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ABSTRACT: Nowadays, it is a challenge for farmers to produce healthier 

food for the world population and save land resources. Recently, the 

integration of computer vision technology in field and crop production 

ushered in a new era of innovation and efficiency. Computer vision, a 

subfield of artificial intelligence, leverages image and video analysis to 

extract meaningful information from visual data. In agriculture, this 

technology is being utilized for tasks ranging from disease detection and 

yield prediction to animal health monitoring and quality control. By 

employing various imaging techniques, such as drones, satellites, and 

specialized cameras, computer vision systems are able to assess the health 

and growth of crops and livestock with unprecedented accuracy. The 

review is divided into two parts: Livestock and Crop Production giving 

the overview of the application of computer vision applications within 

agriculture, highlighting its role in optimizing farming practices and 

enhancing agricultural productivity. 
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computer vision; smart agriculture; smart technology 

1. Introduction 
The use of artificial intelligence (AI) in the livestock industry is increasing nowadays. Investment in 

artificial intelligence is expected to increase significantly by 2026, and computer vision is indeed a 
significant and growing area within the field of AI. Modern computer vision technology helps farmers 
collect, store, and retrieve data for livestock operations. Managing and analyzing livestock operations is 
much more difficult than monitoring crops because animals move from one place to another. In 
commercial production systems, there are barriers to the widespread adoption of computer vision 
although it is a promising tool for animal care[1]. Digital image analysis, together with digital image 
processing and computer vision, is often used as a collective term to describe similar processes and 
applications[2]. Digital image processing with specific algorithms was used to estimate the body length, 
breast ratios, height, and width of cattle. The exact yield depended on the estimation of the photographic 
capability of the study parameters[3]. In digital image analysis, the most important factor is image quality. 
Different scenarios are possible in multimodal biometric systems by using sensors, and feature sets[4]. 
Nasirahmadi et al.[5] describe the most advanced 3D imaging systems in combination with 2D cameras 
to effectively identify the behavior of farm animals and present automated approaches to monitor and 
study the feeding, drinking, lying, movement, aggression, and reproduction behavior of cattle and pigs. 
The results showed that these technologies can assist the farmer by monitoring normal behaviors and 
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early detection of abnormal behaviors in large farms[5]. The studies showed that the use of video analysis 
can detect the possibility of non-intrusive animal monitoring in real time. According to Eduardo et al.[6], 
it was possible by video and data processing techniques after the ASF virus infection to monitor the 
changes in animal movement. The results showed that a significant decrease in animal movement can be 
detected after infection as early as four days after experimental infection with the ASF virus. 
Nevertheless, other technologies are also important for animal research, such as spectral and 
hyperspectral imaging, radiography, satellite imagery, and ultrasound. According to Patrício et al.[7], the 
development of precision solutions for livestock farming is one way to bring animals closer to producers 
in these expanding systems. Machine vision technology combined with the Internet of Things (IoT) offers 
benefits for precision livestock farming, such as monitoring the health status of all animals, including 
cattle, sheep, pigs, and poultry. On the other hand, one of the fundamental branches of agriculture (crop 
production) supplies the livestock industry with fodder and the human population[8]. Nowadays, with an 
inadequate level of management work in the field of crop production and a difficult financial and 
economic situation is necessary to find the best way for improving agricultural enterprises and 
production. Moreover, the demand for agricultural products is now growing with increasing the human 
population[9,10]. The intentions of development and progress in agriculture also imply that the vast 
majority of processes are already digitized and the volume of data. Over the past decade, it was impossible 
to trace over a wider geographical area, during the production season, where a specific field crop is 
planted. However, now with a relatively small amount of data from the field, it is possible to train artificial 
intelligence algorithms to recognize crops using footage. In this way, a map of the sowing structure is 
obtained, as well as an insight into how much arable land is under a certain culture in a given year, which 
is important information for state institutions. In the field of agricultural automation, the development of 
technology plays a key role in future development[11]. The use of the camera instead of the human eye 
helps in the identification, measurement, and tracking of image processing. Together with image capture 
by remote cameras, computer vision techniques enable non-contact and scalable sensing solutions in 
agriculture[12]. Intelligent systems based on machine vision algorithms are becoming an everyday part of 
agricultural production management, and machine vision-based agricultural automation technology is 
being used to increase productivity and efficiency in agriculture[13]. In addition, machine vision 
technology is also used for production management in crop protection, harvesting, and crop 
monitoring[14]. Year by year, computer vision applies in more and more scientific fields and becoming 
more and more popular and applicable. Therefore, the purpose of the article is to present the use of 
computer vision in livestock and crop production. 

