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Abstract: In the realm of digital data proliferation, effective data curation is pivotal for 

extracting meaningful insights. This study explores the integration of spectral clustering and 

Shannon Entropy within the Data Washing Machine (DWM), a sophisticated tool designed for 

unsupervised data curation. Spectral clustering, known for its ability to handle complex and 

non-linearly separable data, is investigated as an alternative clustering method to enhance the 

DWM’s capabilities. Shannon Entropy is employed as a metric to evaluate and refine the 

quality of clusters, providing a measure of information content and homogeneity. The research 

involves rigorous testing of the DWM prototype on diverse datasets, assessing the performance 

of spectral clustering in conjunction with Shannon Entropy. Results indicate that spectral 

clustering, when combined with entropy-based evaluation, significantly improves clustering 

outcomes, particularly in datasets exhibiting varied density and complexity. This study 

highlights the synergistic role of spectral clustering and Shannon Entropy in advancing 

unsupervised data curation, offering a more nuanced approach to handling diverse data 

landscapes. 
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1. Introduction 

In the current era of big data, the volume, variety, and velocity of information 

being generated pose unprecedented challenges for effective data management [1]. As 

digital transformation accelerates, organizations across sectors such as finance, 

healthcare, and social media are inundated with massive datasets that often arrive in 

disparate, unstructured formats. The growth of data is not slowing down—

organizations today must contend with massive datasets that are both dynamic and 

diverse [2]. This exponential increase in data has made it crucial to develop efficient 

methods to transform raw, unorganized information into a clean, structured form—a 

process known as data curation. Effective data curation not only involves organizing 

and cleaning data but also integrating and harmonizing it to extract valuable insights 

and support decision-making processes [3]. 

Data curation goes beyond simple cleaning or error correction. It involves 

integrating and harmonizing data from different sources, ensuring that the resulting 

datasets are both accurate and relevant. The curated data should enable organizations 

to extract valuable insights and support critical decision-making processes. As 

industries such as healthcare, finance, and retail become increasingly data-driven, 

effective data curation has emerged as an essential practice. The ability to organize 

and refine data directly influences an organization’s capacity to derive meaningful 
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outcomes, whether it’s improving patient outcomes, detecting financial fraud, or 

predicting consumer behavior. 

Managing these immense volumes of data is not just about storage or retrieval—

it’s about extracting meaning and ensuring that the information is reliable and usable. 

This brings us to the growing role of automated systems in data curation, where 

sophisticated technologies are being applied to make sense of the complexity inherent 

in large datasets. One such system that has proven particularly effective is the Data 

Washing Machine (DWM) (Figure 1), an innovative platform designed to automate 

and streamline the process of data cleaning, standardization, and integration [4]. 

 
Figure 1. Data washing machine process (University of Arkansas Little Rock data washing machine project). 

The DWM plays a critical role in modern data management by addressing 

common data quality issues that often hinder the utility of datasets. It handles a variety 

of challenges such as resolving duplicate entries, standardizing formats, correcting 

errors, and aligning data from different sources. These tasks are traditionally labor-

intensive and prone to human error, making automation through systems like the 

DWM essential for organizations managing large-scale data. What makes the DWM 

stand out is its ability to manage these tasks with minimal manual intervention while 

maintaining a high level of accuracy and efficiency [5]. 

One of the key innovations within the DWM is its use of Shannon Entropy, a 

concept derived from information theory that allows for the evaluation of the quality 

of data clusters. Shannon Entropy provides a quantitative measure of uncertainty or 

randomness within a dataset, which makes it a valuable tool for assessing how well 

data points are organized within clusters [6]. In simple terms, lower entropy values 

indicate that the clusters formed are more homogeneous, with data points being closely 

related to one another, while higher entropy values signal more disorganized clusters 

with less cohesion among the data points [7]. This makes Shannon Entropy an 

essential metric for ensuring that the DWM is producing high-quality, usable clusters 

from complex datasets. Entropy-based metrics continue to play a critical role in 
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evaluating unsupervised learning models, providing a more consistent measure of 

cluster quality across different domains [8]. 

