially harming the physical plant. 

We focus in this paper on deception attacks or false-data injection attacks. In control systems, 

various types of detectors can be developed to defend against such malicious attacks. Here, we aim to 

adapt the approach developed by Bezzaoucha et al.[16] to achieve an exact and simultaneous 

reconstruction of both the system state and the time-varying attack signal. 

In our scenario, we assume that the attacker manipulates the gains of the sensors and/or actuators 

in the control system, constituting the injection of false information from sensors or controllers. 

Mathematically, explicit equations for both sensor and actuator signal attacks are derived, representing 

time-varying multiplicative faults/attacks. The Polytopic T-S approach is then employed to achieve real-

time reconstruction of these signals. 

3.1. Polytopic modeling of attacked systems 

Let us consider the nonlinear system described by Equation (1), wherein the vector of time-varying 

parameters is denoted as 𝜃(𝑡), 𝜃(𝑡) ∈ ℝ𝑛 is defined by 𝜃(𝑡) = (
𝜃𝑢(𝑡)

𝜃𝑦(𝑡)
) where 𝜃𝑢(𝑡) ∈ ℝ𝑛𝜃𝑢  and 𝜃𝑦(𝑡) ∈

ℝ
𝑛𝜃𝑦  correspond respectively to the actuator and sensor attacks (𝑛 = 𝑛𝜃𝑢 + 𝑛𝜃𝑦). Denoting 𝑥(𝑡) ∈ ℝ𝑛𝑥, 

𝑦(𝑡) ∈ ℝ𝑚 and 𝑢(𝑡) ∈ ℝ𝑛𝑢 as the system state, output, and control, respectively. The nonlinear system is 

characterized by a Polytopic representation with r sub-models. This representation can be readily 

obtained using the Sector Nonlinearity Transformation (SNT). The formulation of System (1) is as 

follows: 

{
𝑥̇(𝑡) = ∑𝜇𝑖

𝑟

𝑖=1

(𝑥(𝑡))(𝐴𝑖𝑥(𝑡) + ℬ𝑖𝑢(𝑡))

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡)

 (1) 

with the time-varying matrices 𝐵𝑖(𝑡) and 𝐶(𝑡) defined by follow: 

{
 
 

 
 
𝐵𝑖(𝑡) = 𝐵𝑖 +∑𝜃𝑗

𝑢

𝑛𝜃𝑢

𝑗=1

(𝑡)𝐵𝑖𝑗

𝐶(𝑡) = (𝐼𝑚 + 𝐹(𝑡))𝐶

 (2) 

s.t. 𝐵𝑖 , 𝐵𝑖𝑗  are constant matrices and 𝜃𝑗
𝑢(𝑡)  time-varying unknown parameters corresponding to the 

multiplicative actuator attacks. 𝐹(𝑡) = 𝑑𝑖𝑎𝑔(𝜃𝑦(𝑡)) ∈ ℝ𝑚×𝑚 is defined by: 
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𝐹(𝑡) =∑𝜃𝑗
𝑦

𝑛𝜃𝑦

𝑗=1

(𝑡)𝐹𝑗 (3) 

𝑑𝑖𝑎𝑔(𝜃𝑦(𝑡)) corresponds to a diagonal matrix with the terms 𝜃𝑗
𝑦(𝑡) (sensor attacks) on its diagonal with 

𝑛𝜃𝑦 = 𝑚 and 𝐹𝑗 matrices of dimension ℝ𝑚×𝑚 and where the element of coordinate (𝑖, 𝑖) is equal to 1 and 

0 elsewhere, i.e., 

𝐹𝑗 = (
1 0 0
⁞ 1 ⁞
0 … 1

) (4) 

3.2. Polytopic representation of malicious attacks 

The actuator data deception, or false data injection are modeled thanks to the time-varying 

parameters 𝜃𝑗
𝑢(𝑡). These attacks are of course unknown but bounded 𝜃𝑗

𝑢(𝑡) ∈ [𝜃𝑗
2𝑢, 𝜃𝑗

1𝑢], with supposed 

known limits. From the SNT transformation, the 𝜃𝑗
𝑢(𝑡) are rewritten as: 

𝜃𝑗
𝑢(𝑡) = 𝜇̃𝑗

1 (𝜃𝑗
𝑢(𝑡)) 𝜃𝑗

1𝑢 + 𝜇̃𝑗
2 (𝜃𝑗

𝑢(𝑡)) 𝜃𝑗
2𝑢 (5) 

with 

𝜇̃𝑗
1 (𝜃𝑗

𝑢(𝑡)) =  
𝜃𝑗
𝑢(𝑡) − 𝜃𝑗

2𝑢

𝜃𝑗
1𝑢 − 𝜃𝑗

2𝑢
 

𝜇̃𝑗
2 (𝜃𝑗

𝑢(𝑡)) =  
𝜃𝑗
1𝑢 − 𝜃𝑗

𝑢(𝑡)

𝜃𝑗
1𝑢 − 𝜃𝑗

2𝑢
 

𝜇̃𝑗
1 (𝜃𝑗

𝑢(𝑡)) + 𝜇̃𝑗
2 (𝜃𝑗

𝑢(𝑡)) = 1,  ∀𝑡 

(6) 

In a similar manner 𝜃𝑗
𝑦(𝑡) is expressed as: 

𝜃𝑗
𝑦(𝑡) = 𝜇𝑗

1
(𝜃𝑗

𝑦(𝑡)) 𝜃𝑗
1𝑦 + 𝜇𝑗

2
(𝜃𝑗

𝑦(𝑡))𝜃𝑗
2𝑦 (7) 

with 

𝜇̃𝑗
1 (𝜃𝑗

𝑦(𝑡)) =  
𝜃𝑗
𝑦(𝑡) − 𝜃𝑗

2𝑦

𝜃𝑗
1𝑦 − 𝜃𝑗

2𝑦  

𝜇̃𝑗
2 (𝜃𝑗

𝑦(𝑡)) =  
𝜃𝑗
1𝑦 − 𝜃𝑗

𝑦(𝑡)