2. Computer vision in agriculture 
Contributions of computer vision-artificial intelligence (AI) are generally known in areas such as 

analysis of weather conditions, plant health detection, monitoring, planting, and harvesting[15]. Farmers, 
for example, using simple tools, will receive information about the occurrence of diseases and pests before 
they happen. Based on the algorithms, it is possible to notice changes in plant growth and make an 
estimate of how much yield there will be or how much humus there is in the soil. Computer vision models 
are trained using datasets for processing images, for example, plants. After that, they define algorithms 
that help them determine the image of the diseases, pests, or weeds. These systems are particularly 
suitable for the evaluation of properties such as color, texture, scale, surface defects, and impurities, as 
well as for the classification of food into specific grades and the detection of defects[16]. Various imaging 
techniques are available to detect complex traits related to growth, yield, and adaptation to biotic or 
abiotic stress factors (e.g., diseases, insects, water stress, and nutrient deficiencies), including color 
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imaging (e.g., machine vision), imaging spectroscopy (e.g., multispectral and hyperspectral remote 
sensing), thermal infrared imaging, planar imaging, fluorescence imaging and 3D imaging and planar 
imaging[17] (cameras, lights, and communication devices), and CV systems (image processing 
algorithms)[18]. In addition, since 2012 Convolutional Neural Networks (CNNs) have dominated 
solutions to CV tasks, showing superior performance over traditional machine-learning methods[19]. 
Nowadays, drone technologies, remote sensors, and satellite technology are widely used in agricultural 
production. The application of deep learning technology allows us to utilize the possibilities of merging 
computer vision and artificial intelligence in agriculture. This leads to an improvement in the yield 
volume of high-quality scene images that can be effectively processed for intelligent agricultural 
applications[20]. Computer vision automation helps farmers to achieve data about fields, or gardens, 
allowing them to track, and evaluate specific objects using visual elements. In addition, machine vision 
for detection offers numerous tools and algorithms with different performance characteristics that can be 
used to operate with consumer cameras[21]. The most notable contributions used today are machine 
learning for crop rotation, pesticide spraying, crop monitoring, phenotyping by computer vision, weed 
control, smart systems for crop grading and sorting, and yield analysis as well as the application of 
computer vision in livestock production (Figure 1). 

 
Figure 1. Computer vision in livestock and crop production. 

3. Livestock production 

3.1. Application of computer vision in cattle production 

The Web of Science platform was searched for articles with terms such as computer vision, animal, 
livestock, poultry, cattle, sheep, pigs, deep learning, and any combination thereof. However, additional 
literature was also searched on Google and Google Scholar to find more information about livestock in 
general. Automation of the process of monitoring cattle behavior is becoming increasingly important, so 
computer vision is playing an important role in cattle production and livestock production in general. 
Developments in artificial intelligence and computer vision in cow production offer a wide range of 
solutions in the field of object detection and tracking. A recently proposed approach to cow movement 
or activity detection is illustrated in Figure 2[22]. Some of the non-computer vision solutions could be used 
for tracking a cow’s vital signs and activity in real-time, but they use unique sensors for each cow and 
they are very expensive. On the other hand, the farmer could use the camera to check the video feed from 
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his phone while trusting the system to notify him if something happens that requires his attention[23]. CVS 
can be exploited through breeding programs. For example, Nye et al.[24] used the catalogs of breeding 
programs to demonstrate a web scraper with an image segmentation algorithm for extracting images and 
information. They presented how the extracted information can be used to determine genetic parameters 
related to coat pigmentation and conformation traits in dairy cows. Similar, Moore et al.[25] reported on 
the use of various cattle data for the prediction of genetic parameters. The results showed that more 
accurate genetic parameters could be determined with the information from the CVS due to the larger 
amount of data. Tassinari et al.[1] conducted research on the development of a computer vision system 
based on Deep Learning aimed at recognizing individual cows in real-time. Results showed that the 
system successfully identified cows based on coat patterns, assessed their position, tracked movements, 
and helped understand cows’ actions. An image-based model for the recognition of cow breeds was 
proposed by Gupta et al.[26]. The YOLOv4 algorithm of DL was used for the discriminative feature of 
cows with a limited training dataset. The results of the comprehensive analysis show that the proposed 
approach achieves an accuracy of 81.07%, with a maximum kappa value of 0.78 at an image size of 608 
× 608 and an overlap over unity (IoU) threshold of 0.75 in the test dataset. However, the improvement 
using computer vision is achieved by several publicly available datasets: ImageNet[27], PASCAL VOC 
(Visual Object Classes)[28], and MSCOCO[29]. Some of the datasets developed specifically for use in cuttle 
computer vision systems are Holstein Cattle Recognition[30], Friesian Cattle 2017[31], Aerial Cattle 2017[32]. 
Currently, image classification, instance segmentation, semantic segmentation, pose estimation, tracking 
and object detection are public datasets for computer vision tasks or challenges[33]. Therefore, datasets 
and technologies for cuttle farming are important for analysis and decision-making. 

 
Figure 2. The proposed method for detecting cow movements and activities[22]. 

