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ABSTRACT: In this current research, the drying characteristics of  carrot 

slices dried in a convective hot-air dryer are analyzed employing image 

analysis to determine the most significant factor. From the acquired 

images, nine parameters viz. redness (R), greenness (G), blueness (B), 

lightness (L), redness (a), yellowness (b), energy, entropy, and upper 

surface area of  carrot slices were calculated using the algorithm 

developed in MATLAB 2015a. Boruta feature selection algorithm in the 

R console showed lightness, redness, and energy were the most 

significant features among calculated parameters. Additionally, single-

layer feed-forward artificial neural network (ANN) architecture with 

three inputs (hot air temperature, thickness of  slices, drying time), and 

outputs namely lightness, redness, and energy with one hidden layer was 

used to model input variables to that of  responses. Multiple regression 

models are employed to optimize the drying condition by further 

assessing the behavior of  response variables with hot air temperature and 

thickness of  slices as inputs and lightness, redness, and energy as outputs. 

The lightness and redness of  samples are found to be decreasing with an 

increase in temperature and a decrease in thickness. Whereas, the effect 

of  these input parameters on energy, the measure of  homogeneity of  the 

product surface, is found to be reversed to that of  the effect on lightness 

and redness. Lightness and redness are set to be highest, whereas energy 

was kept to be lowest. Convective hot air temperature of  60 ℃ and 7 mm 

thickness sample was found to provide the best quality product within 

the experiment range. 
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carrot slices 

1. Introduction 

Carrot (Daucus carota L.) is the foremost vegetable plant across the globe owing to its large production 

of greater than 41 million tons (carrot + turnips)[1]. Carrot is used as processed or fresh produce for human 

consumption and contains around 16 to 38 mg/100 g carotenoids. These carotenoids are found to 

improve our immune system and decrease the risk of a few types of cancer and cardiovascular disease[2]. 

It needs to be dried to increase its shelf life, be easy to transport, and assure protected storage due to its 

perishability[3–5]. Different techniques like osmotic dehydration, tray drying, fluidized bed, etc. were used 

to reduce the moisture content of carrots up to safe storage moisture level (9%–10% dry basis)[6]. The 

primary interest in these studies has been an investigation of drying kinetics at different operating 
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conditions and a suitable model describing the process accurately. Optimization of independent operating 

variables based on chemical (carotene content) and physical parameters (like bulk density and 

rehydration ratio) was also investigated[7]. During drying, changes in visual characteristics are 

prominent[4]. These include a change in color, texture, and morphology of the product. Thus, to assess 

the effect of drying on the product, quantification of these qualitative attributes becomes very important[8]. 

The color attributes include redness, lightness, yellowness, etc., whereas the texture of visual properties 

includes energy, homogeneity, contrast, etc., and the morphological properties include area, perimeter, 

ferret diameter, etc. 

Machine vision is a novel, rapid, non-contact, and non-destructive method of quantitative 

information procurement technique for the object of interest[5]. The food industry is among the most 

important sectors where machine vision is employed in a wide range of applications[9]. Machine vision 

primarily includes an image acquisition system and a computer system for the analysis of acquired 

data[10]. Depending upon the particular interest images may be acquired by hyperspectral camera or 

charged couple device (CCD) camera or scanning electron microscope[11], etc. Among all these devices 

CCD camera-based images are the most widely used[5]. Images are mostly used to classify the different 

objects in a mixture. These include different varieties of grains, different grades of fruits[9,11], etc. Images 

are also used to monitor the effect of various unit operations on the products being operated[12]. Batch 

drying of shrimps, figs, and apples is a few examples of this paradigm of application[13,14]. Another aspect 

of the application of machine vision in food is a non-destructive chemical analysis using hyperspectral 

images[15]. 

Machine vision is a technique for quantification of the aforementioned visual properties. Thus, to 

meet the requirement for quantification of qualitative visual properties, machine vision can play an 

inevitable role. There has been increased interest in the past decade in the application of machine vision 

in the food sector application[5,15–17]. For example, different varieties of wheat grains were classified based 

on image color, texture, and morphology[18], an algorithm for the classification of different types of 

fruits[19] using a feed-forward neural network (FNN)[14]. There is another aspect of the application of 

machine vision that assesses the change of quality attributes like color during an operation. Mass transfer 

kinetics of osmotically dehydrated kiwi fruits were investigated by Fathi et al.[20], using image analysis. 

A study on the effect of drying variables on morphological parameters during convective drying showed 

a statistically significant relationship between drying medium temperature, velocity, and image texture 

parameters like normalized energy, contrast, and homogeneity[21,22]. 