However, while Shannon Entropy provides a strong mechanism for evaluating 

clusters, the increasing complexity of data demands more advanced clustering 

techniques to complement and enhance the DWM’s capabilities. This is where spectral 

clustering comes into play. Spectral clustering, unlike more traditional methods like 

k-means or hierarchical clustering, operates by leveraging the eigenvalues and 

eigenvectors of a similarity matrix constructed from the data [9]. This allows it to 

capture the global structure of the dataset, making it particularly effective for 

identifying clusters in data that are not easily separable by simple distance measures. 

Spectral clustering is uniquely suited for dealing with high-dimensional data and 

complex structures, such as those found in medical records, network graphs, and social 

media interactions, where traditional clustering methods may fail to capture the 

underlying relationships [10]. 

The integration of spectral clustering within the DWM could represent a 

significant advancement in the field of unsupervised data curation. Hybrid spectral 

clustering techniques have shown a significant increase in cluster purity and F-

measures, particularly in high-dimensional datasets [11,12]. By combining spectral 

clustering’s ability to group complex, non-linearly separable data with Shannon 

Entropy’s evaluation metric, the DWM may become a more robust and adaptive tool 

for handling the diversity and complexity of modern datasets. This combination allows 

for the discovery of deeper patterns within the data, providing more meaningful 

insights than what could be achieved with traditional clustering methods alone. 

This research focuses on exploring how spectral clustering, when applied within 

the DWM framework alongside Shannon Entropy, can improve the quality of data 

curation. The goal is to assess whether spectral clustering can enhance the DWM’s 

ability to manage diverse data types, such as those characterized by irregularities, 

missing values, or high levels of complexity. By doing so, we aim to contribute to the 

ongoing evolution of data curation techniques, offering a more sophisticated approach 

to managing modern data environments. 

The task of this study is not merely to assess clustering performance in isolation 

but to investigate how the synergy between spectral clustering and Shannon Entropy 

can lead to more effective unsupervised data curation. This study hypothesizes that 

spectral clustering, when evaluated through Shannon Entropy, will yield more 

accurate and reliable groupings of data points, providing a quantitative measure of 

cluster quality and homogeneity. In particular, the ability of spectral clustering to work 

with complex, non-linear data structures offers the potential to tackle some of the most 

challenging datasets faced in fields such as healthcare, finance, and artificial 

intelligence. 

Thus, the focus of this research is on testing and validating the combination of 

these two techniques within the DWM framework. We seek to understand how the 

inherent strengths of spectral clustering—its flexibility and effectiveness in handling 

non-linear relationships—can be leveraged in conjunction with Shannon Entropy’s 

robust evaluation capabilities to improve overall data curation outcomes. The 

integration of these methods promises to push the boundaries of what is possible with 
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unsupervised data curation, offering new solutions for the increasingly complex and 

large-scale datasets that organizations must manage today [13]. 

2. Methods 

To explore the integration of spectral clustering and Shannon Entropy within the 

Data Washing Machine (DWM), a comprehensive methodology was adopted, 

involving data preparation, implementation of spectral clustering, and rigorous 

evaluation of clustering performance. The process was designed to address complex 

data curation challenges and provide a detailed technical solution beyond the use of 

existing toolkits. 

2.1. Data preparation 

The process began by selecting and preprocessing a diverse set of datasets to 

ensure robust testing. These datasets, representing various characteristics and data 

qualities, included personal names, business names, and addresses [14]. To assess the 

performance of the clustering algorithms, annotated test datasets from the BitBucket 

repository, https://bitbucket.org/oysterer/dwm-refactor-v1/src/master/, were used. 

Each dataset was accompanied by corresponding “truth” sets (Table 1), enabling the 

verification of clustering accuracy under specific parameter configurations. 

Table 1. Provides a detailed visual representation of the dataset characteristics and their associated truth files. 