3.2. Application of computer vision in pig production 

Pork is the meat with the second overall consumption[34] and therefore it is very important to use 
more advanced methods such as precision livestock management instead of conventional methods to 

improve production. According to Albernaz-Gonçalves at al.[35], it is currently difficult for swine 

production to recruit enough skilled labor to provide quality care for pigs given the economic climate and 
labor shortages. Rauw at all.[36] reported that more intensive care of an individual animal has a positive 
impact on the welfare and health of the animal. Several animal science studies have been conducted to 
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determine pig health status[37], comfort and well-being[38], pig drinking behavior[39], posture changes in 
pigs[40], and live weight[41]. In pig production today, computer vision offers rapidly growing potential to 
improve production, resulting in improved animal care and reduced labor costs[42]. For example, precision 
feeding of pigs requires automated measurement devices for data collection, data processing, and 
calculation methods for estimating nutrient requirements[43]. Technologies such as IoT and AI to monitor 
the health and welfare of pigs are frequently used in pig farms. Parameters such as humidity and 
temperature are determined by IoT[18], while feature extraction, modeling, and data analysis are 
determined by AI[44]. In pig recognition based on computer vision, the importance of networks is 
becoming increasingly important. Some of the networks used in recognition based on computer vision in 
swine production are MobileNet[45], DeepLabv3+[46], Xception[47], YOLOv5[40]. AI algorithms also use 
deep learning models with images or videos to recognize pig behavior[18]. Chen et al.[48] applied the video-
based method and obtained good results. On the other hand, for the image, researchers usually used 
Faster[49], Mask R-CNN[50], YOLO[51]. Although the use of new technologies improves pig production, in 
practice, the willingness to adopt new technologies is still in progress. Therefore, for farmers who have 
adopted the technology, government agencies should provide adequate subsidies, which will not only 
help protect farmers after adopting the risk of the new technology but also encourage more farmers to 
adopt the technology[44]. 

3.3. Application of computer vision in poultry production 

Today, the use of artificial intelligence can reduce losses due to premature death and the rejection of 
billions of chickens per year before they are processed into meat[52]. However, poultry has a higher density 
compared to other animals[53], which leads to limitations or a high degree of uncertainty in monitoring 
the behavior and distribution of groups of chickens in feeding, drinking, and resting areas. Modern broiler 
houses with large numbers of chickens are equipped with cameras, and the use of computer vision is one 
of the methods for continuous remote monitoring of commercial farms[54]. According to Okinda et al.[55], 
the application of computer vision in poultry farming includes recognition and identification of images, 
detection of objects, classification of images, segmentation, and recognition of objects. Abd Aziz et al.[56] 
reported that computer vision works in three basic steps: 1) acquiring an image, 2) processing the image, 
and 3) understanding the image. Despite the many advantages of vision systems, the performance of any 
vision system in monitoring livestock is greatly affected by the varying light conditions in the farm 
environment, color, contrast between background and foreground, and occlusion problems[55]. Recently, 
researchers reported the efficiency of using computer vision in poultry production, especially for 
monitoring chicken welfare in terms of weight, lameness, behavior, temperature, activities, and health[57–

59]. Some of the Digital technologies for poultry producers are presented in the Table 1. The potential of 
computer vision algorithms using Mask R-CNN for broiler detection and monitoring resource utilization 
in broilers was investigated by Jerine et al.[54]. They found that in a high stocking density commercial 
environment, individual broilers can be detected and monitored when it comes to resource utilization. 
According to Karthikeyan[60], AI could be trained using computers/artificial vision to detect heat stress 
in birds early using thermal imaging cameras or infrared cameras. Dawkins et al.[61], used cameras to 
analyze the optical movement patterns of flocks of chickens as they moved around a house. The results 
confirmed the hypothesis that visual movement patterns of broiler flocks on commercial farms in the 
United Kingdom and Switzerland are correlated with two important animal welfare outcomes-mortality 
and fecal burn. 
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Table 1. Digital technologies for poultry producers. 

Technology Description 

3D printing prosthetics Printing of plastic or metal parts when the farm requires replacing[62]. 

Robots Provide farmers to make data-driven decisions regarding broiler production 
that could result in a healthier, more productive growing environment[63]. 

Drones Allow farmers to monitor poultry conditions from the air to keep watch for 
potential problems and help optimize field management[64]. 

Sensors Streamlining data collection for chickens and farmers, enabling cheaper 
poultry production[65]. 

Poultry system simulation model Simulates the water, energy, wastewater, and labor utilization of a poultry 
processing plant[66]. 

Block chain technology Uses predictive analytics and deep learning analysis to display and forecast 
future performance throughout the supply chain[66]. 

Automation and digitalization, big data It is possible to apply various ways to enhance poultry production by 
improving efficiency, productivity, and overall management[67]. 

