
Computing and Artificial Intelligence 2025, 3(1), 2018.

https://doi.org/10.59400/cai2018

1

Article

Intelligent process migration in heterogeneous distributed systems

Terecio Diosnel Marecos Brizuela1, David Luis La Red Martínez2,*, Federico Agostini2,

Jorge Tomás Fornerón Martínez1

1 Faculty of Applied Sciences, National University of Pilar, Pilar 120101, Paraguay
2 Faculty of Exact and Natural Sciences and Surveying, Northeastern National University, Corrientes W3400, Argentine

* Corresponding author: David Luis La Red Martínez, lrmdavid@exa.unne.edu.ar

Abstract: In distributed processing environments, multiple groups of processes are found

sharing resources and competing for access. These processes may or may not require

synchronization and it is essential to reach a consensus to manage access to resources in a way

that establishes a strict order, thus ensuring mutual exclusion. The proposal presented is an

innovative and effective solution for the management of shared resources in distributed systems,

which allows solving problems related to overload and workload balancing. The evaluation of

the state of computational loads and the final comparison using standard deviation are useful

tools to detect and correct imbalances in the system. In addition, the possibility of establishing

initial configurations of the algorithm for each particular situation allows adapting the solution

to the specific needs of each system.

Keywords: migration; load balancing; synchronization; distributed systems; mutual exclusion

1. Introduction

In distributed processing systems, the need to coordinate the allocation of shared

resources for processes in a mutually exclusive environment is common. This involves

the task of determining the order in which shared resources should be allocated to the

processes that require them, as described in La Red Martínez [1].

Each node in a given system has a specific capacity of computational, data and

communication resources. Resource requesting processes can be classified into

different categories, such as computation intensive, data intensive, and communication

intensive, according to their resource requirements.

In many cases, nodes may experience overload when trying to handle multiple

resource allocations to processes, resulting in slow node response to user requests. On

the other hand, some nodes may remain idle for much of the time. For all these reasons,

a proper workload balance is sought by performing intelligent process migrations to

improve system performance in heterogeneous environments.

Achieving effective load balance involves redistributing the workload among the

nodes of the distributed system in order to improve resource utilization and response

times. In turn, it prevents some nodes from being heavily loaded and others from being

idle or with little work. A load balancing algorithm must have prior knowledge about

the behavior of tasks and the global state of the system. Load balancing decisions are

based on global information about the current state of the system, and their effective

development covers important aspects such as load estimation, comparison of load and

performance levels, system stability, information exchange between nodes, estimation

of task resource requirements, selection of tasks for transfer, checking compatibility

between nodes, choice of remote nodes, among others.

CITATION

Marecos Brizuela TD, La Red

Martínez DL, Agostini F, Fornerón

Martínez JT. Intelligent process

migration in heterogeneous

distributed systems. Computing and

Artificial Intelligence. 2025; 3(1):

2018.

https://doi.org/10.59400/cai2018

ARTICLE INFO

Received: 11 November 2024

Accepted: 9 December 2024

Available online: 18 December 2024

COPYRIGHT

Copyright © 2024 by author(s).

Computing and Artificial Intelligence

is published by Academic Publishing

Pte. Ltd. This work is licensed under

the Creative Commons Attribution

(CC BY) license.

https://creativecommons.org/licenses/

by/4.0/

Computing and Artificial Intelligence 2025, 3(1), 2018.

2

Based on the aforementioned, the objective of this work is to propose a decision

model for a heterogeneous distributed system that integrates the intelligent migration

of processes to the aggregation operator described in La Red Martínez [1]. This will

allow the redistribution of the workload among the nodes of the system, improving

resource utilization, processing response times and increasing performance.

In the Related Works section, various articles addressing topics related to this

work have been discussed, providing a global perspective on different approaches and

aspects connected to the problem outlined in this brief Introduction. However, it is

noted that this work will focus on the application of the decision model and the

aggregation operators proposed in La Red Martínez [1] for the type of distributed

systems described in the Scenario section.

2. Related works

Among the methods considered traditional for resource allocation in distributed

systems respecting mutual exclusion in the access to shared resources, the ones

mentioned in Ricart and Agrawala [2], Guohong and Singhal [3] and Lodha and

Kshemkalyani [4] stand out.

Innovative methods with respect to resource allocation to processes are

mentioned in La Red Martínez [1] and La Red Martínez et al. [5,6], and an alternative

with respect to resource allocation, considering strict levels of consensus and sorting

by process groups can be seen in Agostini and La Red Martínez [7], Agostini et al. [8]

and Agostini [9].

There are different studies on process migration methods, load balancing and

energy consumption. In Beiruti and Ganjali [10], they develop a new protocol that is

used for a wide range of network applications, such as load balancing, energy saving

and resource optimization.

Upadhyay and Lakkadwala [11] develop a migration algorithm to migrate

overloaded processes from one machine to another in the same cloud environment

considering resource utilization.

In Deshmukh and Deshmukh [12] a modified approach is adopted to create a new

distributed dynamic load balancer for distributed file system, the algorithm considers

constraints such as network load, disk IO (input/output) load, disk capacity and load

which was not considered in other approaches.

In Junaidi et al. [13] a machine learning algorithm is proposed that uses server

resources, CPU and memory, to predict the future of server loads.

Design methodologies to quantitatively predict migration performance and power

consumption are investigated in Liu et al. [14] and analytical models, based on

stochastic reward networks (SRNs), are proposed in Asadi et al. [15] to analyze the

impact of resource allocation algorithms and process migration methods on power

consumption and performance of virtualized systems.

Some decision models using appropriate aggregation operators are shown in

Chiclana et al. [16] and Dong et al. [17].

To define the intelligent process migration methods for resource and process

management in DS in this paper, a systematic review of the related literature has been

performed, which allowed determining which ones were the most appropriate for the

Computing and Artificial Intelligence 2025, 3(1), 2018.

3

different scenarios being studied, having as reference more relevant research on

process migration methods, which are discussed below. In Sohrabi and Mousavi

Khaneghah [18], the challenges of occurrence of dynamic and interactive events in

virtual machine-based process migrators are examined by analyzing the migrator

performance function.

A comprehensive survey of existing load balancing and job migration techniques

is presented in Rathore and Chana [19], where a detailed classification based on

different parameters depending on the analysis of existing techniques is included, and

a new load balancing technique has been proposed and discussed.

In Chang et al. [20], a resource-aware edge process migration (REM) scheme is

proposed which can optimize the process migration decision. In Marecos et al. [21],

the application of a competency-based and student-centered learning model is

proposed for the study of controlled migration of processes, and where the student

must analyze the behavior of resources and processes under different workloads,

considering load balancing as the main objective. In Fornerón Martínez et al. [22] an

aggregation operator for shared resource management in distributed systems using 2-

tuples associated with linguistic labels is proposed.

In Bishop et al. [23], the complexity and challenges of migrating processes in

heterogeneous distributed systems, where hosts vary in architecture and operating

systems, are addressed. The document presents a valuable contribution to the field of

distributed systems but faces technical challenges in achieving a fully functional and

automated implementation.

In Cao et al. [24], an innovative and promising proposal is presented, but the

impact of the model in terms of energy consumption -a key factor in mobile and

intelligent devices- is not explored in depth. Additionally, the reliance on deep

learning could require additional computational resources, potentially contradicting

the efficiency objectives in edge environments.

Refers specifically to the migration of business information systems from a local

environment to a cloud computing platform, rather than process migration within a

cloud environment [25]. It focuses on using stochastic models to analyze and facilitate

this transition, highlighting challenges in aligning business goals with IT system

constraints.

Explores the transformative role of artificial intelligence (AI) in cloud computing,

emphasizing its impact on scalability, resource management, and predictive analytics

within distributed systems [26]. As organizations increasingly adopt cloud

infrastructure, the article asserts that AI technologies are becoming indispensable tools

for improving performance, efficiency, and system adaptability.

In Devan et al. [27] cloud migration refers to the process of transferring data,

applications, and IT infrastructure from on-premise data centers to a cloud

environment. This transition unlocks the benefits of cloud computing, including

scalability, agility, cost-efficiency, and access to advanced services. This paper does

not refer to the migration of data and processes of a distributed system with mutual

exclusion in access to resources, in an already operational cloud environment.

In Rathore and Chana [28] addresses a vital issue in grid computing -load

balancing and job migration-. While it provides a comprehensive review of existing

Computing and Artificial Intelligence 2025, 3(1), 2018.

4

challenges and gaps, it lacks specific solutions and detailed analysis to advance the

field. The discussion on the need for innovative load balancing algorithms is valid.

Proposes a two-stage genetic mechanism for load balancing virtual machine hosts

(VMHs) in cloud computing environments through migration [29]. It integrates two

genetic-based methods: a) Performance Modeling with GEP: Gene Expression

Programming (GEP) is used to generate symbolic regression models that predict

virtual machine (VM) performance based on their parameters. These models estimate

the VMH loads after load balancing; b) Optimal VM Assignment with Genetic

Algorithms: Using the load estimates from GEP, a genetic algorithm determines the

optimal assignment of VMs to VMHs, considering both current and future loads to

achieve effective load balancing. The approach was tested in a real cloud computing

environment (Jnet) and implemented as a centralized load balancing mechanism.

