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Abstract: Although the use of biofeedback devices is beyond measure, they are widely applied 

only for clinical purposes. Therefore, this study evaluated whether biofeedback devices could 

be applied to estimate heart rate variability (HRV) among healthy populations. 60 individuals 

(46 ± 5 years; 30 women) performed maximal exercise protocol (MEP). At pre- and post-MEP 

status, HRV indexes were collected by two devices: 1) the electrocardiogram device (ECG); 

2) the biofeedback device (BIO). At pre-exercise status, all HRV parameters had significant 

correlations, ranging from low (r = 0.241) to high (r = 0.779). At post-exercise status, 

significant correlations for some of the HRV measures were found as well, ranging from low 

(i.e., r ≤ 0.29) to moderate (i.e., 0.3 ≤ r ≤ 0.49). According to our knowledge, this study is the 

first attempt to evaluate HRV by biofeedback devices among healthy individuals, which shows 

they can also be applied as a swift method to examine HRV among healthy individuals, 

especially in rest conditions. 

Keywords: heart rate variability; electrocardiogram; biofeedback; physical activity; healthy 

population 

1. Introduction 

As a response to any sudden physical challenges, the cardiovascular system can 
be modified to maintain homeostasis, which means heartbeats constantly change [1]. 
The heart rate variability (HRV), quantified by the fluctuations in R-wave to R-wave 
intervals (RRI), has constituted a useful non-invasive method to evaluate autonomic 
activity, particularly parasympathetic tone and sympathy-vagal balance at either rest 
or any physical activities [2–5]. As the cardiovascular system responds to stressors, 
HRV may predict certain diseases [6–8]. Plus, it can be useful to monitor high 
performance during training sessions [9–11]. Meanwhile, the literature on autonomic 
activation has explained that the reduction in HRV, consisting of both higher 
sympathetic and lower parasympathetic activities, can be considered a frequent marker 
of abnormal and insufficient autonomic nervous system (ANS) adaptation [2,12,13] 
and the elevation in blood pressure variability [14], which possibly indicates a low 
heart capacity to respond to multiple physiological and environmental stimuli [14–17], 
which is associated with diverse pathological conditions such as coronary heart disease 
and mortality [18–20], future functional decline [21], chronic heart failure [22], 
sarcopenia [23], and hypertension [24]. Whereas, high HRV, known as an indicator of 
evaluated parasympathetic and reduced sympathetic activities, illustrates a good body 
adaptation [25,26]. Recently, it has been reported that physical exercise, both aerobic 
and resistance training, influences the cardiovascular system positively, especially 
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vagal activity as its important determinant [27–30], which can be considered the 
cornerstone of nonpharmacological treatment and prevention of such diseases [31–
35]. To illustrate, various exercise methods, practically aerobic, alter the cardiac-
autonomic balance, including increasing vagal autonomic drive while lessening 
sympathetic drive [31–39]. Indeed, the studies have been conducted among healthy 
children [40], young adults [41], and patients [42–44] following performing the 
aerobic [44,45], resistance [46], or interval training interventions [47] protocols. 

Besides, sports and training sciences also pay attention to either time- or 
frequency-domain HRV indices, which means HRV is applied as the noninvasive 
method to measure autonomic changes following short- and long-term endurance 
training among individuals performing leisure sports activities and high-performance 
training [48]. These changes are followed up by a notable reduction of heart rate at 
either rest status or during submaximal exercise conditions, reflecting the elevation 
activity of the autonomic efferent and shifting in favor of vagal-activity enhancement 
to modulate the cardiac rhythm [48]. In other words, HRV kinetics may predict aerobic 
fitness and exercise performance during sub- or maximal workouts [49–51], which is 
also known as a key marker to evaluate fatigue intensity [52] and a diagnostic marker 
of overreaching and overtraining [48]. Generally, the whole study literature declares 
the vital necessity of assessing HRV among various populations to monitor their health 
status and performance regardless of both the type and intensity of exercise. 