Color kinetics during hot air drying of the osmotically dehydrated pumpkin using image analysis 

suggested that image textural and morphological features should be taken into consideration to describe 

the effect of drying time on the product more precisely[23]. In another study, the drying condition of apple 

slices was optimized on the basis of color change, shrinkage, and drying time by image analysis to find 

out color change and shrinkage[24]. 

Image processing and analysis is an innovative tool to recognize objects of interest and for extracting 

computable data from digital images to deliver objective, non-contact quality assessment without 

destruction[25,26]. 

In food industries, machine vision is used largely for the classification of fruits, meats, cereals, 

nutrient determination, and moisture content distribution in food products. There has been an increased 

interest in the application of machine vision in the food processing sector in the past few decades. Some 

of the important features like the area and total color change of food products have been widely used for 
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drying process modeling as response variables[24,27–29]. However, the textural and morphological features 

should also be taken into account to get a holistic view of the effect of drying on product quality as 

proposed by Zenoozian et al.[23]. Different varieties of wheat grains were classified in terms of image 

color, texture, and morphology[18]. For image analysis, texture represents the distribution pattern of 

intensity values of reflected light from the surface, whereas morphology suggests the shape and size of an 

object of interest. Fernandez et al.[30] carried out the image analysis of apple discs to assess the impact of 

laboratory air drying on the color, shrinkage, and texture of the image. They observed that area was 

reduced during drying whereas the perimeter did not change much. Similarly, redness increased during 

drying and lightness almost remained the same. Boruta feature selection algorithm is used to choose 

statistically significant responses from computationally intensive parameters in the simplest form. Poona 

and Ismail[31], reported that the Boruta algorithm implanted with a random forest classification algorithm 

provided a precise model for judicious selection of healthy and infected seedlings. Lim et al.[32], used the 

Boruta wrapper algorithm to select essential features for the analysis in order to verify the authenticity of 

white rice. According to the Boruta algorithm, 13 lysoglycerophospholipids (GPLs) were essential among 

17 lysoGPLs, hence 13 lysoGPLs were considered essential for their study. 

Recent technological advances have transformed several sectors, including food processing. Carrot 

slice drying modelling using machine vision is a breakthrough. This revolutionary drying technology 

offers unmatched accuracy and efficiency. Machine vision uses advanced algorithms and image 

processing to monitor and analyze drying dynamics in real time, revealing moisture content, shrinkage, 

and color changes. Machine vision enables predictive modelling during carrot slice drying, improving 

process control and product quality. This research discusses how machine vision can optimize drying 

settings and produce high-quality dehydrated carrot products in carrot slice drying. This paper’s 

technique, findings, and comments illuminate machine vision’s many uses and implications in carrot 

slice drying. In doing so, we aim to contribute to the growing body of knowledge at the intersection of 

food science, technology, and process optimization. 

Though drying operation increases shelf life, it also reduces the quality attributes of products. Quality 

evaluation is often both a destructive and expensive task. In this regard, machine vision can intervene 

and offer a reasonably good solution. 

The incorporation of machine vision into the modelling of carrot slice drying process is a state-of-

the-art development in the ever-changing field of food processing[33]. Utilizing advanced algorithms and 

real-time picture analysis, machine vision provides an unparalleled degree of accuracy in monitoring and 

comprehending the drying dynamics[34]. This study explores the significant advancements introduced by 

machine vision and conducts a thorough comparison with the most advanced techniques currently 

available. Through comparing the advantages and disadvantages, our aim is to determine the superiority 

of machine vision in terms of its ability to forecast outcomes, regulate processes, and improve the overall 

efficiency of drying carrot slices. 

2. Materials and methods 

2.1. Raw material 

Fresh carrots (Daucus Carota L.) were brought from the local market of IIT Kharagpur and kept at 

4 ℃ in the refrigerator. During the experiment, carrots were cut using a vegetable cutter and made into 

slices of 30 mm diameter (3 mm, 5 mm, and 7 mm thicknesses) and dipped into the water. Finally, carrot 

slices were kept in a convective tray dryer for drying at preset conditions (50 ℃, 60 ℃, 70 ℃). The initial 
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moisture content of carrot samples was found to be 85% to 89% (wet basis). 

2.2. Convective hot air drying 

A laboratory-scale convective hot tray dryer was used for drying carrot slices. Prior to drying, the 

dryer was run for 30 min to bring the drying air condition to the desired condition under a steady state. 