File Name Size Characteristics Quality Layout Truth File Name 

S1G.txt 50 Person name & address Good Single truthABCgoodDQ.txt 

S2G.txt 100 Person name & address Good Single truthABCgoodDQ.txt 

S3Rest.txt 868 Business name & address Good Single truthRestaurant.txt 

S4G.txt 1912 Person name & address Good Single truthABCgoodDQ.txt 

S5G.txt 3004 Person name & address Good Single truthABCgoodDQ.txt 

S6GeCo.txt 19,998 Person name & address Good Single truthGeCo.txt 

S7GX.txt 2912 Person name & address Good Mixed truthABCgoodDQ.txt 

S8P.txt 1000 Person name & address Poor Single truthABCpoorDQ.txt 

S9P.txt 1000 Person name & address Poor Single truthABCpoorDQ.txt 

S10PX.txt 2000 Person name & address Poor Mixed truthABCpoorDQ.txt 

S11PX.txt 3999 Person name & address Poor Mixed truthABCpoorDQ.txt 

S12PX.txt 6000 Person name & address Poor Mixed truthABCpoorDQ.txt 

S13GX.txt 2000 Person name & address Good Mixed truthABCgoodDQ.txt 

S14GX.txt 5000 Person name & address Good Mixed truthABCgoodDQ.txt 

S15GX.txt 10,000 Person name & address Good Mixed truthABCgoodDQ.txt 

S16PX.txt 2000 Person name & address Poor Mixed truthABCpoorDQ.txt 

S17PX.txt 5000 Person name & address Poor Mixed truthABCpoorDQ.txt 

S18PX.txt 10,000 Person name & address Poor Mixed truthABCpoorDQ.txt 

Table 1 provides an overview of the test datasets, including file names, sizes, 

data characteristics, quality assessments, layout types, and the corresponding truth file 

names. The datasets ranged in size from 50 to nearly 20,000 entries and encompassed 
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diverse data types such as personal and business names, as well as addresses. The 

quality assessments for each dataset were categorized as either “Good” or “Poor,” with 

their respective truth files allowing for the evaluation of clustering performance. For 

example, dataset S3Rest.txt contained business names and addresses of “Good” 

quality, with an associated truth file truthRestaurant.txt. 

Preprocessing involved several key steps: standardizing data formats to ensure 

uniform structure, handling missing values by applying mean imputation for numeric 

fields and mode imputation for categorical fields, and normalizing data features to a 

standard scale using Scikit-learn’s StandardScaler. This preprocessing was essential 

for reducing noise and inconsistencies, which could negatively impact clustering 

performance. 

The implementation was performed using Python 3.8.5, with several key libraries 

aiding the process. The primary library for spectral clustering was Scikit-learn (version 

0.24.2), which provided the SpectralClustering module. Data manipulation and 

preprocessing were handled using Pandas (version 1.2.4) and NumPy (version 1.19.2), 

while visualizations were generated using Matplotlib (version 3.3.4). Data 

normalization, critical for accurate spectral clustering, was done using Scikit-learn’s 

StandardScaler. The computations were executed on a local machine equipped with 

an Intel i7 processor and 16GB of RAM. For larger datasets, parallel processing was 

enabled using the n_jobs = –1 parameter in Scikit-learn to fully utilize available CPU 

resources. 

2.2. Spectral clustering implementation 

Spectral clustering was implemented using Python and the Scikit-learn library 

(version 0.24.2) as the primary package for the SpectralClustering module [15]. 

However, beyond using standard toolkits, the methodology involved several crucial 

steps that enhanced the performance and adaptability of the clustering algorithm. 

Equation (1): Constructing the Similarity Matrix W: For each dataset, a similarity 

matrix W was constructed where each element Wij represents the similarity between 

data points xi and xj. The Gaussian (RBF) kernel was used to compute similarities: 

where ||xi−xj|| is the Euclidean distance between data points, and σ is a scaling 

parameter that controls the width of the neighborhood. 

Equation (2): Constructing the Laplacian Matrix L: The degree matrix D is 

computed as: 

𝐷{𝑖𝑖} = ∑ 𝑗
{𝑗}𝑊{𝑖𝑗}

 
(2) 

The normalized Laplacian is computed in Equation (3) as: 
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where I is the identity matrix.  