Recently, although trended smartwatches (i.e., Apple Watch, Garmin, Fitbit, 
Polar, and Samsung Galaxy Watch) are being evaluated for HRV estimating accuracy 
related to stress management features [53–55], generally, devices such as clinical 
multi-lead ECG systems (e.g., Holter ECGs) [56], photoplethysmography (PPG) 
[57,58], the FarosTM ECG [59–61], the Actiheart [62], the AidlabTM [63,64], and 
Polar H [57,65] have been applied to assessing HRV indices regarding the large series 
of evidenceDespite this, over a seven-decade period, electrocardiograms (ECG) have 
become the most routine to monitor HRV [12,66,67]. ECG can be interchanged by 
either the Polar (i.e., S810i and V800) or Suunto t6 instruments to record the R-R 
intervals in both healthy (i.e., runners) and patient populations [68–70]. The 12-lead 
ECG, which is also known as the golden standard, consists of three bipolar-limb- leads 
(i.e., I, II, and III), three unipolar-augmented- leads (i.e., aVL, aVR, and aVF), and six 
unipolar chest leads, including V1–V6 [67,71]. Nevertheless, some items are crucial 
to measuring HRV indices by this device, such as the correct placement of each lead 
reported by various studies [67,71,72] and it also requires both expertise and time. 

On the other hand, HRV-biofeedback (HRV-bio) devices impact clinical 
therapeutics in various diseases [73]. Regarding some evidence, HRV-bio is known as 
an effective non-pharmacological intervention to monitor autonomic balance [12,74] 
which has skin conductance that can be applied as direct quantitative ANS markers 
[75], expressing its potential value in chronic disease management [76]. In general, 
HRV-bio has been applied as a training method to enhance sports and workout 
performance [77–79]. For instance, the HRV-bio has been considered a technique for 
managing stress based on longer exhalations and slower respiration training [80,81], 
and based on our knowledge, only a few papers have used biofeedback devices as an 
HRV measurement method [79]. Thus, applying HRV-bio would be considered 
another option for measuring HRV among healthy populations. 



Computing and Artificial Intelligence 2024, 2(2), 1481.  

3 

Taken together, HRV could be estimated by calculating the R-R intervals through 
various devices. Although the 12-lead ECG is the standard method to measure the 
HRV, it requires special items (i.e., expertise and time). On the other hand, it has been 
expressed that HRV measurements generated by a 12-lead ECG, a Holter-style 
ambulatory recording system, and a custom-built chest strap (strap) would not agree 
well in all cases [45]. Despite this, to the best of our knowledge, applying HRV-bio 
has been overlooked as a real-time and swift-measurable method to measure HRV 
among healthy individuals, which can be considered crucial and required for 
monitoring HRV in healthy populations regardless of both the type and intensity of 
exercise. Therefore, we sought to assess the accuracy between ECG (as the golden 
method) and BIO, which means approaching HRV by biofeedback device would be 
authentic at rest status (pre-exercise condition), and whether this situation would 
remain the same after performing a maximal exercise protocol (MEP) (at post-exercise 
status) among healthy individuals. 

2. Materials and methods 

2.1. Ethical approval 

In this investigation, the local institutional ethics committee reviewed and 
approved all the methods and data collection (Ethical Code: IR.UMZ.REC.1397.019). 
It should be mentioned that the whole research process was performed according to 
the 1964 Helsinki Declaration [82]. In this regard, all healthy males and females had 
the opportunity to participate and obtain informed consent. In addition, the testing 
procedures, protocols, and equipment were introduced to participants, making them 
familiar with the research process. Meanwhile, the opportunity was provided for each 
individual to query any progress section whenever it was not comprehensible. 
Essentially, leaving and/or withdrawing the study progress without any consequences 
was the individuals’ right when they did not want to keep on participating. 

2.2. Study design 

In this study, the HRV simultaneously was recorded during pre- and post-exercise 
status to estimate the correlation between the HRV indices extracted by two 
measurement devices, i.e., the electrocardiogram (ECG) and the biofeedback (BIO). 

2.3. Participants, inclusion, and exclusion criteria 

In this study, 60 healthy, qualified-volunteered individuals (30 females) 
participated. Additionally, we kindly asked participants to avoid strenuous exercise 
and to abstain from any food and beverages containing alcohol and caffeine 48 h 
before data collection. All procedures and measurements were conducted from 8:00 
to 13:00. 