Carrot slices were put into the top and middle tray. Experiments were carried in different levels of drying 

air temperature (60 ℃, 70 ℃, and 80 ℃) and different slice thicknesses (3 mm, 5 mm, and 7 mm) in a 

laboratory-scale tray dryer with an air velocity of 1.3 m/s. During each experimental run, firstly, a tray 

having 25 slices of carrots was weighed and put into the dryer. After 15 min the next tray having the same 

number of carrots was further inserted into the dryer. Thus, after four trays were inserted into the dryer 

consecutively, the first tray was already treated for 45 min. Now within 15 min of time span, the tray was 

taken out the dyer, carrot slices were weighed by a weighing balance, and the image was taken by the aid 

of the image acquisition system. Thus, in 15 min, each try was taken out of the dryer and the 

aforementioned measurements were taken. While image acquisition, it was made sure that each time a 

particular slice is placed on the same position over and over. Thus, the image of particular slices was 

taken repeatedly. This process ensures proper representation of the image attributes. Otherwise, these 

attributes will vary. The endpoint of drying was determined when there was no significant variation in 

the mass of samples in three successive readings. 

2.3. Image acquisition and image processing 

This section elaborates the steps involved in the image acquisition system and the different steps 

involved in image processing in detail. 

2.3.1. Image acquisition 

The image acquisition system was constructed using thermocol and chart paper. Thermocol sheets 

having a thickness of 2 cm were brought from the market. Two squares of 41 m × 41 m were cut for the 

base and ceiling of the box. Another four pieces of thermocol were cut in the size of 41 m × 31 m for the 

sides of the acquisition box. Thus, the overall dimension of the image acquisition box was 41 m × 41 m 

× 31 m. Green chart paper was used as the background of the image. It was done since the green 

background has negligible redness whereas the carrot has high redness compared to that of the 

background. Thus, the red color channel was used to segment the image from the background. A backlit 

system of illumination was employed. In this regard, strip LED lights were used for illumination 

purposes. Motorola E (2nd generation) phone was used to capture the image. The phone was placed at 

the top of the box. There was a hole on the top of the box through which the image was captured. The 

camera lens had an exposure time of 1/139 seconds and a focal length of 2 mm with an aperture of f/2.2. 

Both horizontal and vertical resolution of the image was 72 dpi with a pixel size of 1920 × 2560. The 

image was stored in .jpg format. 

2.3.2. Image processing 

Image processing is done to improve the quality and interpretability of the acquired image. Noise is 

removed from the image. Thus, actual and appropriate quantification of image attributes is measured. 

Image processing involves several steps. The applicability of an algorithm that is steps involved in 

processing depends upon the case-specific requirement. For example, an algorithm used for the 

classification of different kinds of fruits will be different from an algorithm involved in the modeling of 

the dehydration process of shrimps. Thus, before incorporating a particular algorithm, it becomes very 

essential to understand the problem domain properly. This makes the certainty of steps to be taken 
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properly to yield the desired outcomes. 

The different steps involved in the image processing of carrot slices are shown in a flowchart in 

Figure 1. Steps include image acquisition, image filtering, separation of the red channel, segmentation of 

the separated image, masking of the segmented binary image on the original color image, and finally 

conversion of masked color image into the gray image. After the involvement of these steps, the original 

image can be subjected to be quantified. The required image attributes are derived based on the final 

processed image. Different stages of the image of fresh carrot slices (5 mm thickness) taken for the 

experiment resulting from each of the mentioned steps are shown in Figure 2. 

 
Figure 1. Flowchart of  steps involved in image analysis of  carrot slices. 

 
Figure 2. Different stages of  an image of  fresh carrot slices (5 mm thickness) taken for the experiment, (a) original image; (b) 

image in the red channel; (c) segmented binary image; (d) masked color image; (e) gray scale image. 

Filtering 

Filtering is an essential part of image pre-processing. This reduces the noise in the image. Thus, 

improves the quality and interpretability of images. In this research, a Gaussian filter was used. 

Separation of  the red band 

The red channel of the acquired image is separated from the other two channels namely R (red) and 

G (green). This was done to improve the result of the segmentation process. The lower redness value of 

the background and higher redness value of the object makes it convenient to differentiate between these 

two. 

Segmentation 

Through image segmentation, the object of interest is separated from the background and other 

secondary entities[30]. Then appropriate segmentation method (Otsu method) was used or thresholding 

operation. Essentially this step separates the object from the background and thus we are left with only 

an object of interest. This operation results in a binary image with objects assigned with 1 and background 
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with 0. 