𝜃𝑗
1𝑦 − 𝜃𝑗

2𝑦  

𝜇̃𝑗
1 (𝜃𝑗

𝑢(𝑡)) + 𝜇̃𝑗
2 (𝜃𝑗

𝑢(𝑡)) = 1,  ∀𝑡 

(8) 

Replacing (5) and (7) in (2), we obtain: 

{
  
 

  
 
𝐵𝑖(𝑡) = 𝐵𝑖 +∑∑ 𝜇̃𝑗

𝑘

2

𝑘=1

𝑛𝜃𝑢

𝑗=1

(𝜃𝑗(𝑡)) 𝜃𝑗
𝑘𝑢𝐵𝑖𝑗

𝐶(𝑡) = (𝐼 +∑∑𝜇𝑗
𝑘

2

𝑘=1

𝑛𝜃𝑦

𝑗=1

(𝜃𝑗
𝑦(𝑡)) 𝜃𝑗

𝑘𝑦𝐹𝑗)𝐶

 (9) 
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3.3. Polytopic representation of physical plant subjected to data deception attacks 

To ensure uniform weighting functions, and to express 𝐶(𝑡) as a straightforward polytopic matrix, 

we leverage the convex sum property of 𝜇̃𝑗 (𝜃𝑗
𝑢(𝑡)) and 𝜇𝑗 (𝜃𝑗

𝑦(𝑡)) of each parameter 𝜃𝑗
𝑢(𝑡) and 𝜃𝑗

𝑦(𝑡). 

Consequently, Equation (9) is reformulated as: 

𝐵𝑖(𝑡) = 𝐵𝑖 + ∑ 𝜇̃𝑗(𝜃
𝑢(𝑡))𝐵̅𝑖𝑗

2
𝑛𝜃𝑢

𝑗:1

 

𝐶(𝑡) = (𝐼 + ∑ 𝜇̅𝑗(𝜃
𝑦(𝑡))𝐹𝑗̅

2𝑛𝜃𝑦

𝑗=1

)  𝐶 

(10) 

with 

{
 
 

 
 
𝜇𝑗̃(𝜃

𝑢(𝑡)) =∏𝜇̃𝑘
𝜎𝑗
𝑘

𝑛𝜃𝑢

𝑘=1

(𝜃𝑘
𝑢(𝑡))

ℬ𝑖𝑗 =∑𝜃𝑘
𝑢𝜎𝑗

𝑘

𝑛𝜃𝑢

𝑘=1

𝐵𝑖𝑘

 (11) 

and 

{
  
 

  
 
𝜇𝑗(𝜃

𝑦(𝑡)) =∏𝜇
𝑘

𝜎𝑗
𝑘

𝑛𝜃𝑦

𝑘=1

(𝜃𝑘
𝑦(𝑡))

𝐹𝑗 =∑𝜃𝑘
𝑦𝜎𝑗

𝑘

𝑛𝜃𝑦

𝑘=1

𝐹𝑗

 (12) 

where the global weighting functions 𝜇𝑗̃(𝜃
𝑢(𝑡)) and 𝜇𝑗(𝜃

𝑦(𝑡)) satisfy the convex sum property where 

indices are expressed by: 

𝑗=2𝑛𝜃𝑢−1𝜎𝑗1+2𝑛𝜃𝑢−2𝜎𝑗2+…+20𝜎𝑗𝑛𝜃𝑢−(21+22+…+2𝑛𝜃𝑢−1) (13) 

for the actuator, and for the sensor. 

𝑗 = 2𝑛𝜃𝑦−1𝜎𝑗
1 + 2𝑛𝜃𝑦−2𝜎𝑗

2 +⋯+ 20𝜎
𝑗

𝑛𝜃𝑦 − (21 + 22 +⋯+ 2𝑛𝜃𝑦−1) (14) 

Finally, using Equations (10), the nonlinear LPV system (1) becomes: 

{
  
 

  
 
𝑥̇(𝑡) = ∑∑ 𝜇𝑖

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

(𝑥(𝑡))𝜇𝑗̃(𝜃
𝑢(𝑡)) (𝐴𝑖𝑥(𝑡) + ℬ𝑖𝑗𝑢(𝑡))

𝑦(𝑡) = ∑ 𝜇𝑘

2
𝑛𝜃𝑦

𝑘=1

(𝜃𝑦(𝑡))𝐶̃𝑘𝑥(𝑡)

 (15) 

ℬ𝑖𝑗 = 𝐵𝑖 + ℬ𝑖𝑗

𝐶̃𝑘 = 𝐶 + 𝐹𝑘𝐶
 (16) 

3.4. Uncertain system representation 

Utilizing Equation (15), we formulate a state and actuator/sensor data deception observer. 

Employing an ℒ2 attenuation approach, our objective is to minimize the impact of attacks on both the 

state and the estimation error of malicious inputs. 
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The considered observer is described by: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑥̇̂(𝑡) =∑∑

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

𝜇𝑖(𝑥̂(𝑡))𝜇𝑗̃ (𝜃
𝑢̂(𝑡))

      (𝐴𝑖𝑥(𝑡) + ℬ𝑖𝑗𝑢(𝑡) + 𝐿𝑖𝑗(𝑦(𝑡) − 𝑦̂(𝑡)))

𝜃𝑢̇̂(𝑡) =∑∑

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

𝜇𝑖(𝑥̂(𝑡))𝜇𝑗̃ (𝜃
𝑢̂(𝑡))

      (𝐾𝑖𝑗
𝑢(𝑦(𝑡) − 𝑦̂(𝑡)) − 𝛼𝑖𝑗

𝑢𝜃𝑢(𝑡))