Experimental results demonstrate that the proposed method outperforms traditional

methods like heuristics and statistical regression in achieving better load balancing.

The proposed methods consider virtual machines migration, but do not take into

account the migration of processes and resources considering mutual exclusion of

shared resources.

Introduces a hybrid load balancing algorithm for cloud computing, called

Clustering-Based Multiple Objective Dynamic Load Balancing (CMODLB),

combining supervised (artificial neural networks), unsupervised (clustering), and soft

computing (interval type 2 fuzzy logic system) techniques [30]. This hybrid approach

ensures optimal scheduling, efficient migration, and improved load balancing for PMs

and VMs in cloud environments. This proposal only considers the migration of virtual

machines but does not address the migration of processes and resources between

virtual machines.

Introduces a game-theoretical framework for achieving user-optimal load

balancing in heterogeneous distributed systems [31]. The static load balancing

problem is modeled as a non-cooperative game among users, where the Nash

equilibrium represents the optimal operational point for each user. A distributed

algorithm is derived based on the structure of the Nash equilibrium to compute the

load balancing solution. This proposal does not address load balancing under

uncertainty or dynamic scenarios, nor does it consider collaborative process groups.

Presents a novel method for solving the load balancing problem in distributed

computer systems using game theory and a genetic algorithm [32]. The load balancing

problem is modeled as a non-cooperative game among users, where each player’s

strategy involves determining the fraction of their job assigned to system computers.

The goal is to minimize users’ expected response time by maximizing job processing.

A genetic algorithm, based on Nash equilibrium, is used to find near-optimal strategies.

The method effectively improves performance by reducing response times and

ensuring fairness. The possibility of collaborative process groups sharing resources in

a distributed mutual exclusion mode is not considered.

Analyzes the traffic load distribution in mesh networks and proposes a fault-

tolerant Network-on-Chip (NoC) design that focuses on load balancing [33]. The core

idea is to allocate a varying number of Error Correction Code (ECC) decoder modules

to each router based on traffic load distribution, aiming to improve ECC decoder

module utilization and reduce area overhead without compromising fault tolerance.

Computing and Artificial Intelligence 2025, 3(1), 2018.

5

This interesting proposal only considers traffic, aiming to optimize it, but it does not

take into account the processing load of the different nodes in the distributed system.

Proposes an Efficient Load Balancing algorithm (ELB) for NoC mapping, which

considers the relationships between tasks and resource utilization [34]. This proposal

does not consider the memory load and input/output operation load on the distributed

nodes. It also does not explicitly consider mutual exclusion in the use of shared

resources.

Explores the application of self-organizing algorithms, originally used in wireless

sensor networks, to networks-on-chip (NoCs), and introduces a method for assigning

hierarchical coordinates and a greedy forwarding algorithm for pathfinding [35]. It

focuses on handling the complexities of NoC environments, including network

overload and the presence of fault nodes, and provides a set of rules for bypassing

blocked sections of the network. This proposal does not take into account processing

load, memory usage, or input/output operations in heterogeneous distributed systems

with distributed mutual exclusion requirements for accessing shared resources.

In Gogoi et al. [36] the study addresses faults in multi-core architectures and

Network-on-Chip (NoC) systems caused by aggressive communication workloads. It

proposes a fault-aware routing approach that selects paths based on the health of

neighboring routers. Additionally, a router cool-off mechanism is introduced to

manage workload thresholds. A new router micro-architecture supports these

strategies, achieving zero fault occurrence, improved throughput, and minimal delay

compared to existing methods. The proposal does not consider resource and process

management in a distributed system composed of a set of heterogeneous nodes

connected by a wide-area network.

3. Scenario

Figure 1. Distributed system.

In a distributed system environment, as shown in Figure 1, it is common to find

nodes that are heavily loaded with respect to nodes that are inactive or have a low

Computing and Artificial Intelligence 2025, 3(1), 2018.

6

workload. An inadequate workload distribution causes an increase in the execution

time of the processes which, in turn, could generate an increase in energy consumption

and harm the overall performance of the system. Each node runs processes that require

access to certain resources, either locally or remotely.

In summary, the scenario described consists of various nodes (devices) with

processing and storage capabilities. Processes can run on different nodes and request

access to resources (memory, processes, files, records, etc.) located on the same node

or other nodes within the distributed system. The nodes are interconnected via a

communication network (local area network, wide area network, etc.). This scenario

could correspond to conventional distributed systems, distributed Internet of Things

(IoT) systems, nodes in a system organized as a cluster, grid, or even cloud computing.

In such cases, the proposed model would need to be adapted to the management tools

of the corresponding cluster, grid, or cloud.

4. Proposed solution

To address the problem, a central Runtime (runtime software) is defined that

manages the processes and shared resources and interacts with similar distributed

nodes to exchange information. The central node collects information from all the

nodes, applies the aggregation process and obtains the list of resource assignments to

processes.

A proposal is made considering the migration of processes to achieve a better

workload balancing assuming heterogeneity of the nodes (with respect to code

compatibility, operating system, architecture, instruction set, etc.).

The proposed aggregation operator uses information from La Red Martínez [1],

related to the current computational load of the nodes, the computational load

categories and their associated weight vectors, the priorities or preferences of the

processes taking into account the node state and the priorities or preferences of the

processes to access the available shared resources.

The calculations related to obtaining this information, considered preliminary,

are the starting point for others that will determine the processes to be migrated.

When considering aspects related to load balancing, an effective migration policy

is considered, which takes into account the priority of the processes, limitations in the

migration (to determine the number of processes that can pass from one node to

another), the weight of resources whose state may be local with respect to the process

that requires it, but could change to remote when migrating processes and the impact

of this depending on the performance of the receiving node according to hardware

characteristics.

An innovative variant to the aggregation operator used in La Red Martínez [1]

and La Red Martínez et al. [6] will be presented, including intelligent migration of

processes in heterogeneous distributed systems.

The aggregation operator is developed in six well-defined stages as shown in

Figure 2.

Computing and Artificial Intelligence 2025, 3(1), 2018.

7

Figure 2. Process migration calculation stages.

The stages correspond to the evaluation of the nodes, classifying them according

to their load level (high, medium, low). Next, the processes of the nodes with high

load and the resources linked to them are evaluated. Subsequently, the compatibility

of the process with the possible target nodes and the node categories are evaluated

according to their performance. To choose the node, priority is given to those in which

the process generates less impact, taking into account the transfer weight and the

performance of the possible receiving node. A list of candidate processes to be

migrated is obtained.

It is important to highlight that for the evaluation and demonstration of the

effectiveness of our proposed model, we have used a simulator developed within the

framework of the Project: “Development of a simulator for the evaluation of classical

and new algorithms for the management of shared resources in distributed systems

contemplating mutual exclusion”, under the code PI 126/20 of the Southern Chaco

National University (Argentine). This simulator was enriched with a process migration

module, which is the central focus of this article, and which was not previously present

in the simulator. A series of tests and configurations have been carried out, using

experimental data and scenarios that simulate real use, which has allowed us to

validate and highlight the importance of our contribution in the management of shared

resources in distributed systems.

In the proposed methodology, based on La Red Martínez [1], aggregation

operators from the OWA (Ordered Weighted Averaging) family are used, specifically

of the Neat OWA type, at each evaluation stage [37,38]. Neat OWA operators are an

extension of traditional OWA operators, where the weights assigned to the input

values depend on the specific characteristics of the data or the context of the

application. This feature makes Neat OWA operators especially useful in applications

that require precise modeling of decision-making and information fusion in complex

environments.

Formal Definition:

Given a set of values x1, x2, …, xn, and a corresponding set of weights w1, w2, …,

wn, where wi ≥ 0 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, the OWA operator is defined as:

Computing and Artificial Intelligence 2025, 3(1), 2018.

8

OWA (x1, x2, …, xn) = ∑ 𝑤𝑖
𝑛
𝑖=1 bi

where bi is the i-th largest value from the set x1, x2, …, xn after sorting them in non-

increasing order.

The OWA operator is often used in scenarios where the importance of each input

value depends on its relative position in the ordered list rather than its absolute value.

The Neat OWA operator is an extension of the traditional OWA operator, where

the weights assigned to the ordered values are not fixed but instead depend on the

characteristics of the data or the context of the application. The Neat OWA operator

adjusts the weights dynamically, offering more flexibility in modeling decision-

making processes. This operator is particularly useful in decision-making and multi-

criteria aggregation problems where the significance of each criterion varies based on

the context.