Machine learning: Statistical process control Accurate identification of changes in variables throughout the food supply 
chain[68]. 

Internet of things Connection between sensors and smartphones or other devices in a hen 
house[69]. 

3.4. Application of computer vision in sheep production 

For most sheep producers, profit is directly related to the commercial value of the flock and the cost 
of the bred sheep. In recent years, considerable progress has been made in the field of machine vision and 
machine learning[70]. Several works with sheep can be found in the literature, aiming at image processing 
with physiological information (skin temperature, respiratory rate, and heart rate), weight prediction, 
behavior recognition, sheep breed identification, etc. Fuentes et al.[71] investigated the evaluation of 
physiological information such as heart rate modeled with machine learning algorithms, skin 
temperature, and respiratory rate in sheep exposed to thermoneutral and controlled heat stress conditions 
by automatically tracking the regions of interest from RGB videos and infrared thermal videos of sheep. 
According to the results obtained, the application of automated computer vision algorithms and machine 
learning models was proposed to obtain critical biometric data from recorded RGB and infrared thermal 
videos of sheep to help in the automatic assessment of heat stress. Bhatt et al.[72] proposed an automated 
sheep weight estimation system for real-time operations using a smartphone. A SegNet-inspired deep 
network was used for segmentation, and a novel segmentation approach and neural network-based 
regression model were used to achieve better results for the sheep weight estimation task. A deep learning 
model based on the YOLO v5 network[73] was used to recognize the behavior of sheep (lying down, 
drinking, and eating). Nowadays the application of YOLO v7 (Figure 3) is becoming more popular for 
sheep detection behavior providing more accurate data[74]. 

 
Figure 3. Computer vision to detect sheep with YOLOv7[74]. 
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The application of a deep learning network in a structured environment of intensive farming can 
provide satisfactory results without the need for large amounts of data if it is ensured that the application 
and experimental conditions are the same. Sanibel et al.[75] presented the establishment of a prototype 
computer vision system in a sheep farm, the creation of a database of 1642 sheep images of four breeds 
taken on a farm and labeled with the respective breed by an expert with its breed, and the training of a 
classifier for sheep breeds using machine learning and computer vision to achieve an average accuracy of 
95.8%. Sarwar et al.[76] used a combination of drone technology and deep learning algorithms to count 
sheep using convolutional neural networks through video streams captured by drones. They found that 
capturing top-view images was mainly used for free-range scenarios and could not be extended to indoor 
sheep rearing. According to the above-mentioned statements from different literature, it can be concluded 
that there is a need for the development of applications of new technologies in livestock production. 

4. Crop production 

4.1. Computer vision phenotyping 

In the field of agriculture, the integration of cutting-edge technologies has revolutionized traditional 
agricultural practices. Phenotyping using computer vision is a powerful tool, providing farmers and 
researchers with unprecedented insights into the health, growth patterns, and overall productivity of 
plants. Plant phenotyping is one of the biggest bottlenecks in the field of plant science and plant breeding, 
and further progress requires an interdisciplinary approach and the integration of activities from fields 
such as plant physiology, sensing, and bioinformatics. Although some methods for phenotyping have 
drawbacks, such as space-time coverage and limitations in terms of cost, the plant phenotype plays an 
important role in sciences such as agronomy, botany and genetics[77]. The disadvantages of phenotyping 
include the structural characteristics of plants and their organs (leaves, fruits, roots etc.) as well as the 
measurement of size, growth, and 3D surface structure. However, phenotypic information with 
intelligent perception plays an important role in minimizing agricultural inputs without compromising 
crop yields and selecting new varieties of high-yielding and high-quality crops[78]. Nowadays, field 
experiments using aerial phenotyping with thermal and multispectral sensors help to obtain a large 
number of plant images for crop monitoring and are widely used in crop research[79]. Plant phenotyping 
frameworks include many sensors with mobile systems, such as motorized gantries[80], tray conveyors[81], 
and aerial and ground vehicles[82], to collect plant growth and physiology data. Bauer et al.[83] presented 
the results of combining AirSurf with a deep learning classifier trained with over 100,000 labeled lettuce 
signals and computer vision algorithms. The results show the significant value of AirSurf-L for pre-
harvest plant marketability and precise harvesting strategies. Quantitative evaluation of phenotypic 
differences throughout the plant's life cycle helps identify genetic factors associated with growth and 
development[84]. In addition, researchers Choudhury et al.[85] determined stem angle using temporal 
analysis of plant phenotyping. They found that plant phenotyping analysis summarized the temporal 
patterns of stem angle into three main groups and contributed to the temporal variation of stem angle, 
which can be regulated by genetic variation under different environmental conditions. Mochida et al.[86] 
reported that useful clues for preventive interventions in farming provide a meta-analysis of the spectral 
signatures of crops associated in association with the environmental conditions, physiological states, and 
growth stage. The researchers such as Minervini et al.[87] comprehensively discussed the bottlenecks and 
future trends in the field of image-based plant phenotyping, Toda and Okura[88] for plant stress 
phenotyping, while Vandenberghe et al. for plant 3D phenotyping. Furthermore, deep learning has 
become more popular in phenotyping. Thus, RCNN, ZFNet, LeNet18, VGGNet, ResNet, ResNeXt, and 
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VGGNet[89] have been used successfully in plant phenotyping. This innovative approach leverages 
advanced image processing techniques to analyze visual data, offering a deeper understanding of plant 
characteristics that can significantly impact decision-making in agriculture. Computer vision 
phenotyping stands at the forefront of precision agriculture, providing a transformative approach to crop 
monitoring and analysis. As technology continues to evolve, the integration of computer vision will likely 
become a cornerstone in the pursuit of sustainable and efficient farming practices, ultimately contributing 
to global food security. 