𝜃 𝑦̇̂(𝑡) =∑∑ 𝜇𝑖

2
𝑛𝜃𝑦

𝑘=1

𝑟

𝑖=1

(𝑥̂(𝑡))𝜇𝑘 (𝜃
𝑦̂(𝑡))

      (𝐾𝑖𝑘
𝑦
(𝑦(𝑡) − 𝑦̂(𝑡)) − 𝛼𝑖𝑘

𝑦
𝜃𝑦̂(𝑡))

𝑦̂(𝑡) = ∑ 𝜇𝑘

2
𝑛𝜃𝑦

𝑘=1

(𝜃𝑦̂(𝑡)) 𝐶̃𝑘𝑥̂(𝑡)

 (17) 

where 𝐿𝑖𝑗 ∈ ℝ
 𝑛𝑥×𝑚, 𝐾𝑖𝑗

𝑢 ∈ ℝ 𝑛×𝑚, 𝛼𝑖𝑗
𝑢 ∈ ℝ 𝑛×𝑛, 𝐾𝑖𝑘

𝑦
∈ ℝ 𝑚×𝑚 and 𝛼𝑖𝑘

𝑦
∈ ℝ 𝑚×𝑚 are the observer gains to 

be calculated, ensuring at the same time the state and attacks estimation (convergence to zero of the 

estimation errors) and robust control constraints (to be developed in details in the following section). 

Let’s establish the errors in state and data deception estimation as follows: 𝑒𝑥(𝑡), 𝑒𝜃𝑢(𝑡) and 𝑒𝜃𝑦(𝑡) as: 

𝑒𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) 

𝑒𝜃𝑢(𝑡) = 𝜃
𝑢(𝑡) − 𝜃𝑢(𝑡) 

𝑒𝜃𝑦(𝑡) = 𝜃
𝑦(𝑡) − 𝜃𝑦(𝑡) 

(18) 

The system Equation (15) are reformulated to facilitate the computation of the dynamics of 

estimation errors. The modified representation is as follows: 

{
 
 
 
 

 
 
 
 
𝑥̇(𝑡) =∑ ∑[

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

𝜇𝑖(𝑥(𝑡))𝜇𝑗̃ (𝜃
𝑢̂(𝑡)) (𝐴𝑖𝑥(𝑡) + ℬ𝑖𝑗𝑢(𝑡)) +

        𝛿𝑖𝑗(𝑡) (𝐴𝑖𝑥(𝑡) + ℬ𝑖𝑗𝑢(𝑡))]

𝑦(𝑡) = ∑ [𝜇𝑘 (𝜃
𝑦̂(𝑡)) 𝐶̃𝑘𝑥(𝑡) + 𝛿𝑘(𝑡)𝐶̃𝑘𝑥(𝑡)]

2
𝑛𝜃𝑦

𝑘=1

 (19) 

with 𝛿𝑖𝑗(𝑡) and 𝛿𝑘(𝑡) are defined by the following equations: 

𝛿𝑖𝑗(𝑡) = 𝜇𝑖(𝑥(𝑡))𝜇𝑗̃(𝜃
𝑢(𝑡)) − 𝜇𝑖(𝑥(𝑡))𝜇𝑗̃ (𝜃

𝑢̂(𝑡)) (20) 

𝛿𝑘(𝑡) = 𝜇𝑘(𝜃
𝑦(𝑡)) − 𝜇𝑘 (𝜃

𝑦̂(𝑡)) (21) 

and satisfying: 

−1 ≤ 𝛿𝑖𝑗(𝑡) ≤ 1,−1 ≤ 𝛿𝑘(𝑡) ≤ 1 (22) 

Let us define now: 
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𝛥𝐴(𝑡) =∑ ∑ 𝛿

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

𝑖𝑗(𝑡)𝐴𝑖 = 𝒜𝛴(𝑡)𝐸𝐴 (23) 

𝛥𝐵(𝑡) =∑ ∑ 𝛿𝑖𝑗

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

(𝑡)ℬ𝑖𝑗 = ℬ𝛴(𝑡)𝐸𝐵 (24) 

𝛥𝐶(𝑡) = ∑ 𝛿𝑘

2
𝑛𝜃𝑦

𝑘=1

(𝑡)𝐶̃𝑘 = 𝒞𝛴(𝑡)𝐸𝐶 (25) 

with 

𝒜 = [
𝐴1 … 𝐴1

⏟

2
𝑛𝜃𝑢

𝑡𝑖𝑚𝑒𝑠

… 𝐴𝑟 … 𝐴𝑟
⏟

2
𝑛𝜃𝑢

𝑡𝑖𝑚𝑒𝑠
] (26) 

ℬ = [ℬ11 … ℬ𝑟2𝑛] (27) 

∑(𝑡) = 𝑑𝑖𝑎𝑔(𝛿11(𝑡),⋯ , 𝛿𝑟2𝑛(𝑡)) (28) 

𝛴̅(𝑡) = 𝑑𝑖𝑎𝑔 (𝛿2̅(𝑡),⋯ , 𝛿2
𝑛𝜃𝑦

̅̅ ̅̅ ̅̅ ̅(𝑡)) (29) 

𝐸𝐴 = [𝐼𝑛𝑥 … 𝐼𝑛𝑥]
𝑇 ,  𝐸𝐵 = [𝐼𝑛𝑢 … 𝐼𝑛𝑢]

𝑇

𝐸𝐶 = [𝐼2
𝑛𝜃𝑦 … 𝐼

2
𝑛𝜃𝑦 ]

𝑇
= [𝐼2𝑚 … 𝐼2𝑚]

𝑇

 (30) 

Thanks to (22) and definitions (29), we have: 

𝛴𝑇(𝑡)𝛴(𝑡) ≤ 𝐼, 𝛴
𝑇
(𝑡)𝛴(𝑡) ≤ 𝐼 (31) 

Using the above definitions (23)–(30), system (19) is then written as an uncertain system given by: 

{
 
 
 
 