The computational complexity of OWA operators is primarily determined by two

main steps: sorting the input values and performing the weighted aggregation. Below

is a breakdown of the complexity:

The first step is to sort the input values in non-increasing (or non-decreasing)

order. This step is computationally the most expensive part and typically has a

complexity of:

O (n log n)

 where n is the number of input values. This is because sorting algorithms such

as quicksort or mergesort, which are commonly used, have an average time complexity

of:

O (n log n)

After sorting the values, the second step is to compute the weighted sum of the

ordered values. This involves multiplying each sorted value by its corresponding

weight and then summing the results. This step has a linear complexity:

O (n)

since it requires traversing the sorted list of n values and performing a constant

number of operations (multiplication and summation) for each element.

The total computational complexity is dominated by the sorting step, so the

overall complexity of the OWA operator is:

O (n log n) + O (n) = O (n log n)

Thus, the time complexity of computing an OWA aggregation is primarily

determined by the sorting of the input values, which scales logarithmically with the

number of inputs.

4.1. Nodal evaluation

The first stage of Figure 2 consists of analyzing the scenario at the system node

level, the initial values are configured, where the criteria is set to indicate the load

percentages, priorities and other parameters that will be considered for the migration.

To establish the node loads, the average load of the percentage of CPU, RAM

and input/output usage is calculated, which is shown in Table 1. Nodes whose average

load is greater than 70% are considered loaded, medium load between 40% and 70%,

and nodes whose average load value is less than 40% are considered as low load.

Computing and Artificial Intelligence 2025, 3(1), 2018.

9

From Table 1, nodes with high load that can migrate processes and nodes with

low load that can receive them are identified.

Table 1. Nodal loads.

Nodes
Criteria Values

Average Load
CPU RAM I/O

1 80 90 75 81.67 High

2 30 30 50 36.67 Low

3 77 49 85 70.33 High

4 6 7 9 7.33 Low

5 5 5 6 5.33 Low

6 7 9 7 7.67 Low

7 7 10 15 10.67 Low

8 9 6 7 7.33 Low

9 10 9 15 11.33 Low

10 8 7 8 7.67 Low

Source: Own elaboration. Based on [1].

Considering that each node can host several processes and resources, it is

important to mention that these processes not only compete for exclusive access to

local resources (LR), but also for resources that are located on other nodes, i.e.,

remotely (RR). In each situation, different options that will lead to the intelligent

migration of processes in the heterogeneous distributed system will be evaluated.

4.2. Process evaluation

The information resulting from the evaluation of the status of the nodes in the

first stage helps to identify those with high load, their processes and the local and

remote resources linked to these processes. In the second stage shown in Figure 2, the

evaluation of processes within each node with high load begins.

The process priority criterion for all resource allocations [1] will be considered

to calculate the average priority of each process.

For each resource request of each process, a priority criterion is established,

which is assigned by the node’s Runtime at the time the request is made. The sum of

this priority value, for each requested resource, divided by the total number of requests

of each process, will indicate the average priority of the process.

Processes whose average priority exceeds an arbitrarily set limit are considered

candidates for migration; only those processes whose average priority exceeds 0.6 are

considered. The nodes with high load are node 1 and node 3, both of which have 7

processes to be evaluated.

Node 1

average process priority (p11) = (0.8 + 0.3 + 0.9 + 0.8 + 0.95 + 0.6) /6 = 0.730

average process priority (p12) = (1 + 0.8 + 0.8 + 0.8 + 0.8 + 0.3 + 0.3 + 0.3) /6 = 0.670

average process priority (p13) = (0.6 + 0.9 + 0.9 + 0.9 + 0.5 + 0.5 + 0.8 + 0.4 + 0.9) /8 = 0.690

average process priority (p14) = (0.7 + 0.8 + 0.8 + 0.8 + 0.4 + 0.4 + 0.7 + 0.8 + 0.7) /8 = 0.660

Computing and Artificial Intelligence 2025, 3(1), 2018.

10

average process priority (p15) = (0.7 + 0.8 + 0.6 + 0.8 + 0.6 + 0.6 + 0.8 + 0.5) /8 = 0.68

average process priority (p16) = (1 + 0.8 + 0.7 + 0.6 + 0.8 + 0.8 + 0.8 + 0.3 + 0.3)/8 =0.675

average process priority (p17) = (0.6 + 0.8 + 0.7) /3 = 0.675

Node 3

average process priority (p31) = (0.7 + 0.7 + 0.9) / 3 = 0.767

average process priority (p32) = (0.9 + 0.8 + 0.9 + 0.9 + 0.6) /4 = 0.800

average process priority (p33) = (0.6 + 0.3 + 0.3 + 0.8 + 0.7 + 0.6 + 0.4 + 0.6) /5 = 0.538

average process priority (p34) = (0.7 + 0.8 + 0.9 + 0.9 + 0.7 + 0.7 + 0.7 + 0.6 + 0.9) /8 = 0.775

average process priority (p35) = (0.9 + 0.9 + 0.8 + 0.6 + 0.8 + 0.4 + 0.8) /7 = 0.743

average process priority (p36) = (0.8 + 0.8 + 0.8 + 0.8 + 0.7 + 0.8 + 0.8 + 0.8 + 0.8 + 0.8 + 0.8 + 0.8) /9 = 0.789

average process priority (p37) = (0.9 + 0.5 + 0.6 + 0.8 + 0.8 + 0.8) /5 = 0.720

Process p33 is not evaluated in this cycle because for the proposed model only

those processes whose average process priority exceeds the established limit, in this

case 0.6, are considered.

The processes that qualify for possible migration are listed in Table 2.

Table 2. Processes with average priority higher than 0.6.

Nodes Processes Average process priority

1 p11 0.73

1 p12 0.67

1 p13 0.69

1 p14 0.66

1 p15 0.68

1 p16 0.66

1 p17 0.70

3 p31 0.77

3 p32 0.80

3 p34 0.78

3 p35 0.74

3 p36 0.79

3 p37 0.72

Source: Own elaboration. Based on [1].

4.3. Compatibility assessment

In this third stage of Figure 2, an evaluation is performed to determine if there

are compatible nodes with low load that can host processes from other nodes. The

processes to be evaluated are those that passed the previous stage.

To evaluate the compatibility of the nodes, the hardware and software

components (features) of the nodes are considered, which are grouped into sets. The

evaluation is based on determining whether a node with low load has the same or more

components than the node with high load under evaluation, by checking whether a set

Computing and Artificial Intelligence 2025, 3(1), 2018.

11

of characteristics of the source node (O) is contained in another set of characteristics

of a possible target node (D) or whether two sets (O and D) are the same. The formula

used in this case is as follows:

Compatibility (O, D): O ⊆ D

The compatibility of node 1 (node with high load) is evaluated in relation to the

other nodes with low load. The set of components is given by h1, h2, h3 referring to

hardware components and s1, s2, s3 referring to software components.

Node 1: N1 = {h1, h3, s2}

Node 2: N2 = {h1, h2, h3, s1, s2}

Node 4: N4 = {h1, h3, s2}

Node 5: N5 = {h2, h3, s1, s3}

Node 6: N6 = {h1, s3}

Node 7: N7 = {h2, h3, s1, s2, s3}

Node 8: N8 = {h1, h3, s2}

Node 9: N9 = {h1, h2, h3, s1, s2, s3}

Node 10: N10 = {h2, h3, s1, s3}

Based on the aforementioned data sets, the following evaluation is made:

Node 2: N1 ⊆ N2

Node 4: N1 ⊆ N4

Node 5: Does not comply with the condition.

Node 6: Does not comply with the condition.

Node 7: Does not comply with the condition.

Node 8: N1 ⊆ N8

Node 9: N1 ⊆ N9

Node 10: Does not comply with the condition.

The evaluation of the hardware and software component sets of node 1 compared

to the other nodes reveals that nodes 2, 4, 8 and 9 are compatible with node 1, as they

contain all the features of node 1 and even some additional ones. In contrast, nodes 5,

6, 7 and 10 are not compatible due to the absence of certain required features.

The compatibility of node 3 (node with high load) is assessed in relation to the

other nodes with low load.

Node 3: N3 = {h2, h3, s1, s3}

Node 2: N2 = {h1, h2, h3, s1, s2}

Node 4: N4 = {h1, h3, s2}

Node 5: N5 = {h2, h3, s1, s3}

Node 6: N6 = {h1, s3}

Node 7: N7 = {h2, h3, s1, s2, s3}

Node 8: N8 = {h1, h3, s2}

Node 9: N9 = {h1, h2, h3, s1, s2, s3}

Node 10: N10 = {h2, h3, s1, s3}

Based on the above-mentioned data sets, the following assessment is made:

Node 2: Does not comply with the condition.

Node 4: Does not comply with the condition.

Node 5: N3 ⊆ N5

Node 6: Does not comply with the condition.

Computing and Artificial Intelligence 2025, 3(1), 2018.

12

Node 7: N3 ⊆ N7

Node 8: Does not comply with the condition.

Node 9: N3 ⊆ N9

Node 10: N3 ⊆ N10

The evaluation of the hardware and software component sets of node 3 in

comparison with the other nodes reveals that nodes 5, 7, 9 and 10 are compatible with

node 3, as they contain all the features of node 3 and even some additional ones. On

the other hand, nodes 2, 4, 6 and 8 are not compatible due to the absence of certain

required features.