4.2. Weeds control 

Weed detection and control is another major problem in agriculture and, according to many 
growers, one of the biggest threats to crop production. Nowadays, farmers tend to use less chemical-
intensive systems in order to achieve high yields with good quality. Conventional agriculture combines 
profitable agricultural production with environmental protection requirements by using reduced tillage, 
crop rotations, residues, and cover crops to control emerging weeds[90]. Traditional weed control methods 
often rely on manual labor or the indiscriminate use of herbicides, leading to higher costs and 
environmental problems. The digitalization of agriculture and new cultivation techniques are some of the 
possible alternatives for “smart” weed control solutions. For example, self-organizing maps (SOMs) have 
been used in the past[91], and today they are a powerful, unsupervised machine-learning technique that 
has proven to be a versatile tool in the field of data analysis. The use of self-organizing maps helps to deal 
with problems in an unsupervised way and independently of the data[92]. Pantazi et al.[93] used hierarchical 
map classifiers (SKN, CP-ANN and XY-F) to identify S. marianum among other plants in a field, where 
Avena sterilis L. was predominant. The results showed that the identification rates of S. marianum reached 
an accuracy of 98.64% with SKN, 98.87%, with CP-ANN, and 98.64% with XY-F. A precision farming 
system was proposed by Zhai et al.[94] as a multi-agent system. According to them, this system makes it 
possible to schedule tasks and allocate scarce resources, as well as spray pesticides only in the exact places 
where weeds grow. On the other hand, Zhang et al.[95] developed a weed classification model based on 
the YOLOV3-tiny network. Building a weed classification model based on the YOLOv3-tiny network 
involves several steps, including data acquisition, preprocessing, training, and evaluation. A study of 
weed detection and segmentation confirms that CNN shows high performance in accurately detecting 
and segmenting weeds. In addition, Blue River Technology has developed a robot called See & Spray, 
which reportedly uses computer vision to monitor and precisely spray weed plants[96,97]. Object 
recognition algorithms, such as YOLO or Faster R-CNN, can be used to precisely localize and identify 
individual weed instances. 

Precision weed detection robots use advanced technologies such as computer vision, machine 
learning, and robotics to autonomously identify and control weeds in agricultural fields (Figure 4). These 
robots have been developed to improve efficiency and accuracy in weed detection, contributing to 
sustainable and precise agricultural practices. In this way, it is possible to significantly reduce weeds and 
the risk of contamination of crops, humans, animals, and water resources. However, growers should take 
long-term action to improve crop competitiveness against weeds and maintain soil fertility. 



Computing and Artificial Intelligence 2023; 1(1): 360. 

9 

 
Figure 4. An example of the use of AI in the analysis of aerial images of crops for identification of weeds. 

4.3. Smart systems for crop grading and sorting 

Nowadays, the food industry contributes the most to the agricultural sector and the automation of 
vegetable sorting is the order of the day[98]. The main objective of grading in agriculture is to generate 
more and more income. Therefore, grading has a significant impact on agribusiness to generate more 
profit[99]. Smart systems for crop classification and sorting play a crucial role in increasing efficiency and 
accuracy in the agricultural industry. These systems use advanced technologies to automate the process 
of sorting and grading crops based on various parameters such as size, color, weight, and quality. For 
farmers sorting and grading crops enables them to separate produce into categories more accurately 
(Figure 5). Many researchers have studied the sorting of a variety of crops using artificial intelligence. 
Llobet et al.[100] for predicting the degree of ripeness of bananas using electronic nose sensors, Bennedsen 
et al.[101] for detecting surface defects in apple fruit, Zakaria et al.[102] for assessing the degree of ripeness 
of mangoes. Nur et al.[103] investigated agricultural products that were classified based on the shape and 
size of the fruit using support vector machines (SVMs) and whose quality class was determined using 
fuzzy logic (FL). Different types of fruit and one vegetable were used for the experiment: Oranges, 
mangoes, carrots, apples, and bananas. Of the five fruits selected, the results were good for three. The 
working model of the date fruit sorting system, including the hardware and software developed by 
Yousef[104], uses RGB images of date fruits. The accuracy of the system was 80%. In contrast, Nandi et 
al.[105] used a CCD camera and a conveyor belt to sort and classify mangoes. RGB color space, edge 
detection, and boundary tracking were used to determine the color quality and dimension of the mangoes. 
They note that experts judge the degree of ripeness by firmness and smell and not just by skin color. A 
new design for an autonomous fruit sorting and classification system that is portable, inexpensive, fast, 
and customizable by the user was presented by Hadha et al.[106]. Using a test with orange fruit, they 
showed that the algorithm transforms the (red, green, and blue) color space into the HSV color space 
(hue, saturation, and value). The size ranged from 25 mm to 75 mm, indicating good results in color 
classification, sizing, and sorting. 
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Figure 5. Example of sorting and grading tomato fruit by application of AI[107]. 