 
 
 
 
𝑥̇(𝑡) =∑∑ 𝜇𝑖

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

(𝑥̂(𝑡))𝜇𝑗̃ (𝜃𝑢̂(𝑡))

  ((𝐴𝑖 + 𝛥𝐴(𝑡))𝑥(𝑡) + (ℬ𝑖𝑗 + 𝛥𝐵(𝑡))𝑢(𝑡))

𝑦(𝑡) = ∑ 𝜇𝑘

2
𝑛𝜃𝑦

𝑘=1

(𝜃𝑦̂(𝑡)) (𝐶̃𝑘 + 𝛥𝐶(𝑡))𝑥(𝑡)

 (32) 

4. Results: Robust polytopic 𝑯∞ T-S control 

Herein, we shall propose an algorithm in order to calculate the considered observer and controller 

gains ensuring the fulfillment of the following conditions: 

• The system described by Equation (32) attains asymptotic stability despite data deception 

attacks. 

• External perturbations attenuation guaranteed by the 𝐻∞ norm. In other words, the goal is to 

find an observer Equation (17) and a Parallel Distributed Compensation (PDC) controller 

Equation (33) for a given scalar 𝛾 > 0 s.t. attenuation condition Equation (40) is met. The 

resulting conditions to be solved will be detailed in Lemma II. 

For the nonlinear system subjected to data deception attacks Equation (1), employing the polytopic 
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observer to estimate the unmeasurable state variables and actuator/sensor attack signals, as detailed in 

Equation (17); we define the PDC (Parallel Distributed Compensation) controller as follows: 

𝑢(𝑡) = −∑ℎ𝑙

𝑟

𝑙=1

(𝑥(𝑡))𝛺𝑙𝑥(𝑡) (33) 

Let us first express the estimation errors dynamics. From Equations (32) and (18), the estimation 

errors dynamics are then given by: 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑒̇𝑥(𝑡) =∑∑ ∑∑

𝑟

𝑙=1

2
𝑛𝜃𝑦

𝑘=1

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

  𝜇𝑖(𝑥̂(𝑡))𝜇𝑗̃ (𝜃𝑢̂(𝑡)) 𝜇𝑘 (𝜃𝑦̂(𝑡)) 𝜇𝑙(𝑥̂(𝑡))

  ((𝐴𝑖 − 𝐿𝑖𝑗𝐶̃𝑘 + 𝛥𝐵(𝑡)𝛺𝑙)𝑒𝑥(𝑡)

  +(𝛥𝐴(𝑡) − 𝛥𝐵(𝑡)𝛺𝑙 − 𝐿𝑖𝑗𝛥𝐶(𝑡))𝑥(𝑡))

𝑒̇𝜃𝑢(𝑡) =∑∑ ∑ 𝜇𝑖

2
𝑛𝜃𝑦

𝑘=1

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

(𝑥̂(𝑡))𝜇𝑗̃ (𝜃𝑢̂(𝑡)) 𝜇𝑘 (𝜃𝑦̂(𝑡))

    (−𝐾𝑖𝑗
𝑢𝐶̃𝑘𝑒𝑥(𝑡) − 𝛼𝑖𝑗

𝑢𝑒𝜃𝑢(𝑡)

  −𝐾𝑖𝑗
𝑢𝛥𝐶(𝑡)𝑥(𝑡) + 𝛼𝑖𝑗

𝑢𝜃𝑢(𝑡) + 𝜃𝑢̇(𝑡))

𝑒̇𝜃𝑦(𝑡) =∑∑ 𝜇𝑖

2
𝑛𝜃𝑦

𝑘=1

𝑟

𝑖=1

(𝑥̂(𝑡))𝜇𝑘 (𝜃𝑦̂(𝑡))

    (−𝐾𝑖𝑘
𝑦
𝐶̃𝑘𝑒𝑥(𝑡) − 𝛼𝑖𝑘

𝑦
𝑒𝜃𝑦(𝑡)

  −𝐾𝑖𝑘
𝑦
𝛥𝐶(𝑡)𝑥(𝑡) + 𝛼𝑖𝑘

𝑦
𝜃𝑦(𝑡) + 𝜃𝑦̇(𝑡))

 (34) 

By Equations (32), (17) and (34), the following uncertain system with bounded external disturbances 

is obtained: 

𝑥̇𝑎(𝑡) =∑ ∑ ∑ ∑

𝑟

𝑙=1

2
𝑛𝜃𝑦

𝑘=1

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

  𝜇𝑖(𝑥(𝑡))𝜇𝑗̃ (𝜃
𝑢̂(𝑡)) 𝜇𝑘 (𝜃

𝑦̂(𝑡)) 𝜇𝑙(𝑥(𝑡))

  (𝛷𝑖𝑗𝑘𝑙𝑥𝑎(𝑡) + 𝛹𝑖𝑗𝑘𝜔(𝑡))

 (35) 

where 𝑥𝑎(𝑡) = (𝑥(𝑡) 𝑒𝑥(𝑡) 𝑒𝜃
𝑢(𝑡) 𝑒𝜃

𝑦(𝑡))
𝑇

 is the extended state vector and 𝜔(𝑡) =

(𝜃𝑢(𝑡) 𝜃̇𝑢(𝑡) 𝜃𝑦(𝑡) 𝜃̇𝑦(𝑡))𝑇 the exogenous input ( attack signals and their derivatives), supposed 

unknown but bounded. Matrices 𝛷𝑖𝑗𝑘𝑙 and 𝛹𝑖𝑗𝑘 are defined as follows: 

𝛷𝑖𝑗𝑘 =

(

  
 