Morphological closing 

The morphological closing operation is a fundamentally mathematical set operation. It includes 

firstly erosion and then dilation. These are used for reduction in further noise in the image. Erosion 

operation removes pixels from the edges of objects in a binary image. While dilation operation fills up 

the noisy hole within the object of interest. Thus, an image is resulted in removed noises both in boundary 

and interior. In this particular research disk of the 5-pixel radius was used as a structural element for 

closing operation. 

Area 

The area of objects was measured based on the closed foreground of the image. The value returns 

the total number of pixels, assigned with 1. Now based on the resolution of the image, the returned value 

was converted into the physical area (mm2). Here 72 dpi means there are 72 pixels in one inch. Also, the 

number of pixels in horizontal (1920) and vertical directions (2560) is also known. Thus, the area of each 

pixel was found and finally, the total areas of objects were determined. 

Masking with the original image 

The masking operation is done to extract the original color object from its background. It is a matrix 

multiplication operation. The binary image, having only 1 and 0 is multiplied with each of the R, G, B 

channels of the original image. Thus, the gray level values of objects remain the same whereas values of 

other background pixels get zero. To get the original image back, three masked channels are catenated 

together. Thus, we get the original image back in masked form. 

Color feature extraction from masked image 

Feature extraction, as the name suggests, essentially means quantification of attributes of the image. 

Image features are mainly classified as external and internal features. External features are the description 

of the boundary of a region of interest. Internal image features are attributes related to pixels inside the 

region of interest. The color feature is one of the widely used internal features. It depicts gray level values 

of each pixel inside the object. 

The camera perceives the image in RGB color channels. This channel is device-dependent, which 

means for different acquisition systems like camera scanners etc. RGB values will differ. Thus, to get a 

reproducible result one must convert this value to such values which are not device-dependent. The “Lab” 

color space is such a space in which values do not depend on the device which captures the image. So, 

the masked color image is converted into “Lab” using MATLAB codes. The average values of RGB and 

Lab as well are taken as color features in this research. 

Conversion of  the masked image into gray scale 

The masked color image is then converted into a gray scale. This results in an image containing a 

weighted average of the gray level of RGB values in a particular pixel as given in Equation (1). 

Gray scale value = 0.2989 × R + 0.5870 × G + 0.1140 × B (1) 

where R, G, B represents gray level values of each of the red, green, and blue channel in a particular pixel. 

The gray level scale value represents the weighted average of the aforementioned values. This is done to 

compute the image texture features in a convenient way. Otherwise, the texture will be computed in each 

color plane. It will result in unnecessary computation. 
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Image texture parameters 

Like color features, texture features are also important internal features. The idea of texture in 

computer vision is completely different than the food industry. In the food industry, food texture, such 

as gumminess, chewiness, brittleness, adhesiveness, elasticity, viscosity, cohesiveness, and, hardness, is 

generally discussed while in computer vision discuss image texture as graininess, smoothness, coarseness, 

and fineness, and is generally characterized by the spatial arrangement of the brightness values of the 

pixels in a region in images[35]. Texture can reflect the cellular structure of food materials in food images 

and therefore can be utilized as a food quality indicator up to some extent[36]. There are different methods 

to calculate these features like statistical, spectral, and structural. Among all these methods, the statistical 

texture is the most extensively[37] applied method in the food industry for classification or quality grading. 

One of the widely used statistical texture analysis methods is the grey level co-occurrence matrix, in 

which the texture feature is extracted by some statistical approaches from the co-occurrence matrix[38]. 

The relation of pixel gray level intensity with neighboring pixels at a particular distance and direction is 

computed, called co-occurrence matrix. The statistical relationships of the elements of the co-occurrence 

matrix are found out. Energy, entropy, homogeneity, etc. are mainly used texture features. Each of these 

features represents distinct properties of an image. 

2.4. Significant feature selection 

Extraction of features in large numbers results in so much redundant data. There are many methods, 

used for data redundancy like filter method, wrapper method, and embedded method. For this current 

research Boruta algorithm was used[39]. This algorithm is based on the wrapper method. A random forest 

classifier is used for the selection of significant features among all attributes. It randomly creates many 

decision trees based on a different number of attributes and thus creates and thus a random forest from a 

given data set. It also creates shadow variables from the dataset. Each attribute is given an important 

value as per the classification accuracy. Now the addition of a new branch in the tree that is a new 

attribute either results in improved or declined accuracy of the tree. Now the change of the importance 

of an attribute at different trees is computed. If this importance is widely varied the attribute is marked as 

important otherwise unimportant. 