For each process there can be several compatible nodes with low available load.

Taking into account the set of compatible nodes with low load, the resources requested

by the processes are checked to determine the candidate node for a possible migration.

4.4. Resource assessment

Once the processes of the node with high load and the possible destination nodes

have been identified, the fourth stage of Figure 2 begins, where the comparison of the

local resources in relation to the remote ones is carried out, to evaluate the impact of

the possible migration of processes.

Figure 3 shows the weight migration vector (WMV) where values of the

migration weight that the process would generate if migrated to a certain destination

node are stored. There will be a weight migration vector for each process in relation

to the evaluated destination node.

Figure 3. Weight migration vector (WMV).

For each node with high load, the evaluation of its processes is performed for the

different situations that may arise. Any remote node compatible with the source node

will be evaluated and may be a candidate to become a target node.

Options (q), (u), (v) and (w) in Figure 3 are the situations that can occur for the

calculation of the transfer weight in the migration of a process to another node.

Table 3 shows the process migration vector for process p11 which has the

following associated resource weights: the local resource weight is 0.6 and the remote

resource weight at node 2 is 2.1. Analyzing Figure 3 in relation to node 2 its value is

Computing and Artificial Intelligence 2025, 3(1), 2018.

13

recorded given the situation (u), and in relation to nodes 4, 8 and 9 its value is saved

given the situation (q).

Table 3. Migration vector of the p11 process.

wmv1 Options

q s u (q) (u) (v) (w)

1 1 2 - 0.6 - -

1 1 4 2.7 - - -

1 1 5 - - - -

1 1 6 - - - -

1 1 7 - - - -

1 1 8 2.7 - - -

1 1 9 2.7 - - -

1 1 10 - - - -

Table 4 shows the process migration vector for process p12 which has the

following associated resource weights: the local resource weight is 1.0, the remote

resource weight is distributed over two nodes, at node 2 it is 1.2 and at node 3 it is 1.3.

Process p12 could migrate only to node 2 as doing so to another node would generate

a high impact on bandwidth.

Table 4. Migration vector of the p12 process.

wmv2 Options

q s u (q) (u) (v) (w)

1 2 2 - 2.3 - -

1 2 4 - - - -

1 2 5 - - - -

1 2 6 - - - -

1 2 7 - - - -

1 2 8 - - - -

1 2 9 - - - -

1 2 10 - - - -

Table 5 shows the process migration vector for process p13 which has the

following associated resource weights: the local resource weight is 2.1, the remote

resource weight is distributed over two nodes, at node 2 it is 1.0 and at node 3 it is 2.0.

Analyzing Figure 3 in relation to node 2 its value is saved given situation (u). Process

p13 could migrate only to node 2 as doing so to another node would generate a high

impact on bandwidth.

Computing and Artificial Intelligence 2025, 3(1), 2018.

14

Table 5. Migration vector of the p13 process.

wmv3 Options

q s u (q) (u) (v) (w)

1 3 2 - 4.1 - -

1 3 4 - - - -

1 3 5 - - - -

1 3 6 - - - -

1 3 7 - - - -

1 3 8 - - - -

1 3 9 - - - -

1 3 10 - - - -

Table 6 shows the process migration vector for process p14 which has the

following associated resource weights: the local resource weight is 2.2, the remote

resource weight is distributed over two nodes, at node 2 it is 1.2 and at node 4 it is 1.9.

Analyzing Figure 3 in relation to nodes 2 and 4 their value is saved given situation

(u). Process p14 could migrate only to node 2 or node 4 as doing so to another node

would generate a high impact on bandwidth.

Table 6. Migration vector of the p14 process.

wmv4 Options

q s u (q) (u) (v) (w)

1 4 2 - 4.1 - -

1 4 4 - 3.4 - -

1 4 5 - - - -

1 4 6 - - - -

1 4 7 - - - -

1 4 8 - - - -

1 4 9 - - - -

1 4 10 - - - -

Table 7 shows the process migration vector for process p15 which has the

following associated resource weights: the remote resource weight is distributed in

four nodes, in node 2 it is 0.6, in node 3 it is 1.8, in node 5 it is 2.1 and in node 6 it is

1.4. Analyzing Figure 3 we observe at nodes 2, 8, 9, its value is recorded given the

situation (v), and at node 4, its value is recorded given the situation (q).

Process p16 is discarded from the possibility of migration because it does not

meet the conditions to migrate to other nodes as doing so would generate a high impact

on bandwidth.

Computing and Artificial Intelligence 2025, 3(1), 2018.

15

Table 7. Migration vector of the p15 process.

wmv5 Options

q s u (q) (u) (v) (w)

1 5 2 - - 5.3 -

1 5 4 5.9 - - -

1 5 5 - - - -

1 5 6 - - - -

1 5 7 - - - -

1 5 8 - - 5.9 -

1 5 9 - - 5.9 -

1 5 10 - - - -

Table 8 shows the process migration vector for process p17, the local resource

weight of 0.9, it has no remote resources and since its weight does not exceed the limit

set in situation (p) in Figure 3, any of the compatible nodes with low load of the

distributed system is a candidate for possible migration and its value is saved given

situation (q).

Table 8. Migration vector of the p17 process.

wmv7 Options

q s u (q) (u) (v) (w)

1 7 2 0.9 - - -

1 7 4 0.9 - - -

1 7 5 - - - -

1 7 6 - - - -

1 7 7 - - - -

1 7 8 0.9 - - -

1 7 9 0.9 - - -

1 7 10 - - - -

Table 9 shows the process migration vector corresponding to process p31 at node

3, which is the next one with high load.

Table 9. Migration vector of the p31 process.

wmv1 Options

q s u (q) (u) (v) (w)

3 1 2 - - - -

3 1 4 - - - -

3 1 5 - - - 2.2

3 1 6 - - - -

3 1 7 - - 0.7 -

3 1 8 - - - -

3 1 9 - - - 2.2

3 1 10 - - - 2.2

Computing and Artificial Intelligence 2025, 3(1), 2018.

16

Regarding process p31, its remote resource weight is distributed in two nodes, in

node 1 it is 0.7 and in node 7 it is 1.5. Analyzing Figure 3 and considering that process

p31 has no local resources, in relation to nodes 5, 9, and 10, its value is recorded given

the situation (w) and in relation to node 7 its value is recorded given the situation (v).

Table 10 shows the process migration vector for process p32 which has the

following associated resource weights: the weight of remote resources is distributed

in two nodes, in node 1 it is 0.9 and in node 2 it is 0.6. Analyzing Figure 3 and

considering that process p32 has no local resources, in relation to nodes 5, 7, 9 and 10

its value is saved given the situation (w).

Table 10. Migration vector of the p32 process.

wmv2 Options

q s u (q) (u) (v) (w)

3 2 2 - - - -

3 2 4 - - - -

3 2 5 - - - 1.5

3 2 6 - - -

3 2 7 - - - 1.5

3 2 8 - - - -

3 2 9 - - - 1.5

3 2 10 - - - 1.5

Process p34 is discarded from the possibility of migration because it does not

meet the conditions to migrate to other nodes as doing so would generate a high impact

on bandwidth.

Table 11 shows the process migration vector for process p35 which has the

following associated resource weights: the weight of local resources is 1.5, the weight

of remote resources is distributed in two nodes, in node 6 it is 1.2 and in node 7 it is

1.8. Analyzing Figure 3 in relation to node 7, its value is saved given situation (u).

The process p35 could migrate only to node 7 as doing so to another node would

generate a high impact on bandwidth.

Table 11. Migration vector of the p35 process.

wmv5 Options

q s u (q) (u) (v) (w)

3 5 2 - - - -

3 5 4 - - - -

3 5 5 - - - -

3 5 6 - - - -

3 5 7 - 2.7 - -

3 5 8 - - - -

3 5 9 - - - -

3 5 10 - - - -

Computing and Artificial Intelligence 2025, 3(1), 2018.

17

Table 12 shows the process migration vector for process p36 which has the

following associated resource weights: the remote resource weight is distributed over

three nodes, at node 1 it is 1.8, at node 2 it is 1.6 and at node 8 it is 1.8. Analyzing

Figure 3 in relation to nodes 5, 7, 9 and 10, their value is recorded given the situation

(w).

Table 12. Migration vector of the p36 process.

wmv6 Options

q s u (q) (u) (v) (w)

3 6 2 - - - -

3 6 4 - - - -

3 6 5 - - - 4.6

3 6 6 - - - -

3 6 7 - - - 4.6

3 6 8 - - - -

3 6 9 - - - 4.6

3 6 10 - - - 4.6

Table 13 shows the process migration vector for process p37 which has the

following associated resource weights, the local resource weight is 0.8, the remote

resource weight is distributed over two nodes, at node 1 it is 1.1 and at node 4 it is 1.3.

Analyzing Figure 3 in relation to nodes 5, 7, 9 and 10, its value is recorded given

situation (q).