𝛷𝑖𝑗𝑘𝑙
1 (ℬ𝑖𝑗 + 𝛥𝐵(𝑡)) 𝛺𝑙 0 0

𝛥𝐴(𝑡) − 𝛥𝐵(𝑡)𝛺𝑙 − 𝐿𝑖𝑗𝛥𝐶(𝑡) 𝐴𝑖 − 𝐿𝑖𝑗𝐶̃𝑘 + 𝛥𝐵(𝑡)𝛺𝑙 −𝐾𝑖𝑗
𝑢𝐶̃𝑘 0

−𝐾𝑖𝑗
𝑢𝛥𝐶(𝑡) −𝐾𝑖𝑗𝐶 −𝛼𝑖𝑗

𝑢 0

−𝐾𝑖𝑘
𝑦
𝛥𝐶(𝑡) −𝐾𝑖𝑘

𝑦
𝐶̃𝑘 0 −𝛼𝑖𝑘

𝑦
)

  
 

 (36) 

with 𝛷𝑖𝑗𝑘𝑙
1 = 𝐴𝑖 − ℬ𝑖𝑗𝛺𝑙 + 𝛥𝐴(𝑡) − 𝛥𝐵(𝑡)𝛺𝑙 and 
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𝛹𝑖𝑗𝑘 =

(

 

0 0 0 0
0 0 0 0
𝛼𝑖𝑗
𝑢 𝐼 0 0

0 0 𝛼𝑖𝑘
𝑦

𝐼)

  (37) 

From Equation (35) and the nominal system output (without sensor data deception attack, i.e. 

𝑦𝑛(𝑡) = 𝐶𝑥(𝑡)), the resulting closed-loop system becomes: 

(
𝑥̇𝑎(𝑡)

𝑦𝑛(𝑡)
) =∑ ∑ ∑ ∑

𝑟

𝑙=1

2
𝑛𝜃𝑦

𝑘=1

2
𝑛𝜃𝑢

𝑗=1

𝑟

𝑖=1

𝜇𝑖(𝑥(𝑡))𝜇𝑗̃ (𝜃
𝑢̂(𝑡)) 𝜇𝑘 (𝜃

𝑦̂(𝑡)) 𝜇𝑙(𝑥(𝑡))

      (
𝛷𝑖𝑗𝑘𝑙 𝛹𝑖𝑗𝑘

𝐶 0
) (
𝑥𝑎(𝑡)

𝜔(𝑡)
)

 (38) 

s.t. 

𝑦𝑛(𝑡) = 𝐶𝑥(𝑡) = (𝐶 0 0 0)𝑥𝑎(𝑡) = 𝐶𝑥𝑎(𝑡) (39) 

Let us remember the following definition and lemmas: 

Definition 1. For a positive scalar 𝛾, the system Equation (38) is said to be stable with desired 𝐻∞ 

attenuation level 𝛾 if it is exponentially stable with: 

∫ {
0

∞

(𝑦𝑛
𝑇(𝑡))

∞
(𝑦𝑛(𝑡))∞ − 𝛾

2𝜔𝑇(𝑡)𝜔(𝑡)}𝑑𝑡 < 0 (40) 

Lemma I. From the Lyapunov theory, the system (18) is stable with an 𝐻∞ disturbance attenuation 

𝛾 if there exists a positive symmetric matrix 𝑃 = 𝑃𝑇 > 0 s.t. 

[
𝛷𝑖𝑗𝑘𝑙
𝑇 𝑃 + 𝑃𝛷𝑖𝑗𝑘𝑙 𝑃𝛹𝑖𝑗𝑘 𝐶

𝑇

∗ −𝛾2𝐼 0
∗ ∗ −𝐼

] < 0 𝑖, 𝑙 = 1,… , 𝑟, 𝑗 = 1,… , 2𝑛𝜃𝑢 , 𝑘 = 1,… , 2
𝑛𝜃𝑦  (41) 

In order to relax conditions given in Lemma I, the following formulation is given: 

Lemma II. For a given positive scalar 𝛾, if there exist matrices 𝑃, 𝑍𝑖𝑗𝑘𝑙 , where 𝑃 = 𝑃𝑇 > 0 and 

𝑍𝑙𝑗𝑘𝑖 = 𝑍𝑖𝑗𝑘𝑙
𝑇 , 𝑖 ≠ 𝑘, 𝑖, 𝑙 = 1,… , 𝑟, 𝑗 = 1,… , 2𝑛𝜃𝑢 , 𝑘 = 1,… , 2

𝑛𝜃𝑦  fulfilling the matrix inequalities (42)-(43)-

(44), then, the controller Equation (33) makes the 𝐻∞ norm of polytopic system Equation (38) under 

attenuation level 𝛾. 

[
𝛷𝑖𝑗𝑘𝑖
𝑇 𝑃 + 𝑃𝛷𝑖𝑗𝑘𝑖 𝑃𝛹𝑖𝑗𝑘

∗ −𝛾2𝐼
] < 𝑍𝑖𝑗𝑘𝑖; 𝑖, 𝑙 = 1,… , 𝑟, 𝑗 = 1,… , 2

𝑛𝜃𝑢 , 𝑘 = 1,… , 2
𝑛𝜃𝑦  (42) 

[
(∗)𝑇𝑃 + 𝑃(𝛷𝑖𝑗𝑘𝑙 + 𝛷𝑙𝑗𝑘𝑖) 2𝑃𝛹𝑖𝑗𝑘

∗ 2𝛹𝑖𝑗𝑘
𝑇 𝑃

] < 𝑍𝑖𝑗𝑘𝑙 + 𝑍𝑙𝑗𝑘𝑖; 𝑖 ≠ 𝑙, 𝑗 = 1,… , 2
𝑛𝜃𝑢 , 𝑘 = 1,… , 2

𝑛𝜃𝑦  (43) 

[
 
 
 
 𝑍1𝑗𝑘1 … 𝑍1𝑗𝑘𝑟 𝐶

𝑇

⋮ ⋱ ⋮ ⋮

𝑍𝑟𝑗𝑘1 … 𝑍𝑟𝑗𝑘𝑟 𝐶
𝑇

𝐶 … 𝐶 −𝐼]
 
 
 
 

𝑗=1,…,2
𝑛𝜃𝑢 ,𝑘=1,…,2

𝑛𝜃𝑦

< 0 (44) 

Lemma III: Consider two matrices 𝑋 and 𝑌 with appropriate dimensions, a time-varying matrice 
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𝛥(𝑡) and a positive scalar 𝜀. The following property is verified: 

𝑋𝑇𝛥𝑇(𝑡)𝑌 + 𝑌𝑇𝛥(𝑡)𝑋 ≤ 𝜀𝑋𝑇𝑋 + 𝜀−1𝑌𝑇𝑌 (45) 

for 𝛥𝑇(𝑡)𝛥(𝑡) ≤ 𝐼. 