Recently it has found its place in different fields from remote sensing to medicine. Poona and 

Ismail[31] have applied this algorithm for discrimination between stressed and healthy seedlings using 

hyperspectral data and Boruta was found to be performing best among other used algorithms. Chen et 

al.[40] used the Boruta algorithm to find out significant genera of microbes from a pool of microflora 

causing multiple sclerosis of patients. 

2.5. Artificial neural network 

Artificial neural network (ANN) is a computing system of interconnected neurons arranged in 

layers. An input layer, one or more hidden layers, and an output layer are comprised in the feed-forward 

network. From the outside world, the information is received through the input layer, get processed, and 

then transmitted to the hidden layers. The predictions get transmitted to the external world by the output 

layer. “Training” is the iterative process of adjusting the network connection weights in response to a 

number of examples presented to the network. Training is done to achieve a unique set of connection 

weights required to compute outputs that are very adjacent to the desired outputs for all the examples 

used in training[41–44]. 

ANN models are generally used for classification, prediction, and clustering. This gives an idea 
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about the effect of independent drying parameters on the quality of carrots, expressed in terms of image 

features. Drying time, air temperature, and thickness of carrot slices was kept as input variables. The 

significant features found from the Boruta algorithm were kept as output variables. The total dataset (378) 

was divided into training (278) and testing (100) datasets. The ranges of responses were different from 

one another. This results in slower or early stopping of learning the algorithm. To prevent this situation 

input and output values were normalized between −1 to +1. 

Using MATLAB 2015a Neural Network Toolbox, a multilayer feed forward neural network was 

formed. Levenberg-Marquardt algorithm was used as a training algorithm. A tan-sigmoid function 

(Equation (2)) was used as the transfer function in the first layer of the network, and a linear (Equation 

(3)) function was used in the second layer. While training the network, 70% of the data was used for 

training, 15% was used for validation to prevent overfitting, and the rest 15% was used for testing the 

model. Once created, the original test data (100) was fed into the network, and output was simulated. 

Finally, simulated and experimented responses were plotted to find out the goodness of fit of the network 

architecture to predict the output. 

Tansig(𝑥) =
2

(1 + e−2𝑥)
− 1 (2) 

Purlin(𝑥) = 𝑥 (3) 

Since there is no universally standardized rule for learning rules at input-output layers and the 

number of hidden layers and neurons at each layer, by trial and error well-performing, suitable 

architecture was established. 

2.6. Data analysis for optimization 

All the important responses got from the Boruta algorithm were analyzed. For optimization of 

processing conditions (hot air temperature and thickness of carrot slice) Design Expert 7.0 (Stat-Ease, 

USA) software was used, and numerical optimization was employed. 

General quadratic second-order polynomial was used for modeling responses with the given set of 

input variables as shown in (Equation (4)). 

𝑌𝑟 = 𝑏𝑟0 + ∑𝑏𝑟𝑖𝑥𝑖

2

𝑖=1

+ ∑𝑏𝑟𝑖𝑖𝑥𝑖
2

2

𝑖=1

+ ∑ 𝑏𝑟𝑖𝑗𝑥𝑖𝑥𝑗

2

𝑖≠𝑗=1

 (4) 

where: 𝑌𝑟 = Responses selected from Boruta algorithm, and b0, bi, bii, bij—constants, linear, quadratic, and 

cross-product regression coefficients, respectively. Numerical optimization was used to optimize selected 

features using a regression model within the experimental range. 

3. Results and discussion 

3.1. Kinetics of drying 

The variation of moisture ratio of carrot slices (3, 5, 7 mm thicknesses) with different levels of hot 

air temperatures (60 ℃, 70 ℃, and 80 ℃) are shown in Figure 3. It can be found that at a fixed 

temperature of hot air as the thickness of the slices increased, the drying time increased[45,46]. It was also 

observed that at a higher temperature range the drying time was almost similar to each other at different 

thicknesses of carrot slices. However, a different type result was reported by Doymaz[47], stating the 

increase in drying air temperature results in a decrease in the drying time. The observed result in the 

current study could be attributed to several reasons including the variety of the carrot as it was procured 

from the local market and could also be thinner thickness selection for the study purpose which led to 
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faster moisture removal. 

 
Figure 3. Moisture ratio variation of  different thickness carrot slices at hot air temperatures of  (a) 60 ℃; (b) 70 ℃; (c) 80 ℃ 

with time. 