Table 13. Migration vector of the p37 process.

wmv7 Options

q s u (q) (u) (v) (w)

3 7 2 - - - -

3 7 4 - - - -

3 7 5 3.2 - - -

3 7 6 - - - -

3 7 7 3.2 - - -

3 7 8 - - - -

3 7 9 3.2 - - -

3 7 10 3.2 - - -

There will be a weight migrations vector (WMV) for each evaluated process and

a value for each evaluated compatible destination node, these values are stored in a

general migration weight matrix (GMWM) shown in Table 14. For each process, the

set of compatible nodes with low load is recorded and for each possible evaluated

destination node, the value resulting from the summation of the transfer weight of the

WMV vector (obtained in Figure 3) is included.

Computing and Artificial Intelligence 2025, 3(1), 2018.

18

Table 14. General migration weight matrix (GMWM).

Processes
Nodes

2 4 5 6 7 8 9 10

p11 0.6 2.7 - - - 2.7 2.7 -

p12 2.3 - - - - - - -

p13 4.1 - - - - - - -

p14 4.1 3.4 - - - - - -

p15 5.3 5.9 - - - 5.9 5.9 -

p17 0.9 0.9 - - - 0.9 0.9 -

p31 - - 2.2 - 0.7 - 2.2 2.2

p32 - - 1.5 - 1.5 - 1.5 1.5

p35 - - - - 2.7 - - -

p36 - - 4.6 - 4.6 - 4.6 4.6

p37 - - 3.2 - 3.2 - 3.2 3.2

In relation to the general migration weight matrix, it is important to normalize its

values. To achieve this, the proportional normalization technique is employed. In this

method, each value in the matrix data set is divided by the total sum of the values, thus

ensuring that the sum of the normalized values equals 1 (Table 15).

Table 15. General matrix of normalized migration weights (GMNMW).

Proc.
Nodes

2 4 5 6 7 8 9 10

p11 0.01 0.03 - - - 0.03 0.03 -

p12 0.02 - - - - - - -

p13 0.04 - - - - - - -

p14 0.04 0.04 - - - - - -

p15 0.05 0.06 - - - 0.06 0.06 -

p17 0.01 0.01 - - - 0.01 0.01 -

p31 - - 0.02 - 0.01 - 0.02 0.02

p32 - - 0.02 - 0.02 - 0.02 0.02

p35 - - - 0.03 -

p36 - - 0.05 - 0.05 - 0.05 0.05

p37 - - 0.03 - 0.03 - 0.03 0.03

Green cells indicate that the process has some resource assigned to that node,

grey cells indicate that it does not.

4.5. Establishing nodal categories

In the fifth step of Figure 2, the nodes are classified into different categories,

considering the hardware components and the specific characteristics of each

component (e.g., for the processor component: number of cores, MFLOPS, cache, etc.).

Table 16 lists the hardware components that will be evaluated, for example the

components CPU (processor), RAM, and HDD (hard disk) will be evaluated, each X

Computing and Artificial Intelligence 2025, 3(1), 2018.

19

represents the presence or absence of the hardware component necessary to execute

the processes in each node.

Table 16. Hardware components.

Nodes CPU RAM HDD

1 X - X

2 X X X

3 - X X

4 X - X

5 - X X

6 X - -

7 - X X

8 X - X

9 X X X

10 - X X

For each component being evaluated, the specific characteristics of each one will

be analyzed.

In the case of the CPU component (Table 17), the following attributes will be

analyzed: Number of cores, MFLOPS (millions of floating-point instructions per

second), Architecture (Arch.), Cache (MBytes), Power consumption in watts (W).

Table 17. Attribute values of the CPU component.

Nodes Cores MFLOPS Arch. MB W

1 8 0.01 32 12 95

2 10 0.012 64 16 110

3 8 0.009 64 10 90

4 6 0.008 32 8 80

5 4 0.006 32 6 70

6 4 0.0045 32 4 60

7 2 0.003 32 2 50

8 4 0.0075 32 6 75

9 6 0.01 64 8 85

10 2 0.0025 32 4 40

In the case of the RAM component (Table 18), the following attributes will be

analyzed: Capacity (GBytes), Clock speed (MHz), Bandwidth (GB/s), Access time

(ns), Power consumption in watts (W).

Computing and Artificial Intelligence 2025, 3(1), 2018.

20

Table 18. Attribute values of the ram component.

Nodes GB MHz GB/s ns W

1 16 3000 40 12 0.8

2 64 3200 50 10 1.2

3 128 3600 60 9 1.5

4 32 3200 45 11 1

5 64 3400 55 10 1.2

6 16 2800 35 13 0.7

7 8 2666 30 14 0.6

8 32 2800 35 11 0.9

9 256 4000 70 8 1.8

10 4 2666 32 15 0.5

In the case of the hard disk component (Table 19), the following attributes will

be analyzed: Capacity (GB), Rotational speed (RPM), Transfer rate (MB/s), Cache

(MB), Power consumption in watts (W).

Table 19. Attribute values of the hard disk component.

Nodes GB RPM MB/s Mb W

1 2000 5400 150 128 6

2 4000 7200 250 256 7.5

3 8000 7200 300 512 8.2

4 4000 7200 200 256 6.5

5 8000 7200 250 512 7

6 500 5400 100 64 4.5

7 1000 5400 120 128 5

8 4000 5400 200 256 8.3

9 12000 10000 350 1000 9

10 1000 7200 150 128 5.5

The values of each hardware component attribute shown in Table 16 shall be

multiplied by its weight vector detailed in Table 20 below. For each hardware

component, a weight vector associated with its specific characteristics is defined,

whose values may be different when it is desired to reflect the relative importance of

one over the other. Without loss of generality, the same weight vector shall be used

for the power calculation of each hardware component.

Table 20. Vector of weights for each hardware component.

Attribute 1 Attribute 2 Attribute 2 Attribute 4 Attribute 5

0.3 0.2 0.2 0.2 0.1

The values of the attributes of each hardware component in Table 17 through

Table 19, taken row by row, i.e., with respect to each node, shall be multiplied by the

vector of weights in Table 20 and then the results shall be summed to obtain the power

Computing and Artificial Intelligence 2025, 3(1), 2018.

21

of each hardware component. This can be seen in Table 21, where each X in Table

16 is replaced by the resulting value as the power value for each hardware component.

Table 21. Hardware component power.

Nodes CPU RAM HDD

1 20.702 - 1736.200

2 30.002 671.320 2741.950

3 - 772.350 4003.220

4 17.802 - 2731.850

5 - 712.320 3993.100

6 14.401 - -

7 - 544.460 1430.100

8 16.302 - 2372.030

9 24.702 892.580 5870.900

10 - 543.850 1796.150

The hardware component power values in Table 21, taken row by row, i.e., with

respect to each node, will be multiplied by another vector of weights in Table 22 and

then the results will be summed to obtain the weighted index of each node’s power.

This can be seen in Table 23.

Table 22. Vector of weights for the weighted power index.

CPU RAM HDD

0.5 0.2 0.3

Table 23. Nodal power.

Nodes Weighted index of each node

1 194.935

2 764.787

3 1032.349

4 207.171

5 1012.316

6 7.200

7 449.358

8 181.818

9 1454.305

10 522.385

The resulting weighted index values are classified into different categories using

linguistic labels. Lower and upper limits are set for each category to which a linguistic

label was assigned.

For the example three categories will be taken, sub-standard, standard and supra-

standard classified according to the capabilities of each node of the distributed system

Computing and Artificial Intelligence 2025, 3(1), 2018.

22

mentioned in Table 23. The categories are established according to the results of the

node capabilities and the number of categories to be established.

According to the values in Table 23, the minimum value is 7,200, which will be

the lower limit of the sub-standard range, and the maximum value is 1454.30, which

will be the upper limit of the Supra standard range; with these values, without loss of

generality, a classification into three categories has been established, the limit values

between categories being the following: 489.569, 971.937.

The classification is as follows (Table 24).

Table 24. Classification of nodes according to their performance.

Nodes Weighted index of each node Classification of Performances

1 194.935 Sub standard

2 764.787 Standard

3 1032.349 Sub standard

4 207.171 Sub standard

5 1012.316 Supra standard

6 7.200 Sub standard

7 449.358 Sub standard

8 181.818 Sub standard

9 1454.305 Supra standard

10 522.385 Standard

Since the model considers the lowest handover impact, to favor high-

performance nodes as receivers, the inverse of the weighted nodal power index values

(Table 23) is considered. Their values should be normalized so that their sum is equal

to 1. This can be seen in Table 25.

Table 25. Inverted and normalized nodal power.

Nodes Weighted index of each node Inverse of the weighted index Normalized index

1 194.935 0.005 0.032

2 764.787 0.001 0.008

3 1032.349 0.001 0.006

4 207.171 0.005 0.030

5 1012.316 0.001 0.006

6 7.200 0.139 0.855

7 449.358 0.002 0.014

8 181.818 0.006 0.034

9 1454.305 0.001 0.004

10 522.385 0.002 0.012

4.6. Choice of destination node

In the sixth step of Figure 2, the choice of destination nodes for each process to

be migrated is made. To assign the order of process migration, the general matrix of

Computing and Artificial Intelligence 2025, 3(1), 2018.