Replacing 𝛷𝑖𝑗𝑘𝑙 and 𝛹𝑖𝑗𝑘 by their expressions, the obtained constraints can be easily solved using 

convex optimization tools and/or the use of a dedicated resolution tool for bilinear constraints like the 

PenBMI Matlab toolbox. In the study by Kocvara and Stingl[21,22] we can find some examples. 

Calculation details 

In the following, a detailed calculation procedure is given in order to solve the matrix inequalities 

(41–43). For simplicity reasons, let us consider the case where the system is subject to a single actuator 

attack (i.e., 𝑦(𝑡) = 𝐶𝑥(𝑡)  and 𝑛𝜃𝑦 = 1 ). The obtained uncertain system with bounded external 

disturbances is given by: 

𝑥̇𝑎(𝑡) =∑∑∑

𝑟

𝑘=1

2

𝑗=1

𝑟

𝑖=1

ℎ𝑖(𝑥)𝜇𝑗(𝑎
𝑢̂)ℎ𝑘(𝑥̂) (𝛷𝑖𝑗𝑘𝑥𝑎(𝑡) + 𝛹𝑖𝑗𝜔(𝑡)) (46) 

s.t. 𝑥𝑎(𝑡) = (𝑥(𝑡) 𝑒𝑥(𝑡) 𝑒𝑎𝑢(𝑡))
𝑇 and 𝜔(𝑡) = (𝑎𝑢(𝑡) 𝑎𝑢̇(𝑡))𝑇. Matrices 𝛷𝑖𝑗𝑘 and 𝛹𝑖𝑗 are defined as 

follows: 

𝛷𝑖𝑗𝑘 = (

𝛷𝑖𝑗𝑘
1 (ℬ𝑖𝑗 + 𝛥𝐵(𝑡))𝛺𝑘 0

𝛥𝐴(𝑡) − 𝛥𝐵(𝑡)𝛺𝑘 𝐴𝑖 − 𝐿𝑖𝑗𝐶 0

0 −𝐾𝑖𝑗𝐶 −𝛼𝑖𝑗
𝑢

) (47) 

with 𝛷𝑖𝑗𝑘
1 = 𝐴𝑖 − ℬ𝑖𝑗𝛺𝑘 + 𝛥𝐴(𝑡) − 𝛥𝐵(𝑡)𝛺𝑘 and 

𝛹𝑖𝑗 = (

0 0
0 0
𝛼𝑖𝑗
𝑢 𝐼

) (48) 

Let us now detail the stability condition given by Lemma 1 for this system, i.e., 

[
𝛷𝑖𝑗𝑘
𝑇 𝑃 + 𝑃𝛷𝑖𝑗𝑘 𝑃𝛹𝑖𝑗 𝐶

𝑇

∗ −𝛾2𝐼 0
∗ ∗ −𝐼

]

𝑖,𝑘=1,…,𝑟,𝑗=1,2

< 0 (49) 

In order to solve this constraint, each term will be replaced by its expression and then we will separate 

the constant and the time-varying terms. The last one, based on the convex sum property, will be bounded; 

this will allow to solve the matrix inequalities using the tools mentioned above. 

Based on definitions, Equations (47) and (48), and considering the matrix 𝑃 as a diagonal one (i.e., 

𝑃 = (

𝑃1 0 0
0 𝑃2 0
0 0 𝑃3

), where 𝑃1, 𝑃2 and 𝑃3 are positive symmetric matrix), the constraint Equation (49) is 

rewritten as: 

𝑄𝑖𝑗𝑘+𝒬𝑘𝑡+𝒬𝑘𝑇𝑡<0, 𝑖,𝑘=1,…,𝑟,𝑗=1,2 (50) 

where 𝑄𝑖𝑗𝑘 is given by: 
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𝑄𝑖𝑗𝑘 =

(

 
 
 
 

𝑄𝑖𝑗𝑘
1 𝑃1ℬ𝑖𝑗𝛺𝑘 0 0 0 𝐶

∗ 𝑄𝑖𝑗
2 −𝐶𝑇𝐾𝑖𝑗

𝑇𝑃3 0 0 0

∗ ∗ −2𝛼𝑖𝑗𝑃3 𝑃3𝛼𝑖𝑗 𝑃3 0

∗ ∗ ∗ −𝛾2𝐼 0 0

∗ ∗ ∗ ∗ −𝛾2𝐼 0
∗ ∗ ∗ ∗ ∗ −𝐼)

 
 
 
 

 (51) 

with 𝑄𝑖𝑗𝑘
1 = 𝑃1𝐴𝑖 − 𝑃1ℬ𝑖𝑗𝛺𝑘 + 𝐴𝑖

𝑇𝑃1 − 𝛺𝑘
𝑇ℬ𝑖𝑗

𝑇𝑃1  and 𝑄𝑖𝑗
2 = 𝑃2𝐴𝑖 − 𝑃2𝐿𝑖𝑗𝐶 + 𝐴2

𝑇𝑃2 − 𝐶
𝑇𝐿𝑖𝑗
𝑇 𝑃2  Based on 

Equations (23), (24) and (25), 𝒬𝑘(𝑡) is rewritten as: 