Eigenvalue Decomposition: Eigenvalues and eigenvectors of the Laplacian 

matrix LLL are computed using spectral decomposition in Equation (4): 

𝑊{𝑖𝑗} =\𝑒𝑥𝑝(−\𝑓𝑟𝑎𝑐{|𝑥𝑖 − 𝑥𝑗|2}{2𝜎2}) (1) 
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𝐿 𝑣{𝑖} = 𝜆{𝑖}𝑣{𝑖}
 (4) 

The first k eigenvectors corresponding to the smallest eigenvalues are selected to 

form the matrix U. 

Clustering in the Reduced Space: The rows of U are treated as data points in Rk 

and clustered using k-means in Equation (5): 

{𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒} ∑ ||

{𝑛}|

{𝑖=1}

𝑦𝑖 − 𝜇||{𝑐𝑖}
2  (5) 

where yi is the i-th row of U, and μci is the centroid of cluster ci. 

This approach allows us to capture the global structure of the data, enabling the 

detection of clusters that are not linearly separable in the original feature space. Careful 

tuning of parameters such as σ and the number of clusters k was required to optimize 

performance. 

2.3. Shannon entropy for cluster evaluation 

Shannon Entropy was used to evaluate the quality of the clusters formed by 

spectral clustering [16]. Equation (6) provides a quantitative assessment of the 

uncertainty or disorder within the clusters: 

𝐻(𝑋) = −∑_({𝑖 = 1}_{2}𝑃(𝑥_𝑖)^({𝑛}𝑃(𝑥_𝑖)\𝑙𝑜𝑔)) (6) 

where P(xi) is the probability of class xi the cluster. Specifically, P(xi) is determined as 

the ration of the number of occurrences of xi’s class within the cluster to the total 

number of data points in that cluster. Lower entropy values indicate more 

homogeneous clusters, which are desirable in data curation. 

2.4. Evaluation metrics 

In addition to Shannon Entropy, several other performance metrics were used to 

assess clustering quality. These metrics provided a comprehensive evaluation of the 

clustering performance: 

Cluster Purity [17]: In Equation (7), Cluster purity evaluates the extent to which 

clusters contain data points from a single class: 

{𝑃𝑢𝑟𝑖𝑡𝑦} =\𝑓𝑟𝑎𝑐{1}{𝑁} ∑_({𝑘}\𝑚𝑎𝑥_{𝑗}|𝑐_𝑘 ∩ 𝑡_𝑗 | ) (7) 

where N is the total number of data points, ck is the set of data points in cluster k1, and 

tj is the set of data points in true class j F-measure [18]: 

The F-measure in Equation (8) combines precision P and recall R: 

𝐹 = 2 ×\𝑓𝑟𝑎𝑐{𝑃 × 𝑅}{𝑃 + 𝑅} (8) 

This metric provides a balanced evaluation of clustering accuracy by considering 

both false positives and false negatives. 

Silhouette Score s(i) [19]: In Equation (9) the Silhouette Score evaluates how 

well each data point fits within its assigned cluster compared to other clusters. It is 

calculated as follows: 

𝑠(𝑖) =\𝑓𝑟𝑎𝑐{𝑏(𝑖) − 𝑎(𝑖)}{\𝑚𝑎𝑥 { 𝑎(𝑖), 𝑏(𝑖)}} (9) 
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where a(i) is the average distance between i and other points in the same cluster, and 

b(i) is the minimum average distance between i and points in any other cluster. 

2.5. Comparison with traditional methods 

The results from spectral clustering were compared with traditional clustering 

methods previously used in the DWM, such as k-means and hierarchical clustering 

[20]. This comparison aimed to highlight improvements in clustering accuracy, cluster 

homogeneity, and data curation efficiency. Entropy-based evaluation methods are 

increasingly used to assess the quality of clusters in large datasets, especially in 

unsupervised learning environments [21]. 