23

normalized migration weights (Table 15) and the resulting inverted and normalized

nodal power values (Table 25) must be evaluated.

Table 26 shows the general migration impact matrix (GMIM), resulting from the

sum of the weights of the general matrix of normalized migration weights (Table 15)

and the inverted and normalized weighted power index of each node (Table 25).

Table 26. General migration impact matrix (GMIM).

Proc.
Nodes

2 4 5 6 7 8 9 10

p11 0.01 0.06 - - - 0.06 0.03 -

p12 0.62 - - - - - - -

p13 0.64 - - - - - - -

p14 0.64 0.06 - - - - - -

p15 0.65 0.09 - - - 0.10 0.07 -

p17 0.61 0.04 - - - 0.04 0.01 -

p31 - - 0.03 - 0.02 - 0.03 0.03

p32 - - 0.02 - 0.03 - 0.02 0.03

p35 - - - - 0.04 - - -

p36 - - 0.05 - 0.06 - 0.05 0.06

p37 - - 0.04 - 0.05 - 0.04 0.04

Green cells indicate that the process has some resource assigned to that node,

grey cells indicate that it has not.

The first step to be taken from the data in the general impact matrix (Table 26)

is to divide it into two matrices, a primary matrix (Table 27) (first round of allocation)

and a secondary matrix (Table 28) (second round of allocation). The difference is that

first we will try to favor those processes that have resources in the destination nodes,

i.e., whose migration would imply a reduction in the input-output (transfer) impact

with respect to those that do not have resources in the destination nodes; for this

purpose, the primary matrix is used. The second matrix will be analyzed after having

evaluated the primary matrix.

For the proposed model, each node with a high load will be able to migrate up to

45% of its processes, to avoid migrating all its processes and overloading other nodes.

Table 27. Primary matrix (PM).

Proc.
Nodes

2 4 5 6 7 8 9 10

p11 0.01 0.06 - - - 0.06 0.03 -

p12 0.62 - - - - - - -

p13 0.64 - - - - - - -

p14 0.64 0.06 - - - - - -

p15 0.65 0.09 - - - 0.10 0.07 -

p31 - - 0.03 - 0.02 - 0.03 0.03

p35 - - - - 0.04 - - -

Computing and Artificial Intelligence 2025, 3(1), 2018.

24

Table 28. Secondary matrix (SM).

Proc.
Nodes

2 4 5 6 7 8 9 10

p17 0.61 0.04 - - - 0.04 0.01 -

p32 - - 0.02 - 0.03 - 0.02 0.03

p36 - - 0.05 - 0.06 - 0.05 0.06

p37 - - 0.04 - 0.05 - 0.04 0.04

The lowest transfer impact in the primary matrix is considered for each process.

The choice of the destination node for the first process with the lowest transfer

impact is initiated. At the end of each round, the newly assigned process and node are

removed from the primary matrix. The processes whose target resources were only in

the selected node become part of the secondary matrix (SM) (Table 28).

For each evaluation round, it is verified that the migration percentage of the

source node is less than the set limit. This calculation is made on the total number of

processes per node.

The evaluation continues if there are processes to be evaluated. The order of

allocation of processes to target nodes of the primary matrix is indicated by the primary

Allocation Function for Migration in Distributed Systems (AFMDS) (Table 29).

Table 29. Allocation function for migration in distributed systems (FAMSD)

primary.

Process transfer weight Selected process Destination node

0.01 p11 2

0.02 p31 7

0.06 p14 4

The secondary matrix is analyzed once the first round of evaluation for the

primary matrix has been completed. The same evaluation criteria are applied as in the

primary matrix, but for processes that do not have access requirements to resources of

other nodes. The order of allocation of processes to target nodes of the secondary array

is then indicated by the secondary Allocation Function for Migration in Distributed

Systems (MAFDS) (Table 30).

Table 30. Secondary migration assignment function for distributed systems

(MAFDS).

Process transfer weight Selected process Destination node

0.01 p17 9

0.02 p32 5

0.04 p37 10

0.10 p15 8

Processes at source nodes that have reached the migration limit are discarded and

become part of a matrix of non-migratable processes (MNMP) (Table 31).

Computing and Artificial Intelligence 2025, 3(1), 2018.

25

Table 31. Matrix of non-migratable processes (MNMP).

Proc.
Nodes

2 4 5 6 7 8 9 10

p12 0.62 - - - - - - -

p13 0.64 - - - - - - -

p35 - - - - 0.04 - - -

p36 - - 0.05 - 0.06 - 0.05 0.06

At the end of the evaluation of nodes 3 and 1 and having exhausted migration

options or having reached the maximum percentage of process migration established,

the present evaluation macro-cycle is terminated.

The primary Migration Assignment Function for Distributed Systems (MAFDS)

and the secondary Migration Assignment Function for Distributed Systems (MAFDS)

are then concatenated. This results in the Mapping Function for Migration in

Distributed Systems Concatenated (MFMDSC) shown in Table 32.

Table 32. Migration in distributed systems concatenated (MFMDSC).

Process transfer weight Selected process Destination node

0.01 p11 2

0.02 p31 7

0.06 p14 4

0.01 p17 9

0.02 p32 5

0.04 p37 10

0.10 p15 8

4.7. Evaluation of new overload values for inbound processes according

to receiving node category

Each process has associated overhead values that indicate how much additional

load it would generate on a possible receiver node in terms of memory, processor and

input/output. These values are obtained using the aggregation operator developed in

La Red Martínez [1].

To the average computational load obtained by the aggregation operator

developed in La Red Martínez [1], an additional criterion is added, which is the

overhead, obtained from the sum of the average overheads of each process in the node.

When migrating the processes, the classification table of nodes according to their

performance (Table 24) will be considered. This will make it possible to determine

the category to which both the source node and the destination node belong. In this

way, the new overhead values can be calculated using the node category conversion

table (Table 33).

Computing and Artificial Intelligence 2025, 3(1), 2018.

26

Table 33. Nodal category conversion table.

Categories Destination

Source 1 2 3

1 1.00 0.33 0.25

2 3.00 1.00 0.75

3 4.00 1.33 1.00

Note: Category 1 corresponds to substandard, 2 corresponds to standard and 3 corresponds to supra

standard.

Table 34 shows the evaluation of the new overload averages of the migrated

processes according to the performance of the receiving nodes. The overhead value of

the process at the origin node is multiplied by the weight value of the nodal category

conversion table (Table 33) to obtain the new value that it will generate at the

receiving node.

Table 34. Average overloads at receiving nodes.

Proc. Source category Average origin overload Destination category Average target overload

p14 Standard 4.57 Standard 4.57

p32 Supra standard 2.70 Supra standard 2.70

p31 Supra standard 2.10 Sub standard 8.40

p15 Standard 5.53 Standard 5.53

p17 Standard 2.07 Supra standard 0.52

p37 Supra standard 3.30 Standard 4.40

4.8. Evaluation of the impact of process migration on nodal

computational load and overall system performance

The main objective is to evaluate and compare the impact of process migration

on the overall state of the system. To achieve this, two stages will be carried out: in

the first stage, the overload of resource allocations to processes will be considered,

without performing the migration, while in the second stage, performing the migration

with the new overload values according to the receiving node.

By comparing both scenarios, it will be possible to determine the impact of

migration on the overall performance and operation of the system.

The computational load of each node will be calculated in two ways.

(a) Overload calculation without migration

The average overhead of the resource allocations to processes is applied to the

average computational load of the Table 1, obtained using the aggregation operator

developed in La Red Martínez [1]. This is shown in Table 35.

Computing and Artificial Intelligence 2025, 3(1), 2018.

27

Table 35. Computational load without migration.

Node Average Average Overload Final Average

1 81.67 28.13 109.80

2 36.67 11.70 48.37

3 70.33 24.27 94.60

4 7.33 0 7.33

5 5.33 0 5.33

6 7.67 0 7.67

7 10.67 0 10.67

8 7.33 0 7.33

9 11.33 0 11.33

10 7.67 0 7.67

Nodes 4 to 10 have no active processes; therefore, they have an overhead value of 0.

(b) Overload calculation with migration

The average overhead of the resource allocations to processes is applied to the

average computational load of the (Table 1) obtained using the aggregation operator

developed in La Red Martínez [1]. The average overhead values applied are the values

calculated for each target node in Table 34. This is observed in Table 36.

Table 36. Computational load with migration.

Node Average Average Overload Final Average

1 81.67 13.00 94.67

2 36.67 12.68 49.35

3 70.33 16.17 86.50

4 7.33 4.57 11.90

5 5.33 2.70 8.03

6 7.67 0 7.67

7 10.67 8.40 19.07

8 7.33 5.53 12.87

9 11.33 0.52 11.85

10 7.67 4.40 12.07

Node 6 has no active processes; therefore, its overload value is 0.