In addition, to be eligible to remain in the investigation process, some existing 
requirements were seated, such as: 1) Not having a smoking habit and/or being 
exposed to second-hand smoke, 2) No consumption of any antioxidant supplements at 
least one month before the study, 3) No history of chronic cardiovascular events or 
pulmonary and inflammatory diseases; 4) Not having any other medical limitations, 
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including any physical disabilities and/or limitations of mobility. All study females 
were screened for the inclusion eligibility criteria. The survey included questions 
about the history of the menstrual period (present, irregular, or absent). 

2.4. Anthropometric measurements 

Before the exercise protocol, a specialized expert assessed participants’ 
anthropometric characteristics [83]. In this case, a stadiometer was used to measure 
each individual’s weight and height according to its height (about 0.1 cm) and weight 
(about 0.1 kg) accuracy. Moreover, a body composition analyzer device (Medigate 
Inc., BoCA x1, Korea) was applied to measure the body mass index (BMI). Table 1 
illustrates the participants’ demographic characteristics. 

Table 1. Demographics (mean  standard deviation) of participants who completed. 

Participant Age (years) Height (m) Weight (kg) BMI (kg/m2) Vo2max (mL kg−1 min−1) 

Male (n = 30) 46.6 ± 4.9 1.70 ±0.07 85.35 ± 11.91 29.2 ± 3.1 34.55 ± 3.02 

Female (n = 30) 44.37 ± 4.1 1.57 ± 0.05 72.15 ± 8.9 29.1 ± 3.04 32.94 ± 3.04 

BMI—body mass index. 

2.5. The maximal exercise protocol (MEP) 

In this study, the Bruce protocol was applied as the maximal exercise protocol 
(MEP), consisting of a 3-minute stage workout that gradual elevation occurs in both 
speed and grade, subsequently, until the individual feels exhausted [84]. The exact 
details have been described previously [85]. Also, we encouraged the participants to 
continue the MEP until their maximal tolerance, which was the heart rate (HR) value, 
reached 80% to 90% of HRmax. 

To assess the VO2max, the standard equation was the reference, which has been 
published elsewhere [86]. In this case, a calibrated treadmill (h/p/cosmos Sports and 
Medical GmbH, Mercury model, Nussdorf-Traunstein Germany) was applied while 
we evaluated the Borg 6–20 scale during the MEP, also known as the ratings of 
perceived exertion (RPE). 

2.6. Kubios and biofeedback HRV analyses 

Based on Kubios HRV analysis, HR and RR intervals were continuously 
recorded via standard 12-lead electrocardiography (Custo cardio 100, Custo med 
GmbH, Ottobrunn, Germany) at pre- (rest status including a 3-minute duration of HR 
stabilization) and post-exercise (instantly after performing MEP) conditions, with 
sampling rate set at 1000 Hz (at seated posture). Next, the investigators collected the 
RR intervals while visually inspecting and omitting any premature beats and 
artifact/noise from all recorded RR intervals. Then, we export all collected RR 
intervals from the ECG manufacturer’s software (Medset, Hamburg, Germany) to 
analyze them by customized software (Kubios HRV software, version 2.1, Department 
of Applied Physics, University of Eastern Finland, Kuopio, Finland). Based on former 
evidence, there are no differences across various Kubios filter levels in adults [87]. 
Therefore, we used a very strong filter level in this study [88]. 

On the other hand, to assess HRVBIO, data was recorded by a Biofeedback device 
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(version 4.2, Biofeedback 2000 x-pert software, made in Austria) from the pronation 
surface of the hand at pre- (rest status including a 3-minute duration of HR 
stabilization) and post-exercise (instantly after performing MEP) conditions, and the 
sampling rate was set at 1000 Hz as described previously [79,89]. Briefly, the blue 
electrode cable was attached to the back of the right hand, while the red one was 
attached in the same spot but to the left hand. Also, the black electrode cable was 
attached to the back of the non-dominant hand (i.e., the left hand for right-handed 
people) [90]. To prevent the noise, we tried to keep the reference constant. 

In this study, measured indices of HRV consisted of time-domain variables (i.e., 
standard deviation of normal RR intervals, SDNN; root mean square of successive 
differences, RMSSD; the proportion of differences between adjacent NN intervals of 
more than 50 ms pNN50), frequency domain variables (i.e., the low-frequency band, 
LF (0.04–0.15 Hz), the high-frequency band, HF (0.15–0.40 Hz), the LF/HF ratio), 
and nonlinear measures (i.e., standard deviation of the instantaneous beat-to-beat RR 
interval variability or minor axis of the Poincare plot, SD1; the standard deviation of 
continuous long-term RR interval variability or major axis of the Poincare plot, SD2) 
[91,92]. 