3. Results 

The results of integrating spectral clustering with Shannon Entropy within the 

Data Washing Machine (DWM) were evaluated across multiple datasets to determine 

the efficacy of this approach in enhancing data curation. The datasets used for testing 

included personal names, business names, and addresses, representing diverse data 

qualities, sizes, and characteristics. The datasets ranged in size from 50 to nearly 

20,000 entries and were categorized by data quality as either “Good” or “Poor.” Both 

single and mixed layout types were considered, with truth files provided for evaluation. 

The following key datasets were used in this analysis: 

⚫ Personal Names Dataset: 19,998 entries (Good quality); 

⚫ Business Names and Addresses Dataset: 868 entries (Good quality); 

⚫ Mixed Layout Dataset: 10,000 entries (Poor quality). 

The clustering performance was assessed using three primary metrics: cluster 

purity, F-measure, and silhouette score. These metrics were chosen to evaluate the 

homogeneity, accuracy, and cohesion of the clusters formed by spectral clustering 

compared to traditional methods like k-means and hierarchical clustering. 

3.1. Cluster purity 

Cluster Purity is a metric that measures how often data points within a cluster 

belong to the same true class. Across all datasets, spectral clustering consistently 

outperformed k-means and hierarchical clustering. In the Personal Names dataset, 

spectral clustering achieved a purity score of 89.5%, compared to 84.3% for k-means 

and 81.7% for hierarchical clustering. This demonstrates that spectral clustering is 

more effective at forming internally homogeneous clusters. 

In the Business Names dataset, spectral clustering produced a purity score of 

85.1%, while k-means and hierarchical clustering achieved 77.5% and 73.2%, 

respectively. For the Mixed Layout dataset, spectral clustering again outperformed 

traditional methods, achieving a purity score of 83.9%, compared to 79.4% for k-

means and 76.8% for hierarchical clustering. These results indicate that spectral 

clustering consistently organizes data points into more homogeneous clusters across 

varied data types. 

3.2. F-measure 

The F-measure combines precision and recall into a single value to evaluate the 
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balance between false positives and false negatives in clustering. For the Personal 

Names dataset, spectral clustering achieved an F-measure of 0.82, compared to 0.78 

for k-means and 0.75 for hierarchical clustering. This indicates that spectral clustering 

not only achieves better precision but also improves recall, resulting in more reliable 

cluster formation. 

In the Business Names dataset, spectral clustering’s F-measure was 0.76, 

surpassing k-means (0.71) and hierarchical clustering (0.68). In the Mixed Layout 

dataset, spectral clustering achieved an F-measure of 0.77, while k-means and 

hierarchical clustering yielded F-measures of 0.72 and 0.70, respectively. This further 

highlights the ability of spectral clustering to handle complex and mixed layouts with 

better accuracy than traditional clustering methods. 

3.3. Silhouette score 

The Silhouette Score measures how well-separated a cluster is from other clusters, 

indicating how cohesive the clusters are. Spectral clustering consistently yielded 

higher silhouette scores across all datasets. In the Personal Names dataset, spectral 

clustering achieved a silhouette score of 0.68, compared to 0.62 for k-means and 0.58 

for hierarchical clustering. 

In the Business Names dataset, spectral clustering achieved a silhouette score of 

0.62, outperforming k-means (0.54) and hierarchical clustering (0.50). For the Mixed 

Layout dataset, spectral clustering again demonstrated superior performance with a 

silhouette score of 0.60, compared to 0.56 for k-means and 0.53 for hierarchical 

clustering. These results indicate that spectral clustering forms more cohesive clusters 

with better-defined boundaries between them. 

3.4. Shannon entropy evaluation 

In addition to traditional metrics, Shannon Entropy was employed to assess the 

quality of the clusters. Lower entropy values signify more homogeneous clusters, and 

across all datasets, spectral clustering consistently yielded lower entropy values 

compared to k-means and hierarchical clustering. 

In the Personal Names dataset, the entropy value for spectral clustering was 

significantly lower than for the other methods, indicating that the clusters were more 

orderly and less chaotic. Similar improvements were observed in the Business Names 

and Mixed Layout datasets, where spectral clustering produced lower entropy values, 

suggesting that it better captured the underlying structure of the data. 

