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Abstract: To correctly and accurately predict and estimate the stock prices to get the maximum 

profit is a challenging task, and it is critically important to all financial institutions under the 

current fluctuation situation. In this study, we try to use a popular AI method, Adaptive Neuro 

Fuzzy Inference System (ANFIS), to easily and correctly predict and estimate the current and 

future possible stock prices. Combining with some appropriate pre-data-processing techniques, 

the current stock prices could be accurately and quickly estimated via those models. A 

normalization preprocess for training and testing data was used to improve the prediction 

accuracy, which is our contribution and a plus to this method. In this research, an ANFIS 

algorithm is designed and built to help decision-makers working in the financial institutions to 

easily and conveniently predict the current stock prices. The minimum training and checking 

RMSE values for the ANFIS model can be 0.103842 and 0.0651076. The calculation of 

accuracy was carried out using the RMSE calculation. The experiments conducted found that 

the smallest RMSE calculation result was 0.103842 with training data. Other issuers can use 

this method because it can predict stock prices quite well. 

Keywords: ANFIS algorithm; estimate and predict current stock prices; AI applications in 

financial implementations; Google stock dataset; prediction accuracy 

1. Introduction 

As the fast development of AI technologies, such as Fuzzy Inference Systems, 

machine learning, and deep learning, today various AI-related algorithms have been 

widely implemented in financial fields to estimate and predict the stock values, 

currency exchange rates, bonus analyses, and all other related applications [1–7]. 

Most of the research is concentrated on stock predictions or estimations based on 

neural networks, machine learning, and deep learning studies. Different and various 

machine learning algorithms accompanied with some sophisticated additions are 

applied to stock analyses and predictions to improve the accuracy of predictions on 

stock markets. Chong et al. [8] reported using an Ensemble of Deep Neural Networks 

to predict performance for stock markets. Yu [9] developed an algorithm based on 

deep learning and neural networks to improve the analyses for economic and financial 

data. Polepally et al. [10] and Pardeshi and Kale [11] reported using machine learning 

and deep learning algorithms to improve the prediction accuracy for current stock 

prices. Singh et al. [12] and Lin et al. [13] developed a novel multivariate recurrent 

neural network and a new convolutional neural network with a long short-term 

memory combined model to estimate the current stock prices and their tendency. 

Singh et al. [14] performed comparative studies and analyses for different stock 

price prediction techniques developed in recent years. Roy and Tanveer [15] 
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developed an algorithm to forecast stock price by using the DeepNet method. Instead 

of using any traditional machine learning model, Tarsi et al. [16] utilized a Long Short 

Term Memory (LSTM), which is a variation of a machine learning model, to predict 

the stock price. Mandee et al. [17] utilized an explainable artificial intelligence XAI 

to predict stock market trends. 

Chinprasatsak et al. [18] reported using a neural network for forecasting high and 

low prices in the foreign exchange market. Alamsyah and Aprillia [19] and Aggarwal 

and Sahani [20] performed some studies in comparisons of the foreign currency 

prediction performance with neural network algorithms. Bui et al. [21] and Singh et 

al. [22] reported using neural networks and CNN-RNN-based hybrid machine learning 

models to predict the currency exchange rate. Sarmas et al. [23] performed a 

comparison study among different machine learning classification methods used for 

currency exchange rate trends. Tak and Logeswaran [24] also developed a foreign 

currency prediction method based on machine learning techniques. 

To correctly and accurately predict and estimate the current stock prices to get 

the maximum profit via different AI methods, some correct AI models are necessary 

with popular algorithms, such as Adaptive Neuro Fuzzy Inference System (ANFIS). 

Combining with some appropriate pre-data-processing techniques, the current stock 

prices could be accurately and quickly estimated via those models. In this research, an 

ANFIS model is designed and built to help decision-makers working in the financial 

institutions to easily and conveniently predict the current stock prices. 