Researchers Paymode et al.[108] used the CNN model with an accuracy of 97.59% for the training 
images and an accuracy of 92.45% for the test images to determine the size, quality, and shape of the 
onions. The classification and sorting of dragon fruit were also performed using machine learning 
algorithms (CNN, ANN, and SVM)[109]. The functioning of these algorithms was based on the shape, size, 
weight, color, and diseases of the dragon fruit. The use of advanced computer vision algorithms and 
machine learning models enables the automatic recognition and classification of plants based on various 
parameters such as size, color, and quality[110]. While the introduction of intelligent crop sorting systems 
offers many benefits, ongoing research and development is essential to overcome challenges and further 
refine these technologies. Interdisciplinary collaboration between agronomists, engineers, and 
technologists is critical to realizing the full potential of smart systems, promoting sustainable agriculture, 
and ensuring food security in a rapidly evolving global landscape. The use of smart systems for crop 
sorting increases productivity, reduces labor costs, and ensures a consistently high-quality crop. These 
technologies contribute to the overall efficiency of the agricultural value chain. 

4.4. Using drones in crop production 

Drones, also known as Unmanned Aerial Vehicles (UAVs) or Unmanned Aircraft Systems (UAS), 
are becoming increasingly popular in agriculture, including crop production. They offer various benefits 
and applications that can improve efficiency, precision, and overall crop management. Spray drones are 
used for the application of fertilizers, herbicides, pesticides, fungicides, and seeds as they are cheaper, 
faster, and more accurate compared to traditional methods. In some countries, popular methods for 
precision agriculture include photogrammetry and remote sensing[111,112], crop monitoring[113] and soil and 
field analysis[114]. The use of drones in agriculture is useful for monitoring plant growth, increasing yields, 
and spraying pesticides and fertilizers in the field[115]. Drones equipped with spraying systems can 
precisely apply fertilizers, pesticides, or herbicides to specific areas, minimizing waste and reducing 
environmental impact. Today, the ability of unmanned aerial vehicles (UAVs) to, for example, fly over 
crops and quickly collect crop management data is crucial for precision agriculture, which requires real-
time data[116]. Hogan[117] reported that flight duration, ease of use, the ability to better utilize cameras, and 
reliability through the Global Positioning System (GPS) and customizable apps for smartphones and 
tablets. According to El Bilali et al.[118] the use of drones together with other information and 
communication technologies (ICT) opens up a new phase in agriculture, in which we speak of digital 
agriculture, smart agriculture, e-agriculture, and precision agriculture. Mogili and Deepak[119] have studied 
the use of drones for crop monitoring and pesticide spraying. They concluded that the UAV spraying 
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system automatically navigates with the GPS coordinates to spray the pesticides on the infected areas 
where there is no vegetation identified by the Normalized Difference Vegetation Index (NDVI). NDVI 
maps created using drone imagery can help farmers identify areas of the field that may be under stress, 
allowing for targeted interventions. The use of drone-generated variable rate application (VRA) maps 
makes it possible to determine the level of nutrient uptake in the field. In this way, the farmer can apply 
300 kg/ha of fertilizer to problematic areas, 200 kg/ha to medium-quality areas, and 150 kg/ha to healthy 
areas, thus reducing fertilizer costs and increasing yields[120]. Drones create 3D maps to help farmers 
analyze the soil. To achieve better plant growth, the use of drones provides data useful for irrigation and 
nitrogen management via soil analysis[121]. In addition, drones can create detailed topographic maps of 
fields that help farmers understand the terrain and plan irrigation systems more effectively. Drones with 
hyper-spectral, multi-spectral, or thermal sensors can be used to count plants and assess their health, 
allowing farmers to detect areas of lower plant density or signs of disease early[122]. According to Ayamga 
et al.[123], drones play a critical role in decision-making and the management process by providing plant 
health imaging, integrated GIS mapping, and minimizing the need to physically enter the field, thus 
contributing to higher yields and lower costs. In addition, information expert Gerard Sylvester said that 
drones will help farmers adapt to climate change and tackle other challenges to improve the efficiency of 
overall farming operations[124]. The data collected by drones can be processed with specialized software 
to gain actionable insights. This information can support decision-making and enable farmers to make 
informed decisions about how to manage their crops. While drones offer numerous benefits for crop 
production, it is important that farmers undergo appropriate training and comply with regulations to 
ensure safe and effective use. Furthermore, ongoing advances in drone technology are likely to bring even 
more opportunities and improvements in precision agriculture. 