𝒬𝑘(𝑡) = (𝒜
𝑇𝑃1 𝒜𝑇𝑃2 0 0 0 0)𝑇𝛴(𝑡)(𝐸𝐴 0 0 0 0 0)

+(ℬ𝑇𝑃1 0 0 0 0 0)𝑇𝛴(𝑡)(−𝐸𝐵𝛴𝑘 −𝐸𝐵𝛴𝑘 0 0 0 0)

+(0 ℬ𝑇𝑃2 0 0 0 0)𝑇𝛴(𝑡)(−𝐸𝐵𝛴𝑘 0 0 0 0 0)

 (52) 

Based on property (31) and lemma 3, 𝒬𝑘(𝑡) + 𝒬𝑘
𝑇(𝑡) is bounded as the following: 

𝒬𝑘(𝑡) + 𝒬𝑘
𝑇(𝑡) <

(

 
 
 

𝒬1 𝒬3 0 0 0 0
𝒬2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

 
 
 

 (53) 

with 𝒬1 = 𝜀𝐴1
−1𝑃1𝒜𝒜

𝑇𝑃1 + 𝜀𝐴1𝐸𝐴
𝑇𝐸𝐴 + 𝜀𝐵1

−1𝑃1ℬℬ
𝑇𝑃1 + 𝜀𝐵1𝛺𝑘

𝑇𝐸𝐵
𝑇𝐸𝐵𝛺𝑘  + 𝜀𝐴2𝐸𝐴

𝑇𝐸𝐴 + 𝜀𝐵1
−1𝑃1ℬℬ

𝑇𝑃1 +

 𝜀𝐵2𝛺𝑘
𝑇𝐸𝐵

𝑇𝐸𝐵𝛺𝑘 , 𝒬2 = 𝜀𝐴2
−1𝑃2𝒜𝒜

𝑇𝑃2 + 𝜀𝐵2
−1𝑃2ℬℬ

𝑇𝑃2 , and 𝒬3 = 𝜀𝐵1𝛺𝑘
𝑇𝐸𝐵

𝑇𝐸𝐵𝛺𝑘 . Applying now Schur’s 

complement with adequate change of variables, constraints (41), (42) and (43) will be easily solved using 

the tools (PenBMI) presented above. 

5. Discussion: Numerical simulation 

In the subsequent sections, the presented approach is employed on a fundamental model of a 

biological wastewater treatment plant. The mathematical model is defined by two state variables, 𝑥1(𝑡) 

and 𝑥2(𝑡) , corresponding to the biomass and substrate concentrations, respectively. The input 𝑢(𝑡) 

signifies the dwell time in the treatment plant, while the measured output is the biomass concentration 

(𝑦(𝑡) = 𝑥1(𝑡)). 

5.1. LPV representation of the process 

As a preliminary step, we express the nonlinear system Equations (54) in a polytopic form. As 

presented by Zhou and Khargonekar[18], and with specific assumptions in place, certain simplifications 

allow us to represent the nonlinear model as follows: 

{
 
 

 
 𝑥̇1(𝑡) =

𝑎𝑥1(𝑡)𝑥2(𝑡)

𝑥2(𝑡) + 𝑏
− 𝑥1(𝑡)𝑢(𝑡)

𝑥̇2(𝑡) = −
𝑐𝑎𝑥1(𝑡)𝑥2(𝑡)

𝑥2(𝑡) + 𝑏
+ (𝑑 − 𝑥2(𝑡))𝑢(𝑡)

 (54) 

where 𝑎, 𝑏, 𝑐 and 𝑑 are known parameters. Let us define: 

𝜌1(𝑡) = −𝑢(𝑡),   𝜌2(𝑡) =
𝑎𝑥1(𝑡)

𝑥2(𝑡) + 𝑏
 (55) 

From Equations (54) and (55), the quasi-LPV system Equation (56) is deduced: 
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𝑥̇(𝑡) = (
𝜌1(𝑡) 𝜌2(𝑡)

𝑜 −𝑐𝜌2(𝑡) + 𝜌1(𝑡)
) 𝑥(𝑡) + (

0
𝑑
)𝑢(𝑡) (56) 

Given that a Linear Parameter-Varying (LPV) representation is derived within a compact set of the 

state space, we can determine the maximum and minimum values of the terms 𝜌1(𝑡) and 𝜌2(𝑡) based on 

knowledge of the domain of variation of 𝑢(𝑡), Specifically, 𝜌1(𝑡) ∈ [−1,−0.2] and 𝜌2(𝑡) ∈ [0.004,15]. 

By applying the convex polytopic transformation, two partitions are defined for each premise variable: 

{
𝜌1(𝑡) = 𝜚11(𝜌1)𝜌1

2 + 𝜚12(𝜌1)𝜌1
1

𝜌2(𝑡) = 𝜚21(𝜌2)𝜌2
2 + 𝜚22(𝜌2)𝜌2

1 (57) 

with 

𝜚11(𝜌1) =
𝜌1(𝑡) − 𝜌1

2

𝜌1
1 − 𝜌1

2 ,  𝜚12(𝜌1) =
𝜌1
1 − 𝜌1(𝑡)

𝜌1
1 − 𝜌1

2

𝜚21(𝜌2) =
𝜌2(𝑡) − 𝜌2

2

𝜌2
1 − 𝜌2

2 ,  𝜚22(𝜌2) =
𝜌2
1 − 𝜌2(𝑡)

𝜌2
1 − 𝜌2

2

 (58) 

where the scalars 𝜌1
1, 𝜌1

2, 𝜌2
1 and 𝜌2

2 are defined as 

𝜌1
1 = max

𝑢
𝜌1(𝑡),  𝜌1

2 = min
𝑢
𝜌1(𝑡)

𝜌2
1 = max

𝑥
𝜌2(𝑡),  𝜌2

2 = min
𝑥
𝜌2(𝑡)

 (59) 