2.7. Statistical analysis 

The SPSS software (version 27.0 for Windows, IBM, Armonk, NY, USA) was 
applied for all statical analyses while we drew the figures with the GraphPad Prism® 
software (version 9 for Windows, GraphPad Software, Inc., La Jolla, CA, USA). 
Firstly, the normality distribution of data was analyzed using the Kolmogorov-
Smirnov test. The Pearson correlation test was used to analyze the overall association 
between indices. Pearson correlation coefficient (r) from 0.3 to 0.5 was considered as 
low, 0.5 to 0.7 as moderate, and 0.7 to 0.9 as high correlation [93]. Intra-class 
correlation coefficient (ICC) analysis was also performed to examine the agreement 
between examined variables. Values for ICC were calculated using a 2-way mixed 
model and interpreted as excellent (0.90 or higher), good (0.75 to 0.90), moderate 
(0.50 to 0.75), or poor (below 0.50) [94]. Bland Altman analysis was also used to test 
the agreement between values of examined variables as well as to visually depict the 
individual dispersion patterns [95]. Data are reported by their mean standard deviation. 
In this study, P < 0.05 was settled as the significant value. 

3. Results 

3.1. Correlation and agreement between HRV indices at the pre-exercise 
status 

At rest status, the HRV parameters were measured using the BIO and ECG 
devices and are presented in Figure 1 and Table 2. Regarding the Pearson test, all 
HRV parameters had significant correlations ranging from low (r = 0.241) to high (r 
= 0.779), such as RR interval (r = 0.639, p < 0.001), SDNN (r = 0.779, p < 0.001), 
RMSSD (r = 0.625, p < 0.001), PNN50 (r = 0.455, p < 0.05), LF (r = 0.524, p < 0.001), 
HF (r = 0.589, p < 0.001), LF/HF ratio (r = 0.559, p < 0.001), and SD2 (r = 0.313, p 
< 0.05); except for SD1, which only showed a certain trend toward significance (r = 
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0.241, p = 0.064) (Figure 1). Similarly, based on intra-class correlation coefficient 
(ICC) analysis, the indices obtained from these measurement devices, including RR 
intervals (ICC = 0.780, p < 0.001), SDNN (ICC = 0.874, p < 0.001), RMSSD (ICC = 
0.769, p < 0.001), and HF (ICC = 0.722, p < 0.001), showed a significant agreement 
(Table 2). Meanwhile, PNN50 (ICC = 0.612, p = 0.008), LF (ICC = 0.641, p < 0.001), 
and LF/HF ratio (ICC = 0.593, p < 0.001) illustrate a considerable relationship 
between BIO and ECG, while SD1 (ICC = 0.379, p = 0.035) and SD2 (ICC = 0.47, p 
= 0.008) had a slight correlation (Table 2). 

 
Figure 1. Pearson correlations between heart rate variability (HRV) parameters extracted via Kubios HRV and 
biofeedback device at pre-exercise status. Abbreviations: BIO, the biofeedback device; ECG, the electrocardiogram 
device; SDNN, Standard deviation of NN intervals; RMSSD, Root mean square of successive RR interval differences; 
LF, low-frequency; HF, high-frequency; LF/HF, LF/HF ratio; SD1, Poincaré plot standard deviation perpendicular the 
line of identity; SD2, Poincaré plot standard deviation along the line of identity. 
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Table 2. Intra-class correlation between heart rate variability (HRV) parameters 
obtained from Kubios HRV software and biofeedback device (BIO) at pre-exercise 
status. 