Stock prices are changed at any moment, and they may vary significantly day by 

day, month by month, and year by year. Due to the heavy complexity and unforeseen 

variations in the current market, to correctly and accurately predict the stock prices, 

the following factors and operational steps need to be taken: 

1) The changing or variation of the stock prices can be considered a periodic 

function, and this period could be 3 months, 6 months, or longer, which depends 

on the target period for each research. In our case, we used 3 months as a period. 

2) Based on the assumption above, we utilized the Google Stock dataset to train and 

check our target ANFIS model. 

This study is divided into 5 Sections; after this introduction, an introduction to 

two Google Stock datasets used as the training and checking for AI models is provided 

in Section 2. The ANFIS and its implementations are discussed in Section 3. The 

experiment studies and results are given in Section 4. The conclusion and future works 

are provided in Section 5. 

2. Introduction to Google stock dataset 

Two Google Stock datasets [25], one containing 5-year stock transaction records 

from 3 January 2012 to 30 December 2016 and the other including 1-month stock 

transaction records from 3 January 2017 to 31 January 2017, are utilized in this study. 

The first one is used as the training and checking data for ANFIS and DL models, and 

the second works as the testing and validation purpose for those models. 

Each dataset contained six columns: Date, Open, High, Low, Volume, and Close, 

with both 5-year and 1-month stock price records. Each related column can be mapped 

to the Opening price, Highest price, Lowest price, transaction Volume, and Closing 
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price. For our study, we only need four of them: Open, High, Low, and Close. In fact, 

we use the first three columns, Open, High, and Low, as inputs and the Close column 

as the output, as shown in Figure 1 for our ANFIS structure. 

A critical key issue in using that data to train, check, and test our ANFIS or DL 

models is the data pre-processing. As everybody knows, the stock prices are changed 

or varied in every moment, not each day, and the amounts they changed are significant 

with a relatively wider range, or even dynamically, for a period of time. This provided 

a challenging issue when using ANFIS, especially using the fuzzy rules, to estimate 

the output or the closing price due to the significant variations in the price values. In 

the worst case, the ANFIS could not perform its FIS function due to the out-of-bounds 

input values with too big different price values for different time periods. 

 

Figure 1. A typical structure of ANFIS. 

To effectively solve this key issue, we need to preprocess that data, exactly to 

perform a normalization job for that data to enable them to be used in our model 

training and checking. In summary, we only take care of those relative changing values 

on the prices, but not for the absolute changing values, and this is good enough for us 

since we only pay our attention to the changing values in trends or tendency. 

3. Adaptive Neuro-Fuzzy Inference System 

The so-called ANFIS is exactly a combination of two soft-computing techniques: 

Artificial Neural Network (ANN) and Fuzzy Inference System (FIS), which was first 

introduced by Jyh-Shing Roger Jang in 1992 [26]. The FIS used a Sugeno Fuzzy 

Inference System, and its structure is similar to a multilayer feedforward neural 

network structure, but the difference is that the links between nodes in ANFIS define 

the signals’ flow direction, and there are no associated weight factors with the links. 

It consists of a network of neurons that communicate between the input and hidden 

layers, as well as the hidden and output layers. 
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Figure 2 shows an illustration of the ANFIS working process with two inputs, x 

and y [27]. After the input layer, the second layer is to fuzzificate the inputs to fuzzy 

variables with the mbership function format. The third and the fourth layers are used 

to perform the fuzzy inference process to derive the weighted fuzzy outputs. The final 

or the fifth layer is used to perform the defuzzification process to obtain the real 

outputs. 

 

Figure 2. An illustration of ANFIS working process. 

Each layer consists of neurons constructed according to the principles of fuzzy 

control. Figure 1 shows a Sugeno fuzzy model with 27 rules along with a 

corresponding ANFIS architecture. In our case, a total of 27 rules in the method of “If-

Then” for the Sugeno model are considered with x and y as inputs and f as output [28]. 