4.5. Computer vision and machine learning for crop rotation 

Crop rotation is one of the plant production systems that represent a regular spatial (crop rotation) 
and temporal (crop rotation) change of crops. Proper crop rotation plays an important role in the 
production of field crops. The application of crop rotation is important because the continuous cultivation 
of crops puts a lot of stress on the soil, and since it is the most important resource in agriculture, we must 
do everything we can to restore it. Nowadays, most methods are used to work only one year compared 
to annual crop rotations. Many researchers have studied crop classification and have come to the 
conclusion that PSE + LTAE (Pixel Set Encoder and Lightweight Temporal Attention) is one of the most 
modern methods[125–127]. Machine learning models can analyze historical data on crop performance and 
soil conditions to predict the best crop rotation plans for optimal yields. Satellite observations and past 
reports help classify perennial crops to improve the crops grown in agriculture[128]. Liu et al.[129] proposed 
a hybrid convolutional neural network (CNN) and long short memory (LSTM) architecture for crop 
rotation mapping (CRM) to combine the time series of synthetic aperture radar (SAR) and optical data 
in a crop rotation mapping. According to Shiraly[130], the visual features—such as plant boundaries, plant 
types, soil texture, etc.—are represented as vectors by neural convolutional networks. These vectors are 
then fed into the time series prediction model. Algorithms such as random forests, XGBoost, recurrent 
neural networks, or even transformer networks are then used to predict the new soil variables. Stanhope 
et al.[131] investigated a webcam-based system to augment mechanical guidance systems for row crop 
cultivation in the early stages of plant growth, combining computer vision and machine learning. They 
used a low-cost CCD camera and the Python OpenCV platform. The results show that the system was 
successfully tested for driving speeds up to 6 km/h in several corn and soybean fields under different 
ambient light and growing conditions. Braeger and Foroosh[132] proposed a voxel CNN method that 
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proved successful when applied to the latest voxel CNN Octnet architecture, achieving a 1% increase in 
overall accuracy on the ModelNet10 dataset. Long Short-Term Memory (LSTM) networks, a type of 
recurrent neural network (RNN), can be used in the context of crop rotation to model temporal 
dependencies and make predictions based on historical data[133]. However, according to Niall et al.[134], 
some of the traditional CV techniques (SIFT, SURF, BRIEF) are still useful and collaboration with 
agronomists and professionals is essential to ensure that the model’s recommendations are consistent 
with practical farming considerations. Today, a combination of computer vision and machine learning 
provides farmers with data-driven decisions that improve the efficiency and sustainability of crop rotation 
practices, resulting in higher yields and long-term soil health. 

4.6. Yield analysis 

Yield mapping is a precision agriculture technique that involves collecting and analyzing data on 
crop yields in a field. A yield mapping system in precision agriculture measures and records the number 
of crops harvested at different points in a field and simultaneously records the position of harvesting 
machinery[135]. Assessing the quality and quantity of specialty crops during harvest is critical for several 
reasons, including achieving higher yields and improving overall farming practices[136]. In the 1990s, 
image classification functions were used to detect fruit moving along the packing line to distinguish 
between acceptable features (e.g., a stalk and blemishes)[137]. However, Raphael et al.[138] concluded that 
the application of RGB-recorded images in orchards is associated with difficulties, e.g. the different sizes 
and colors of apples and the non-diffuse natural light causing strong shading. The integration of computer 
vision, chemical markers (such as Marker M-2), and other accessories can indeed provide a powerful and 
efficient solution for determining the location of cold and hot spots after microwave sterilization. This 
approach combines real-time visual data with chemical indicators to increase accuracy and speed in 
identifying temperature variations[139]. Patel et al.[140] have looked at the localization of fruit on trees as one 
of the requirements for an effective fruit harvesting system. The ability to accurately identify the location 
and ripeness of fruit enables the automation of harvesting processes, reducing waste and optimizing the 
use of resources. Color and shape analysis was used to segment the images of different fruits taken under 
different lighting conditions. The results show that the proposed method can accurately segment the 
occluded fruits with an efficiency of 98%. In addition, it was found that based on the data obtained from 
the hyperspectral camera at the full pod development stage, the yield of soybeans can be best predicted 
using multilayer neural networks[141]. The same group of authors showed that the prediction of soybean 
yield by the VNM model is more accurate at the local level than at the regional or state level. According 
to Kapach et al.[142], the most important applications of computer vision (CV) in agriculture have been 
developed for fruit detection. The main goal was to identify individual fruits and leaves, segment them 
from scenes with branches, and localize them in space, either for yield estimation or for robotic harvesting 
systems. It is important to note that factors such as soil type, topography, and historical management 
practices can contribute to yield variability[143]. Yield mapping, when integrated with precision 
agriculture, can greatly enhance a farmer’s ability to optimize resource allocation, improve crop yields, 
and make more informed decisions for sustainable agricultural practices. 