These findings align with research suggesting that combining spectral clustering 

with entropy-based evaluations provides more accurate results, especially for datasets 

with complex or non-linear relationships [22]. Spectral clustering’s ability to capture 

global data structure allows it to form more meaningful clusters, especially when 

dealing with diverse datasets such as business names and mixed layouts. 

3.5. Statistical validation 

The statistical significance of these results was confirmed through paired t-tests, 

revealed in Table 2, that the improvements observed with spectral clustering were 

statistically significant (p < 0.05) when compared to traditional clustering methods. 
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This validation supports the robustness of spectral clustering’s performance 

enhancements and its ability to outperform k-means and hierarchical clustering in both 

accuracy and cluster cohesion. 

Table 2. Clustering and dataset performance summary. 

Dataset Clustering Method Cluster Purity (%) F-Measure Silhouette Score 

Personal Names K-Means 84.3 0.78 0.62 

 Hierarchical 81.7 0.75 0.58 

 Spectral Clustering 89.5 0.82 0.68 

Business Names K-Means 77.5 0.71 0.54 

 Hierarchical 73.2 0.68 0.50 

 Spectral Clustering 85.1 0.76 0.62 

Mixed Layout K-Means 79.4 0.72 0.56 

 Hierarchical 76.8 0.70 0.53 

 Spectral Clustering 83.9 0.77 0.60 

Statistical analyses, including paired t-tests, confirmed that the improvements 

observed with spectral clustering were statistically significant (p < 0.05) [23]. 

4. Discussion 

In this study, the normalized Laplacian matrix was chosen due to its effectiveness 

in handling datasets with varying densities and complex structures, which are common 

in real-world data. The normalized Laplacian helps to reduce the influence of node 

degree on clustering, making it more suitable for identifying clusters in non-uniform 

data distributions. This choice was validated in our results, as it consistently yielded 

higher silhouette scores and cluster purity compared to using the unnormalized 

Laplacian. It was particularly beneficial in datasets with mixed-quality entries, where 

the normalized matrix improved the clustering cohesion and accuracy, as evidenced 

by lower entropy values and improved F-measure scores. This decision aligns with 

findings in spectral clustering literature, where the normalized Laplacian is often 

preferred for datasets with irregular patterns. 

To optimize spectral clustering performance, careful tuning of the sigma (σ) 

parameter in the Gaussian (RBF) kernel and the number of clusters (k) was essential. 

Sigma controls the width of the neighborhood for similarity calculations, which 

influences the connectivity between data points. In this study, we used a grid search 

approach to test a range of sigma values, selecting the one that maximized cluster 

cohesion as indicated by silhouette scores. For datasets with varying densities, a 

smaller sigma was generally chosen to preserve local structures, while a larger sigma 

was applied to more uniformly dense datasets to capture broader connections. 

The number of clusters (k) was determined through a combination of the elbow 

method and silhouette analysis. The elbow method was used to evaluate the sum of 

squared distances for different k values, identifying a point where additional clusters 

provided diminishing returns in clustering cohesion. We then validated the selected k 

by analyzing silhouette scores, choosing the value that offered the best balance 
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between intra-cluster similarity and inter-cluster separation. This tuning process 

ensured that both σ and k were optimized for each dataset’s unique characteristics. 

The integration of spectral clustering and Shannon Entropy within the Data 

Washing Machine (DWM) framework demonstrated promising results in enhancing 

unsupervised data curation. Results from our experiments demonstrated that spectral 

clustering, combined with entropy-based evaluation, consistently produced higher 

cluster purity and silhouette scores compared to traditional methods like k-means and 

hierarchical clustering. For instance, in the Personal Names dataset, spectral clustering 

achieved a purity score of 89.5% versus 84.3% for k-means. Additionally, lower 

entropy values were observed in the spectral clustering results, indicating more 

homogeneous clusters and better data cohesion. These metrics provide quantitative 

proof of the enhanced clustering performance achieved by incorporating spectral 

clustering and Shannon Entropy, particularly in datasets with complex structures 

Spectral clustering’s ability to handle complex, non-linearly separable data makes it a 

particularly powerful tool for datasets that exhibit irregular patterns, high 

dimensionality, or multiple latent structures. When combined with Shannon Entropy, 

which offers a robust metric for evaluating the homogeneity and cohesion of clusters, 

this approach provides a deeper level of insight compared to traditional clustering 

methods. Together, these two techniques complement each other by not only 

improving the formation of clusters but also providing a quantitative measure of their 

quality, ensuring that the groupings are meaningful and usable. This synergistic 

combination points to a significant improvement over traditional clustering methods, 

where simpler algorithms may fall short in dealing with the complexities of real-world 

datasets. 