27 rules are defined as below (three input columns–Open, High, Low; L: value low, 

M: value mid, H: value high): 

R1: If Open is L and High is L, and Low is L, 

        then f111 = p111Open + q111High + r111Low + c111 

R2: If Open is L and High is L, and Low is M, 

        then f112 = p112Open + q112High + r112Low + c112 

R3: If Open is L and High is M, and Low is L, 

        then f21 = p113Open + q113High + r113Low + c113 

R4: If Open is L and High is M, and Low is M, 

        then f22 = p211Open + q211High + r211Low + c211 

… 

The membership functions (MFs) for three inputs, Open, High and Low are 

shown in Figure 3. Each of three input variables has three MFs, in1mfi (i = 1 ~ 3) 

with Gaussian waveforms (gaussmf) as the MF distributions. In Figure 2, only the 

MFs for input1 (Open) are displayed as an example with an input range of $279 ~ 

$786. The distributions of these MFS are based on estimations of the values in the 
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Google Stock Price datasets, Google_Stock_Price_Train.csv and 

Google_Stock_Price_Test.csv, respectively. 

Figure 4 shows the envelope or surface of this ANFIS model with input1 and 

input2 as input variables. The vertical direction or z-axis represents the stock closing 

prices that are a function of both input variables. Figure 5 displays the structure for 

this ANFIS model. 

 

Figure 3. The membership functions of the input variable—Open. 

 

Figure 4. The envelope or the surface of the ANFIS. 
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Figure 5. The structure of this ANFIS model. 

4. The experimental results 

By using the Google Stock 5-year dataset as the training and checking data to 

train and check our ANFIS model, the training and testing results are shown in Figures 

6 and 7. The prediction or estimation for current stock prices based on training and 

checking the model is shown in Figure 8.  

The RMSE values for both training and testing are shown below: 

 

Figure 6. The training result for ANFIS model. 



Computing and Artificial Intelligence 2025, 3(2), 2485.  

7 

 

Figure 7. The testing result for the ANFIS model. 

Designated epoch number reached. ANFIS training completed at epoch 2. 

Minimal training RMSE = 0.103842 

Minimal checking RMSE = 0.0651076 

The Root Mean Squared Error (RMSE) is one of the major performance 

indicators for a regression model. It measures the average difference between stock 

values predicted by our ANFIS model and the actual stock values. It provides an 

estimation of how well the model is able to predict the target stock value (accuracy). 

It can be found from Figure 7 that the predicted and the actual stock price values 

are very close in tendency or trend, which is our objective since we do not take care 

of any single stock price value, but instead we only take care of the tendency or trend 

of stock price variations in a certain time window. That is our target or objective, and 

it enables us to find the peak or valley stock prices to help us to make decisions to 

invest or sell out our stocks in time to get the maximum benefits. 

 

Figure 8. A comparison between the predicted and actual stock prices. 
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To confirm the general prediction effectiveness of using our method, we tested it 

with another popular stock dataset, the NASDAQ Stock Market Dataset [29]. The 

RMSE values for that prediction process are; 

Minimal training RMSE = 0.00837042 

Minimal checking RMSE = 0.123309 

Figure 9 shows the comparison between the predicted and actual stock prices for 

NASDAQ stock dataset. It can be found that the tendency of both the predicted and 

the actual stock prices is very close. 

 

Figure 9. A comparison of predicted and actual stock prices for NASDAQ stock 

dataset. 

5. Conclusion 

With the help of MATLAB Fuzzy Logic and Deep Learning Toolboxes as well 

as Google Stock dataset, we develop an AI model, exactly an ANFIS model, to 

perform prediction and estimation for stock prices. First, we utilized Google Stock 5-

year dataset to train and test our ANFIS model. To confirm and check the effectiveness 

and accuracy, we utilized another Google Stock 1-month dataset to validate the trained 

model. The evaluation result shows that the prediction accuracy is good enough for us 

to estimate the current stock prices, and the prediction results are acceptable. 

Author contributions: Conceptualization, YB and DW; methodology, YB and DW; 

validation, YB; formal analysis, YB and DW. All authors have read and agreed to the 

published version of the manuscript. 
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