5. Discussion 
The use of computer vision is now an integral part of agricultural production. Start-ups are turning 

to task-specific AI and image-processing solutions to improve yields and achieve the goal of a sustainable 
food supply by 2050[144]. When it comes to livestock and next-generation farms to manage the greenhouse 
environment with smart irrigation, start-ups such as cropx aquaspy, hydropoint data systems, alesca life, 
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aero farms, bright farms, connecterra, farmnote, advanced animal diagnostics are using machine learning 
and computer vision techniques to capture, analyze, model and predict the factors that can improve 
yields[74]. As mentioned above, the use of computer vision offers many advantages such as accuracy, 
efficiency, and cost-effectiveness. Animal welfare is a priority in modern agriculture. Specific applications 
such as monitoring animal health, behavior, and productivity contribute to better animal welfare, 
especially by detecting signs of distress or disease. Automated systems can analyze video feeds to detect 
signs of illness, stress, or anomalies in behavior[145]. Optimizing feeding, breeding, and overall resource 
management on farms helps farmers and leads to better productivity. By monitoring feeding patterns and 
behavior, computer vision can help optimize feed distribution and reduce feed waste. The advantages of 
low cost as well as high efficiency of the application of Computer vision technology were represented by 
other researchers[11,146]. Overall, these benefits contribute to more efficient, sustainable, and humane 
livestock farming. Machine vision technology has the potential to revolutionize the industry by providing 
farmers and ranchers with valuable insights and tools to optimize their operations. However, farmers face 
technical issues, privacy concerns, and the initial cost of setting up such systems. In addition, 24/7 
operation of vision systems can be very energy intensive. High energy consumption can drive up 
operating costs and may not be environmentally friendly. Despite these drawbacks, the benefits of 
computer vision in livestock production often outweigh the drawbacks, but it is important to carefully 
plan and address these challenges to ensure the successful implementation of this technology. In crop 
production, computer vision technology increases precision and efficiency. It enables precise monitoring, 
data collection, and management of crops, resulting in less wasted resources and higher yields. 
Monitoring of crop growth with computer vision enables the detection of subtle changes in crops and 
provides a reliable and accurate basis for timely regulation[85]. It is combined with other precision farming 
technologies, such as GPS-guided machines and sensor networks, to create comprehensive and data-
driven farming systems. The multi-sensor imaging system attached to the drones makes it easier for the 
farmer to detect fewer infrared-reflecting patches in the farmland, thus reducing the further spread of the 
disease[144]. The application of computer vision improves crop production practices, reduces 
environmental impact, and contributes to more efficient, sustainable, and economically viable 
agriculture. Computer vision is becoming an essential tool for modern farming, helping farmers meet the 
challenges of a growing global population and changing environmental conditions. As in livestock 
production in crop production computer vision algorithms may occasionally produce false positives 
(incorrectly identifying issues) or false negatives (failing to identify issues). This can lead to unnecessary 
interventions or missed problems in crop management. 

6. Conclusion 
Technology and artificial intelligence play a key role in transforming agriculture by enabling efficient 

resource management, crop monitoring, and improving production quality. Companies in agriculture (as 
well as other industries) are using computer vision and AI applications to drive new innovations and 
unlock new efficiencies that help them achieve their goals in the face of modern challenges. In the realm 
of livestock farming, computer vision plays a pivotal role in monitoring animal behavior, health, and 
welfare. Automated systems equipped with cameras and image analysis software can detect signs of 
distress or disease in livestock, enabling prompt intervention and preventing disease outbreaks. These 
technologies have the potential to increase both productivity and animal welfare, contributing to 
sustainable and responsible livestock farming. In crop production, computer vision aids in phenotyping, 
weed control, crop grading and sorting, crop irrigation, crop rotation, as well as yield mapping. It 
provides real-time monitoring of plant health and growth, allowing for precise irrigation and fertilization, 
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which in turn conserves resources and improves crop yield. By increasing food demands, the adoption of 
computer vision in livestock and crop production promises to not only increase yields but also reduce 
environmental impact and promote animal welfare. The marriage of cutting-edge technology and 
traditional farming practices represents a promising future for agriculture, ensuring food security in a 
rapidly evolving world. 
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