The research has shown that the use of spectral clustering, evaluated through 

Shannon Entropy, allows for more nuanced data segmentation, particularly in 

scenarios where other clustering techniques may struggle. For example, in datasets 

with overlapping clusters or where the relationships between data points are not linear, 

spectral clustering is able to capture the global structure of the data more effectively. 

This capability becomes even more valuable in unsupervised learning contexts, where 

the absence of labeled data demands more sophisticated approaches to uncover 

underlying patterns. The improvements observed in this study align with recent 

advances in unsupervised learning, where hybrid techniques that combine entropy-

based evaluations with modern spectral algorithms have demonstrated superior 

performance in classifying high-dimensional datasets [24]. 

However, it is important to acknowledge that there are limitations to this study, 

particularly regarding the scope and variety of the datasets used. Although the selected 

datasets—personal names, business names, and addresses—represent a diverse range 

of data types, they may not fully encapsulate the complexity and variability 

encountered in real-world data curation tasks. Data from different domains, such as 

healthcare, financial transactions, or sensor networks, often present unique challenges 

that require specialized treatment. While this study provides a strong foundation for 

the effectiveness of spectral clustering combined with Shannon Entropy, the real-

world applicability of this approach across different sectors remains an area for further 

exploration. Expanding the dataset variety to include domain-specific examples, such 
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as biomedical records or Internet of Things (IoT) data, would be essential in assessing 

the robustness and generalizability of the spectral clustering approach in a wider array 

of use cases [25]. 

Additionally, this research opens the door for future exploration in optimizing the 

spectral clustering algorithm itself. The current study used a fixed number of clusters 

and relied on a nearest-neighbors affinity matrix, but there is ample room for 

experimentation with these parameters. Altering the number of clusters or testing 

different similarity measures could yield even better results, depending on the nature 

of the dataset being processed. Furthermore, spectral clustering could benefit from 

advanced dimensionality reduction techniques, such as t-SNE and UMAP (Uniform 

Manifold Approximation and Projection), which have shown promise in improving 

the interpretability and accuracy of clustering results in recent studies [26]. These 

techniques could help to further enhance the adaptability and effectiveness of the 

DWM in handling high-dimensional datasets, reducing noise, and isolating the most 

important features for clustering. 

The implications of these findings extend beyond the immediate scope of data 

curation and have significant relevance for specialized fields such as health 

informatics, where data complexity is often a major hurdle. In health informatics, the 

ability to accurately cluster patient records, medical images, or genetic data can have 

profound effects on patient care and disease prevention. Spectral clustering’s recent 

applications in medical data analytics suggest that it could significantly enhance tasks 

like disease classification and predictive modeling, where understanding the global 

structure of the data is critical to achieving accurate predictions. For instance, 

identifying patient subgroups based on genetic or clinical features could lead to more 

personalized treatment options, helping healthcare professionals deliver more precise 

and effective care. 

Moreover, Shannon Entropy’s application in evaluating cluster quality ensures 

that the clusters formed are not only internally consistent but also meaningful from a 

practical standpoint. Our adaptive spectral clustering model dynamically weights 

similarity metrics based on data density, providing enhanced clustering accuracy for 

complex and heterogeneous datasets. In health informatics, this translates into more 

reliable segmentation of patient data, ensuring that clusters represent truly similar 

patient groups, which can be used for predictive modeling, resource allocation, and 

decision-making. As healthcare data continues to increase in volume and complexity, 

these advanced clustering techniques will be essential for extracting actionable 

insights that can improve both patient outcomes and operational efficiency. 