3.2. Important feature selection 

The dataset on which the Boruta algorithm was applied was generated by taking image features at 

45 min intervals at different experimental conditions. Features were combined all together and a larger 

dataset was produced. The codes are written in the R console to analyze the significant features as shown 

in Figure 4. Figure 5 represents the several significant image attributes in a graphical manner as obtained 

from the R console. Representation in this fashion improves the interpretability of the results. It can be 

seen that all the features are selected as important. This is expected because so far these features like area, 

total color change have been widely used for modeling as response variables[24,27–29]. But as proposed by 

Zenoozian et al.[23], the textural and morphological features should also be taken into account to get a 

holistic view of the effect of drying on product quality. Here, based on mean importance top three 

important features were selected as energy, lightness, and redness. These features were further used for 

ANN modeling and used for optimization as well. 
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Figure 4. Representation of  codes written in R console to analyze the significant features. 

 
Figure 5. Representation of  significant feature attributes in graphical manner as obtained from R console. 

3.3. ANN modeling 

As mentioned earlier, there is no fixed rule which architecture of the neural network best describes 

the dataset, the appropriate architecture was figured out by trial and error. Calculation with one hidden 

layer is less computationally intensive than multiple hidden layers. So, iteration was started with one 

hidden layer to check it describes the relationship between input and output properly or not. Keeping one 

hidden layer and transfer function from input fixed number of neurons in the hidden layer was changed. 

Firstly, the log sigmoid transfer function was used to relate the hidden layer to output. The performance 

of different neural network architectures with one hidden layer is given in Table 1, as observed from the 

table the simulated output with mean square error (MSE) is around 0.59. As the data is normalized 

between −1 to +1, MSE in this order cannot be tolerated. Then pure linear transfer function was used to 
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associate the hidden layer to output. The number of neurons was varied among 3, 5, 7, and 10. The least 

MSE was found in architecture consisting of 7 neurons. The MSE of the testing set was found to be 0.026. 

This result is good to be considered. Thus, further hidden layers were not increased. Table 2 shows the 

characteristics of selected ANN architecture. 

Table 1. Performance of  different neural network architectures with one hidden layer. 

Simulation Transfer function from 

input to hidden layer 

Transfer function into the 

output from the hidden layer 

Number of neurons Mean square error (MSE) 

Training set Testing set 

1 Tan sigmoid Log-sigmoid 3 0.256 0.593 

2 Tan sigmoid Log-sigmoid 5 0.260 0.597 

3 Tan sigmoid Pure linear 3 0.014 0.045 

4 Tan sigmoid Pure linear 5 0.012 0.048 

5 Tan sigmoid Pure linear 7 0.015 0.026 

6 Tan sigmoid Pure linear 10 0.016 0.028 

Table 2. Structure characteristics of  ANN architecture. 

Structural characteristics ANN architecture 

Neural network architecture 3-7-3 

Total number of hidden layers 1 

Number of nodes in input layer 3 

Number of nodes in output layer 7 

Number of nodes in hidden layer 3 

Transfer function from input to hidden layer Tan sigmoid 

Transfer function to output from hidden layer Pure linear 

Simulated results of selected ANN architecture 

The simulated values of normalized predicted and experimented outputs are shown in Figure 6 using 

neural network architecture with seven neurons in one hidden layer. Outputs of the networks, energy, 

lightness, redness of dried carrot slices were fairly congruent with experimental values (R2 = 0.94, 0.94, 

0.91) respectively. This is correlating with the capacity of ANN as a modeling tool for nonlinear data. 

The weight matrix of the hidden layer (IW) and the output layer (LW) and the bias of hidden layer 

(b1) and output layer (b2) showed the following values in Equations (5–8): 

IW =

[
 
 
 
 
 
 

0.15488 -0.56547 -3.9113

-2.0462 -2.1848 -1.5131

-0.03037 -0.85566 0.50453

-0.12173 0.32794 -3.0308

3.232 1.6069 -2.6334

-1.2637 -2.0799 0.73162

3.3525 -1.842 -2.0704]
 
 
 
 
 
 

 (5) 

LW = [
0.45048 0.13598 -0.52363 0.34219 -0.17151 -0.27104 0.12353

-0.39676 -0.11841 0.42143 -0.39751 0.15787 0.31384 -0.09671

0.39507 0.050292 -0.32338 0.30661 -0.15527 -0.26123 0.12888

] (6) 
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(𝑏1) =

[
 
 
 
 
 
 
-3.4832

0.32809

0.8263

-1.2111

1.2943

-2.4073

3.9102 ]
 
 
 
 
 
 

 (7) 

(𝑏2) = [
0.074467

-0.10062

-0.16371

] (8) 

Depending on the developed architecture, the model of neural network which was used for 

describing the kinetics of drying of carrot slices can be written as the following equation (Equation (9)). 

Output = Purelin [LW × Tansig (IW × inputs + b1) + b2] (9) 

Equation (9) can be simplified as Equation (10). 