The sub-models are characterized by the sets (𝐴𝑖 , 𝐵𝑖 , 𝐶) with 𝑖 = 1,2,3,4. Utilizing the definitions of 

𝜌1 and 𝜌2, all the 𝐵𝑖 matrices are set to 𝐵 = [0 𝑑]𝑇. The output matrix 𝐶 = [1 0] and the matrices 𝐴𝑖 

are expressed as: 

𝐴1 = (
𝜌1
1 𝜌2

1

0 −𝑐𝜌2
1 + 𝜌1

1) ,  𝐴2 = (
𝜌1
1 𝜌2

2

0 −𝑐𝜌2
2 + 𝜌1

1)

𝐴3 = (
𝜌1
2 𝜌2

1

0 −𝑐𝜌2
1 + 𝜌1

2) ,  𝐴4 = (
𝜌1
2 𝜌2

2

0 −𝑐𝜌2
2 + 𝜌1

2)

 

The weighting functions 𝜇𝑖(𝑡) are defined by the following equations: 

𝜇1(𝑡) = 𝑔11(𝜌1(𝑡))𝑔21(𝜌2(𝑡))|𝜇2(𝑡) = 𝑔11(𝜌1(𝑡))𝑔22(𝜌2(𝑡)) 

𝜇3(𝑡) = 𝑔12(𝜌1(𝑡))𝑔21(𝜌2(𝑡))|𝜇4(𝑡) = 𝑔12(𝜌1(𝑡))𝑔22(𝜌2(𝑡)) 
(60) 

5.2. Date deception attacks representation on the actuator/sensor 

Two categories of data deception attacks are considered, specifically attacks targeting actuators and 

sensors. Mathematically, these attacks are assumed to be modeled as bounded multiplicative actuator 

and sensor time-varying faults. 

In the considered example, it is presumed that the parameter 𝑑  is susceptible to hacking. This 

actuator attack is represented by 𝑑(𝑡), such that: 

𝑑(𝑡) = 𝑑 + 𝛥𝑑(𝑡) (61) 

It can alternatively be expressed as: 

𝑑(𝑡) = 𝑑 + 𝜃𝑢(𝑡)𝑑, 𝜃𝑢(𝑡) ∈ [𝜃𝑢
2, 𝜃𝑢1] (62) 
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with 𝑑 = 2.5, 𝑑 = 2.1 and 𝜃𝑢2 = −0.1958, 𝜃𝑢1 = 0.1979. Parameters 𝑎, 𝑏, 𝑐 have been identified and 

set to 𝑎 = 0.5, 𝑏 = 0.07 and 𝑐 = 0.7. Regarding the actuator attack, the polytopic representation of the 

input matrix 𝐵 is subsequently expressed through two sub-models, as follows: 

𝐵1 = 𝐵 + 𝜃
𝑢1𝐵, 𝐵2 = 𝐵 + 𝜃

𝑢2𝐵 (63) 

where is defined by 𝐵 := [0 𝑑]
𝑇. The weighting functions 𝜇𝑗̃(𝜃

𝑢(𝑡)) are defined as given in Equations 

(6) and (11). 

Now, in the case of a sensor attack, we assume that a bounded multiplicative sensor fault 𝜃𝑦(𝑡) 

influences the output 𝑦(𝑡), such that: 

𝑦(𝑡) = (1 + 𝜃𝑦(𝑡))𝑥1(𝑡) (64) 

As previously explained, 𝜃𝑦(𝑡) can also be written as: 

𝜃𝑦(𝑡) = 𝜇1
1
(𝜃𝑦(𝑡))𝜃𝑦

1 + 𝜇1
2
(𝜃𝑦(𝑡))𝜃𝑦

2,  𝜃𝑦(𝑡) ∈ [𝜃𝑦
2, 𝜃𝑦1] (65) 

with 𝜃𝑦2 = 0.125, 𝜃𝑦1 = 0.625, 𝜇1
1
(𝜃𝑦(𝑡)) and 𝜇1

2
(𝜃𝑦(𝑡)) are defined by Equations (8) and (12). The 

polytopic form of the output is then given by: 

𝑦(𝑡) = ∑𝜇𝑘

2

𝑘=1

(𝜃𝑦(𝑡))𝐶̃𝑘𝑥(𝑡) (66) 

with 𝐶̃1 = (1 + 𝜃𝑦
2 0),  𝐶̃2 = (1 + 𝜃𝑦

1 0). 

5.3. Simulation results 

In the given example, incorporating both actuator and sensor attacks and applying the proposed 

approach by solving Theorem 1, a simultaneous state and attacks observer is formulated. The initial 

conditions for the system are taken as 𝑥(0) = (0.1 1.5), and for its observer 𝑥(0) = (0.09 2.3). For 

both attacks, the initial conditions are set to zero, i.e 𝜃𝑢(0) = 0 and 𝜃𝑦(0) = 0. 

The state vector, its estimate, and the data deception attack along with their estimates are illustrated 

in Figures 1 and 2, respectively. The plots demonstrate the efficacy of the proposed observer; both system 

states and the time-varying multiplicative actuator/sensor attacks are accurately estimated, ensuring 

system stability and attenuating the effects of attacks. 

 
Figure 1. System states and their estimates. 
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Figure 2. Data deception attacks and their estimates. 

6. Conclusion 

In the presented contribution, a robust control and quadratic stabilization for nonlinear systems 

subject to actuator and sensor data deception attacks (cyber-physical-attacks) has been proposed. A new 

design method based on the rewritten of the attacked system as an uncertain one subject to external 

disturbances was detailed. Robust polytopic state feedback stabilizing controller based on polytopic 

observer with disturbance attenuation for the obtained uncertain system was applied. The considered 

approach gives both controller and observer gain on a single step design and presents less conservative 

stability conditions than usual approaches. The obtained results are promising and as perspective research 

work would be on a concrete system (cyber-physical-plant) application. 
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