4.9. Evaluation of the energy consumption of the nodes once the

processes have been migrated

To evaluate the energy consumption of the nodes of the distributed system, the

final average overload multiplied by the corresponding value of the energy

consumption conversion vector (Table 37) will be used. Without loss of generality, it

has been considered that a node in the standard category consumes twice as much

energy as one in the substandard category and that a node in the supra-standard

category consumes three times as much as one in the substandard category.

Computing and Artificial Intelligence 2025, 3(1), 2018.

28

Table 37. Energy consumption conversion vector.

 Categories

 Sub standard Standard Supra standard

Consumption 1 2 3

The names assigned to the energy consumption categories for each node are

arbitrary; a different table with more items and alternative names for each category

could be used. In this case, it is assumed that the energy consumption characteristics

of the nodes allow them to be grouped based on their individual consumption values

into one of the three mentioned categories. Additionally, as an example, an arbitrary

proportion of consumption has been established among the different categories.

The Standard category is considered representative of the average energy

consumption of the nodes, the Sub-standard category corresponds to nodes with lower

consumption, and the Supra-standard category is assigned to nodes with higher energy

consumption.

Tables 38 and 39 show the result of the energy consumption calculation without

migration and with migration.

Table 38. Energy consumption without migration.

Node Final Average Energy Consumption

1 109.80 109.80

2 48.37 34.71

3 94.60 283.80

4 7.33 7.33

5 5.33 16.00

6 7.67 7.67

7 10.67 10.67

8 7.33 7.33

9 11.33 34.00

10 7.67 15.33

Table 39. Energy consumption with migration.

Node Final Average Energy Consumption

1 94.67 63.27

2 49.35 17.95

3 86.50 55.10

4 11.90 19.50

5 8.03 23.36

6 7.67 23.73

7 19.07 12.33

8 12.87 18.53

9 11.85 19.55

10 12.07 19.33

Computing and Artificial Intelligence 2025, 3(1), 2018.

29

5. Proposed metrics to evaluate load balancing and power

consumption in the distributed system

To evaluate the impact of process migration and how it affects the overall state

of the system, it is necessary to apply some mechanism to measure the state of the

nodes before and after migration. For this purpose, the standard deviation is used,

considering the final average load and energy consumption of the nodes of the

distributed system.

The following criteria associated with each migrated process will be used for load

evaluation: processor overload, memory overload and input/output overload.

The standard deviation of the load level of the nodes without considering

migration by applying the formula is developed below.

Table 35 with the values: 109.80; 48.37; 94.60; 7.33; 5.33; 7.67; 10.67; 7.33;

11.33 and 7.67, whose average is 31.01, is considered.

s = √ (((109.83 − 30.95)2 + (48.37 − 30.95)2 + (94.60 − 30.95)2 + (7.33 − 30.95)2 + (5.33 − 30.95)2 + (7.67 −

30.95)2 + (10.67 − 30.95) 2 + (7.33 − 30.95) 2 + (11.33 − 30.95) 2 + (7.67 − 30.95) 2) / (10 − 1))

s = 39.75

The standard deviation of the load level of the nodes with migration applying the

formula is as follows.

Table 36 is considered with the values: 94.67; 49.35; 86.50; 11.90; 8.03; 7.67;

19.07; 12.87; 11.85 and 12.07, whose average is 31.40.

s = √ (((94.67 − 30.95)2 + (49.35 − 30.95)2 + (86.50 − 30.95)2 + (11.90 − 30.95)2 + (8.03 − 30.95)2 + (7.67 −

30.95)2 + (19.07 − 30.95)2 + (12.87 − 30.95)2 + (11.85 − 30.95)2 + (12.07 − 30.95)2) / (10 − 1))

s = 33.50

The standard deviation of the energy consumption of the nodes without

considering migration by applying the formula is as follows:

Table 38 is considered with the values: 109.80; 34.71; 283.80; 7.33; 16.00; 7.67;

10.67; 7.33; 34.00; 15.33; whose average is 52.66.

s = √ (((109.80 − 52.66)2 + (34.71 − 52.66)2 + (283.80 − 52.66)2 + (7.33 − 52.66)2 + (16.00 − 52.66)2 + (7.67 −

52.66)2 + (10.67 − 52.66) 2 + (7.33 − 52.66) 2 + (34.00 − 52.66) 2 + (15.33 − 52.66) 2) / (10 − 1))

s = 86.92

The standard deviation of the energy consumption of the nodes with migration

applying the formula (11) is as follows.

Table 39 is considered with the values: 94.67; 98.69; 259.50; 4.57; 3.00; 7.67;

19.07; 12.87; 35.55; 24.13, whose average is 55.97.

s = √ (((94.67 − 55.97)2 + (98.69 − 55.97)2 + (259.50 − 55.97)2 + (4.57 − 55.97)2 + (3.00 − 55.97)2 + (7.67 −

55.97)2 + (19.07 − 55.97)2 + (12.87 − 55.97)2 + (35.55 − 55.97)2 + (24.13 − 55.97)2) / (10 − 1))

s = 79.71

From the results obtained concerning the load level of the nodes it is observed

that the standard deviation of the set of final averages without migration is 39.75 and

the standard deviation of the set of final averages with migration is 33.50. Referring

Computing and Artificial Intelligence 2025, 3(1), 2018.

30

to the energy consumption results, it is observed that the standard deviation of the

energy consumption data set without migration is 86.92 and the standard deviation of

the energy consumption data set with migration is 79.71.

This indicates that the load balance and energy consumption within the

distributed system has been improved because the values of the final averages dataset

and the energy consumption dataset with migration are more concentrated around the

mean, while the values of final averages and energy consumption dataset without

migration are more dispersed.

6. Concluding remarks

This paper proposes an intelligent process migration model for the management

of resources and processes in distributed systems, with the objective of solving the

overload-related drawbacks that can occur in the different nodes of a distributed

system. A variant of an innovative approach for the management of shared resources

in distributed systems that considers workload balancing among the different nodes is

presented.

The proposal is based on the evaluation of the state of computational loads, which

allows detecting heavily loaded nodes with respect to inactive or low workload nodes

and correcting the workload distribution in the system.

The proposed solution is based on a centralized Runtime that manages the shared

processes and resources and interacts with the Runtimes of the distributed nodes to

exchange information (all of them interact with their respective operating systems). In

addition, initial configurations of the algorithm are established for each situation,

which makes it possible to adapt the proposed solution to different environments.

Information is collected from all the nodes in a central node, the aggregation

process is applied and the list of resource allocations to processes is obtained, and the

additional workload that this would mean on the different distributed nodes.

The evaluation of the state of the computational loads is performed periodically,

which allows considering possible migrations to balance the workload of the different

nodes of the system.

As a metric to evaluate the effectiveness of the proposed solution, the standard

deviation is used, which is a very useful and widely used measure of dispersion in data

analysis due to its easy interpretation, sensitivity to all data values and useful

mathematical properties.

The results obtained allow us to conclude that the proposed decision model and

aggregation operators enable holistic management (following the integral perspective

proposed in La Red Martínez [1]) of process and resource management in distributed

systems. This approach also achieves workload and energy consumption balancing,

while generating a precise order in resource allocation to processes that ensures mutual

exclusion in accessing shared resources.

Among the significant related works evaluated and discussed in this paper, none

have been found to propose a similar method for managing processes and resources in

a distributed system of processing and storage nodes, achieving both workload and

energy consumption balancing while also respecting distributed mutual exclusion.

Computing and Artificial Intelligence 2025, 3(1), 2018.

31

As indicated, the proposed model has an acceptable computational complexity

(O (n log n)), but it requires a significant supply of frequently updated data related to

the resource requirements of the processes and the load state of the nodes in the

distributed system.

7. Future research directions

To improve migration algorithms, we intend to research and develop more

advanced and efficient algorithms for process migration that can dynamically adapt to

changes in workload and distributed system conditions. This could include machine

learning-based approaches for more accurate decision making.

Security policy integration is also envisioned. Research how to integrate robust

security policies into the process migration process, ensuring that the migration does

not compromise the integrity and confidentiality of data and processes.

Explore the application of this model in cloud environments, where resource

management and process migration are key challenges, as well as evaluating its

integration with container systems to improve resource management efficiency in

distributed environments.

Author contributions: Conceptualization, DLLRM and FA; methodology, FA;

validation, JTFM, TDMB and DLLRM; formal analysis, DLLRM; investigation,

TDMB; data curation, TDMB; writing—original draft preparation, TDMB; writing—

review and editing, FA; visualization, JTFM; supervision, DLLRM. All authors have

read and agreed to the published version of the manuscript.

Acknowledgments: This work has been supported by the Project: “Decision models

for resource and process management in distributed systems considering process

migration, data imputation and fuzzy logic in new aggregation operators”, code

20F005 of the Northeastern National University (Argentine), and the Project:

“Extension of a simulator for the evaluation of resource and process management

algorithms in distributed systems by adding process migration”, code PI 195/24 of the

Southern Chaco National University (Argentine).

Conflict of interest: The authors declare no conflict of interest.