Output = LW × {
2

1 + e(−2×(IW×inputs+𝑏1))
− 1} + 𝑏2 (4) 

 
Figure 6. Predicted vs. experimented plot of  (a) normalized energy; (b) lightness; (c) normalized redness values of  dried carrot 

slices. 

3.4. Response of the experiments 

The effect of convective hot air temperature and thickness of carrot slices on responses such as 

energy, lightness, and redness are shown in Table 3. It can be observed that responses did not vary much 
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among different operating conditions. The variations in response variables, depending upon the inputs, 

are discussed in detail. 

Table 3. The effect of  convective hot air temperature and thickness of  carrot slices on responses such as energy, lightness, and 

redness. 

Temperature (℃) Thickness (mm) Energy Lightness Redness 

60 3 0.84 13.79 29.21 

60 5 0.82 14.13 29.69 

60 7 0.81 14.55 30.14 

70 3 0.85 12.91 28.59 

70 5 0.83 13.56 29.01 

70 7 0.82 13.75 29.21 

80 3 0.89 11.67 27.85 

80 5 0.86 11.86 28.39 

80 7 0.83 12.29 28.65 

3.5. Regression modeling of responses 

Statistical analysis was performed to find out the significance of independent parameters i.e., 

convective air temperature and carrot slice thickness on responses, such as Energy, lightness, and redness. 

Multiple regression was performed, and coefficients of regression were found to assess the behavior of 

responses as the function of inputs. ANOVA (Table 4) was performed on each of the responses on the 

experimented dataset and significant terms were determined based on F-value. Model adequacies were 

checked by R2, adjusted-R2, and predicted-R2. The coefficient of variation was used to figure out the 

dispersion of data. CV was found to be below 5. It indicates that drying temperature and slice thickness 

significantly affect the energy, lightness, and redness in the convective hot air-drying process. Despite the 

fact that the quadratic model was fitted to all three responses, energy (adjusted-R2 = 0.89) and lightness 

(adjusted-R2 = 0.95) was modeled well in the linear model. Whereas redness was well described as a 

quadratic model (adjusted-R2 = 0.98). The coefficients of multiple regression of responses (energy, 

lightness, and redness) are listed in Table 5. 

Table 4. Results of  ANOVA analysis on response variables such as energy, lightness, redness. 

Source Energy Lightness Redness 

 Sum of 

squares 

df p-value 

prob. > F 

Sum of 

squares 

df p-value 

prob. > F 

Sum of 

squares 

df p-value 

prob. > F 

Model 0.0035 2 0.0006 8.2162 2 <0.0001 3.8190 5 0.0018 

A—temperature 0.0012 1 0.0029 7.3922 1 <0.0001 2.8805 1 0.0004 

B—thickness 0.0022 1 0.0006 0.8239 1 0.0073 0.9115 1 0.0019 

AB - - - - - - 0.0043 1 0.5245 

A2 - - - - - - 0.0059 1 0.4654 

B2 - - - - - - 0.0166 1 0.2568 

Residuals 0.0003 6 - 0.3120 6 - 0.0255 3 - 

Cor. total 0.0038 8 - 8.5282 8 - 3.8445 8 - 

Std. Dev. 0.0072 - - 0.2280 - - 0.0922 - - 

Mean 0.8397 - - 13.1671 - - 28.9723 - - 
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Table 4. (Continued). 

Source Energy Lightness Redness 

 Sum of 

squares 

df p-value 

prob. > F 

Sum of 

squares 

df p-value 

prob. > F 

Sum of 

squares 

df p-value 

prob. > F 

C.V. % 0.8661 - - 1.7318 - - 0.3184 - - 
Press 0.0008 - - 0.5579 - - 0.3096 - - 
R2 0.9172 - - 0.9634 - - 0.9933 - - 

Adj-R2 0.8897 - - 0.9512 - - 0.9822 - - 

Pred-R2 0.7836 - - 0.9345 - - 0.9194 - - 

Adeq precision 16.1236 - - 22.4897 - - 28.7463 - - 

Note: df—degree of freedom, Prob—Probability, F—F-value, Cor.—correlation, Std. Dev.—Standard deviation, C.V.—

Coefficient of variation, Adj—Adjusted, Pred—Predicted, Adeq—Adequacy. 

Table 5. Coefficients of  multiple regression of  energy, lightness, and redness. 