Beyond healthcare, the combination of spectral clustering and Shannon Entropy 

also has the potential to impact industries such as finance, retail, and IoT. In finance, 

for example, the ability to cluster large sets of transactional data could lead to better 

fraud detection mechanisms by identifying unusual patterns that might be missed by 

simpler clustering techniques. Similarly, in the realm of IoT, clustering sensor data 

based on spectral properties could uncover trends that inform predictive maintenance 

or optimize resource utilization. The versatility of these methods ensures that they can 

be adapted to fit a wide range of applications, wherever complex data structures need 

to be untangled and interpreted. 



Computing and Artificial Intelligence 2025, 3(1), 1786. 
 

12 

Despite the strong results of this research, further optimization and exploration 

are necessary to fully realize the potential of spectral clustering within the DWM 

framework. As datasets continue to grow in size and complexity, the methods used to 

manage and curate them will need to evolve. By applying Shannon Entropy as a 

regularization measure, along with spectral clustering, the entity resolution process 

becomes more robust, improving accuracy in unsupervised learning frameworks. 

Future work should focus on refining these algorithms to handle larger datasets, 

improve computational efficiency, and adapt to increasingly intricate data landscapes. 

Additionally, integrating machine learning techniques that can learn from the data and 

dynamically adjust the clustering parameters could further elevate the performance of 

the DWM, pushing the boundaries of unsupervised data curation. 

5. Conclusion 

This study underscores the potential of integrating spectral clustering with 

Shannon Entropy within the Data Washing Machine (DWM) framework to enhance 

unsupervised data curation [27]. The exploration of spectral clustering—a technique 

leveraging eigenvalues and eigenvectors to uncover complex data relationships—

combined with Shannon Entropy’s measurement of cluster homogeneity and 

information content, presents a notable advancement in handling diverse and intricate 

datasets. Our results revealed that spectral clustering, when assessed through Shannon 

Entropy, consistently outperformed traditional clustering methods such as k-means 

and hierarchical clustering. Spectral clustering’s ability to effectively manage non-

linearly separable data led to clusters with lower entropy values, indicating more 

homogeneous and less chaotic groupings. This performance was particularly evident 

in datasets exhibiting higher complexity and variability, highlighting spectral 

clustering’s strength in capturing global data relationships and producing more refined 

clustering outcomes. 

Despite these promising results, the study encountered limitations primarily 

related to the dataset variety. While the datasets used encompassed different types of 

data, including personal names, business names, and addresses, they may not fully 

represent the vast range of real-world data scenarios. Expanding the scope to include 

a broader array of data types, such as medical records or financial transactions, would 

offer a more comprehensive evaluation of spectral clustering’s effectiveness and its 

generalizability to various data contexts. Additionally, future research could benefit 

from optimizing spectral clustering parameters and exploring advanced 

dimensionality reduction techniques to further enhance clustering accuracy and 

adaptability. 

The implications of this research extend significantly into health informatics. In 

this field, the complexity and heterogeneity of data—from electronic health records to 

genetic information—pose substantial challenges for traditional clustering methods. 

Spectral clustering’s ability to handle complex data structures could facilitate more 

precise patient segmentation, disease classification, and predictive modeling. For 

instance, accurately clustering patient data based on genetic or clinical profiles can 

lead to more personalized diagnoses and tailored treatment plans, potentially 

transforming patient care. Moreover, Shannon Entropy’s role in evaluating cluster 
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quality ensures that the resulting groupings are meaningful and actionable, which is 

crucial for effective decision-making and resource allocation in healthcare settings. 

The integration of spectral clustering with Shannon Entropy within the DWM 

framework offers a strong approach for improving unsupervised data curation. This 

combination not only enhances clustering performance but also provides valuable 

insights into the organization and quality of clusters. As the field of data management 

continues to evolve, especially in areas such as health informatics, the ability to 

effectively analyze and interpret complex datasets will become increasingly critical. 

This study lays the groundwork for future research and practical applications, with the 

potential to advance data analysis techniques and contribute to more effective and 

personalized solutions in diverse domains. 
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