References

1. La Red Martínez DL. Aggregation Operator for Assignment of Resources in Distributed Systems. International Journal of

Advanced Computer Science and Applications. 2017; 8(10). doi: 10.14569/ijacsa.2017.081053

2. Ricart G, Agrawala AK. An optimal algorithm for mutual exclusion in computer networks. Communications of the ACM.

1981; 24(1): 9-17. doi: 10.1145/358527.358537

3. Guohong C, Singhal M. A delay-optimal quorum-based mutual exclusion algorithm for distributed systems. IEEE

Transactions on Parallel and Distributed Systems. 2001; 12(12): 1256-1268. doi: 10.1109/71.970560

4. Lodha S, Kshemkalyani A. A fair distributed mutual exclusion algorithm. IEEE Transactions on Parallel and Distributed

Systems. 2000; 11(6): 537-549. doi: 10.1109/71.862205

5. la Red Martínez DL, Agostini F, Acosta JC, et al. Simulator for the evaluation of algorithms for the management of shared

resources in distributed systems (Spanish). Revista de Investigación en Tecnologías de la Información. 2022; 10(20): 62-79.

doi: 10.36825/riti.10.20.006

Computing and Artificial Intelligence 2025, 3(1), 2018.

32

6. La Red Martínez DL, Acosta JC, Agostini F. Assignment of Resources in Distributed Systems. Proceedings of IMCIC 2018-

9th International Multi-Conference on Complexity, Informatics and Cybernetics.

7. Agostini F, La Red Martínez DL. Allocation of shared resources. In: Proceedings of 2019 14th Iberian Conference on

Information Systems and Technologies (CISTI); 19-22 June 2019; Coimbra, Portugal.

8. Agostini F, la Red Martínez DL, Acosta JC. Assignment of Resources in Distributed Systems with Strict Consensus

Requirements. Proceedings of the IMCIC 2019-10th International Multi-Conference on Complexity, Informatics and

Cybernetics.

9. Agostini F. New Proposal for the Management of Resources and Processes in Distributed Systems (Spanish). Universidad

Nacional del Nordeste; 2019.

10. Beiruti MA, Ganjali Y. Load Migration in Distributed SDN Controllers. NOMS 2020-2020 IEEE/IFIP Network Operations

and Management Symposium. 2020; 1-9. doi: 10.1109/noms47738.2020.9110292

11. Upadhyay A, Lakkadwala P. Migration of over loaded process and schedule for resource utilization in Cloud Computing. In:

Proceedings of 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends

and Future Directions); 02-04 September 2015; Noida, India.

12. Deshmukh SC, Deshmukh SS. Improved load balancing for distributed file system using self acting and adaptive loading

data migration process. In: Proceedings of 2015 4th International Conference on Reliability, Infocom Technologies and

Optimization (ICRITO) (Trends and Future Directions); 2-4 September 2015; Noida, India.

13. Junaidi J, Wibowo P, Yuniasri D, et al. Applied machine learning in load balancing. JUTI: Jurnal Ilmiah Teknologi

Informasi. 2020; 18(2): 76. doi: 10.12962/j24068535.v18i2.a940

14. Liu H, Jin H, Xu CZ, et al. Performance and energy modeling for live migration of virtual machines. Cluster Computing.

2011; 16(2): 249-264. doi: 10.1007/s10586-011-0194-3

15. Asadi AN, Azgomi MA, Entezari-Maleki R. Analytical evaluation of resource allocation algorithms and process migration

methods in virtualized systems. Sustainable Computing: Informatics and Systems. 2020; 25: 100370. doi:

10.1016/j.suscom.2019.100370

16. Chiclana F, Herrera F. & Herrera-Viedma E. Integrating Multiplicative Preference Relations in a Multipurpose Decision-

Making Model Based on Fuzzy Preference Relations. Fuzzy Sets and Systems. 2001; 122(2). doi: 10.1016/S0165-

0114(00)00004-X

17. Dong Y, Zhang H, Herrera-Viedma E. Consensus reaching model in the complex and dynamic MAGDM problem.

Knowledge-Based Systems. 2016; 106: 206-219. doi: 10.1016/j.knosys.2016.05.046

18. Sohrabi Z, Mousavi Khaneghah E. Challenges of using live process migration in distributed exascale systems. Azerbaijan

Journal of High Performance Computing. 2020; 3(2): 151-163. doi: 10.32010/26166127.2020.3.2.151.163

19. Rathore N, Chana I. Load Balancing and Job Migration Techniques in Grid: A Survey of Recent Trends. Wireless Personal

Communications. 2014; 79(3): 2089-2125. doi: 10.1007/s11277-014-1975-9

20. Chang C, Hadachi A, Srirama SN. Adaptive Edge Process Migration for IoT in Heterogeneous Fog and Edge Computing

Environments. International Journal of Mobile Computing and Multimedia Communications. 2020; 11(3): 1-21. doi:

10.4018/ijmcmc.2020070101

21. Marecos TD, Agostini, F, La Red Martínez D. Controlled migration of processes in distributed systems (Spanish).

Proceedings of Memorias del Encuentro Argentino de Ingeniería, 6º Congreso Argentino de Ingeniería y 12º Congreso

Argentino de Enseñanza de Ingeniería.

22. Fornerón Martínez JT, Agostini F, La Red Martínez DL. Resource and Process Management With a Decision Model Based

on Fuzzy Logic. International Journal of Interactive Multimedia and Artificial Intelligence. 2023; 8(2): 134. doi:

10.9781/ijimai.2023.02.009

23. Bishop M, Valence M, Winiewski LF. Process migration for heterogeneous distributed systems. Dartmouth; 1995.

24. Cao J, Yu Z, Xue B. Research on collaborative edge network service migration strategy based on crowd clustering. Scientific

Reports. 2024; 14(1). doi: 10.1038/s41598-024-58048-0

25. Kommisetty PDNK, Abhireddy N. Cloud Migration Strategies: Ensuring Seamless Integration and Scalability in Dynamic

Business Environments. International Journal of Engineering and Computer Science. 2024; 13(04): 26146-26156. doi:

10.18535/ijecs/v13i04.4812

Computing and Artificial Intelligence 2025, 3(1), 2018.

33

26. Nama P, Pattanayak S, Meka HS. AI-driven innovations in cloud computing: Transforming scalability, resource

management, and predictive analytics in distributed systems. International Research Journal of Modernization in Engineering

Technology and Science. 2023; 5(12): 4165-4174.

27. Devan M, Shanmugam L, Tomar M. AI-powered data migration strategies for cloud environments: Techniques, frameworks,

and real-world applications. Australian Journal of Machine Learning Research & Applications. 2021; 1(2): 79-111.

28. Rathore N, Chana I. A cognitive analysis of load balancing and job migration technique in Grid. 2011 World Congress on

Information and Communication Technologies. 2011; 77-82. doi: 10.1109/wict.2011.6141221

29. Hung LH, Wu CH, Tsai CH, et al. Migration-Based Load Balance of Virtual Machine Servers in Cloud Computing by Load

Prediction Using Genetic-Based Methods. IEEE Access. 2021; 9: 49760-49773. doi: 10.1109/access.2021.3065170

30. Negi S, Rauthan MMS, Vaisla KS, et al. CMODLB: an efficient load balancing approach in cloud computing environment.

The Journal of Supercomputing. 2021; 77(8): 8787-8839. doi: 10.1007/s11227-020-03601-7

31. Grosu D, Chronopoulos AT. A game-theoretic model and algorithm for load balancing in distributed systems. In:

Proceedings of 16th International Parallel and Distributed Processing Symposium; 15-19 April 2002; Ft. Lauderdale, FL,

USA.

32. Siar H, Kiani K, Chronopoulos AT. A combination of game theory and genetic algorithm for load balancing in distributed

computer systems. International Journal of Advanced Intelligence Paradigms. 2017; 9(1): 82. doi: 10.1504/ijaip.2017.081181

33. Tan T, Chen X, Li C, et al. Load balancing-oriented fault-tolerant NoC design. 2024 IEEE International Test Conference in

Asia (ITC-Asia). 2024; 1-6. doi: 10.1109/itc-asia62534.2024.10661350

34. He Q, Chen Y, Dong Y, et al. Efficient Load Balance Algorithm for Network-on-Chip Mapping. In: Proceedings of 2022 4th

International Conference on Advances in Computer Technology, Information Science and Communications (CTISC); 22-24

April 2022; Suzhou, China.

35. Romanov A, Myachin N, Sukhov A. Fault-Tolerant Routing in Networks-on-Chip Using Self-Organizing Routing

Algorithms. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. 2021; 1-6. doi:

10.1109/iecon48115.2021.9589829

36. Gogoi A, Ghoshal B, Manna K. Fault-aware routing approach for mesh-based Network-on-Chip architecture. Integration.

2023; 93: 102043. doi: 10.1016/j.vlsi.2023.05.007

37. Yager R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on

Systems, Man, and Cybernetics. 1988; 18(1): 183-190. doi: 10.1109/21.87068

38. Yager R. Families of OWA operators. Fuzzy Sets and Systems. 1993; 59: 125-148. doi: 10.1016/0165-0114(93)90194-M