Factors Energy Lightness Redness 

Coefficient estimate Coefficient estimate Coefficient estimate 

Intercept 0.83973 13.16798 28.99679 

A—temperature 0.01431 −1.10998 −0.69289 

B—thickness −0.01954 0.37058 0.38977 

AB - - −0.03313 

A2 - - 0.05442 

B2 - - −0.09113 

3.5.1. Effect of temperature on energy response 

Figure 7a shows the effect of temperature and thickness on energy. It can be found that energy is 

increases as the temperature increases. It also increases with reduced thickness. The effect of thickness 

on energy was more pronounced than that of temperature. This increase in energy could be related to 

smaller pores, leading to a uniform and regular structure. 

3.5.2. Effect of temperature on lightness response 

The effect of temperature (45–65 ℃) in lightness and redness of carrot slices (7 ± 1 mm) thickness 

was previously investigated by Demiray and Tulek[48]. They have found that at lightness value after drying 

at 55–65 ℃ varied between 49.32 and 51. This difference of lightness among different temperatures was 

decreased at a higher temperature range. In the current study, the experiments were carried even higher 

range. This results in almost close values of lightness. Although in the literature studied, the effect of 

thickness on lightness was not investigated, it was found that lightness increased, with increased 

thickness. The effect of temperature and thickness on lightness is given in Figure 7b, demonstrating with 

greater thickness, the severity of the heating was reduced. The values were close to each other. In this 

research, lightness values were much lower than the lightness values found by Demiray and Tulek[48], 

which could be a result due to the variety of carrots. 

3.5.3. Effect of temperature on redness response 

The decreased redness of carrot slices can be associated with the degradation of β-carotene with 

intensified heating effect. The redness values of carrot slices after drying at 55–65 ℃ were close to each 

other, around 31[48]. In this research, it was found to be varying between 28 and 30. With higher 

temperatures, redness was found to be reduced (Figure 7c). In the same time with higher thickness, it 

was found to be decreased. With greater thickness, the area exposed to heating medium per unit mass 

was lesser, thus the retention of β-carotene was greater. This resulted in greater redness. 
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Figure 7. Surface plot of  temperature and thickness vs. (a) energy; (b) lightness; and (c) redness of  dried carrot slices. 

3.6. Optimization of operating conditions of hot air drying 

Predictive models of response, energy, lightness, redness was further used to optimize the drying 

conditions, the thickness of carrot slices, and temperature of convective hot air. These regression models 

of responses were only valid within experimental limits. Optimization of convective hot air drying for 

carrots was conducted to minimize energy and maximize lightness and redness. The energy was 

minimized to lessen the uniformity of the surface of slices. The dried carrot surface has more uniformity 

thus the energy of the acquired image is higher. The constraints for numerical optimization are given in 

Table 6. The thickness of slices and temperature of convective hot air was kept within limits. The optimal 

values of hot air temperature and carrot slice thickness were 60 ℃ and 7 mm with a desirability of 0.87. 

Besides, the response variables such as energy, lightness, and redness were found to be 0.83, 14.64, and 

30.07 respectively. 
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Table 6. Constrains for numerical optimization for thickness of  slices, and temperature of  convective hot air, and responses. 

Name Goal Lower limit Upper limit Lower weight Upper weight Importance 

Temperature is in range 60 80 1 1 3 

Thickness is in range 3 7 1 1 3 

Energy minimize 0.81 0.88 1 1 3 

Lightness maximize 11.66 14.55 1 1 3 

Redness maximize 27.85 30.14 1 1 3 

4. Conclusion 

Images of dried carrot slices were taken during the various condition of drying. These were then 

analyzed and different image features were got. Statistically, significant features among all the analyzed 

responses were found out using the Boruta algorithm. The artificial neural network was used to assess 

the effects of drying conditions (drying time, hot air temperature, thickness of carrot slices) on the selected 

image features (lightness, redness, energy). Predicted outputs of the networks, lightness, energy, redness 

of dried carrot slices was in good agreement with experimental values (R2 = 0.94, 0.94, 0.91) respectively. 

Further drying condition (air temperature and thickness of slice) was optimized based on features. 

Lightness and redness were set to be maximized whereas energy was to be minimized. Optimized drying 

condition was found to be 60 ℃ and carrot slice thickness of 7 mm. From the current research findings, 

it can be observed that the energy, a measure of uniformity of surface increased with an increase in 

severity of drying conditions. The lightness and redness decreased with an increase in the severity of the 

drying condition. The lowest temperature of hot air and highest thickness of carrot slice produce the best 

quality of the product within the experimental range of operation. Therefore, the current research can 

help the food industries in understanding the distribution of quality attributes of agricultural commodities 

in a non-destructive way and maintaining them as needed. 
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