Parameters 
Mean  standard deviation Interclass correlation 

Kubios HRV BIO ICC 95% CI P 

RR intervals (ms) 6.63  0.11 6.65  0.11 0.780* 0.630–0.869 < 0.001 

SDNN (ms) 3.38  0.41 3.42  0.33 0.874* 0.779–0.928 < 0.001 

RMSSD (ms) 2.75  0.42 2.88  0.42 0.769* 0.598–0.868 < 0.001 

PNN50 (%) 37  1.080 0.74  1.56 0.612* 0.162–0.821 0.008 

LF (ms2) 5.46  0.90 4.60  0.56 0.641* 0.398–0.785 < 0.001 

HF (ms2) 4.24  0.90 4.43  0.67 0.722* 0.535–0.834 < 0.001 

LF/HF ratio 0.26  0.21 −0.431  0.99 0.593* 0.319-–0.757 < 0.001 

SD1 2.48  0.52 2.26  0.66 0.379* −0.039–0.629 0.035 

SD2 3.7  0.57 4.20  0.47 0.470* 0.112–0.683 0.008 

* Significant observation. 

3.2. Correlation and agreement between indices at post-exercise 

At post-exercise status, the HRV parameters were measured using the BIO and 
ECG devices, which are presented in Figure 2 and Table 3. Regarding the Pearson 
test, some HRV parameters had low correlations (0.3 < r < 0.5) to high correlations (r 
= 0.779), such as RR interval (r = 0.496, p < 0.001), LF (r = 0.260, p < 0.05), HF (r = 
0.369, p < 0.01), LF/HF ratio (r = 0.394, p < 0.01), and SD2 (r = 0.299, p < 0.05) 
(Figure 2). Regardless, other HRV parameters did not show any relationships between 
BIO and ECG at post-exercise conditions, including SDNN (r = 0.099, p = 0.451), 
RMSSD (r = 0.118, p = 0.369), PNN50 (r = 0.135, p = 0.548), and SD1 (r = 0.117, p 
= 0.372) (Figure 2). Similarly, based on intra-class correlation coefficient (ICC) 
analysis, some HRV indices obtained from these measurement devices illustrate a 
considerable agreement between BIO and ECG, ranging from low (below 0.50) to 
moderate (0.50 to 0.75), including RR intervals (ICC = 0.623, p < 0.001), HF (ICC = 
0.553, p = 0.001), and LF/HF ratio (ICC = 0.506, p < 0.001), while LF (ICC = 0.438, 
p < 0.014) and SD2 (ICC = 0.394, p = 0.028) had a slight correlation (Table 3). Despite 
this, no agreements were noted among other indices, including SDNN (ICC = 0.180, 
p = 0.224), RMSSD (ICC = 0.172, p = 0.235), PNN50 (ICC = 0.212, p = 0.295), and 
SD1 (ICC = 0.178, p = 0.228) (Table 3). 

Table 3. Intra-class correlation between heart rate variability (HRV) parameters 
extracted via Kubios HRV and biofeedback device (BIO) at post-exercise status. 

Parameters 
Mean  SD Interclass correlation 

Kubios HRV BIO ICC 95% CI P 

RR intervals (ms) 6.21  0.09 6.38  0.14 0.623* 0.35–0.776 <0.001 

SDNN (ms) 4.39  0.38 4.06  0.41 0.180 −0.373–0.510 0.224 

RMSSD (ms) 2.20  0.5 3.35  1 0.172 −0.386–0.506 0.235 

PNN50 (%) −0.12  0.98 1.05  1.60 0.212 −0.899–0.673 0.295 
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Table 3. (Continued). 

Parameters 
Mean  SD Interclass correlation 

Kubios HRV BIO ICC 95% CI P 

LF (ms2) 3.73  1.3 4.20  0.92 0.394* −0.015–0.638 0.028 

HF (ms2) 2.56  1.45 4.33  1.12 0.553* 0.252–0.733 0.001 

LF/HF ratio 1.16  1 −0.13  0.57 0.506* 0.173–0.705 <0.001 

SD1 1.9  0.59 2.75  1.11 0.178 −0.377–0.509 0.228 

SD2 4.71  0.3 4.69  0.43 0.438* −0.060–0.664 0.014 

* significant observation. 

 
Figure 2. Pearson correlations between heart rate variability (HRV) parameters extracted via Kubios HRV and 
biofeedback device at post-exercise status. Abbreviations: BIO, the biofeedback device; ECG, the electrocardiogram 
device; SDNN, Standard deviation of NN intervals; RMSSD, Root mean square of successive RR interval differences; 
LF, low-frequency; HF, high-frequency; LF/HF, LF/HF ratio; SD1, Poincaré plot standard deviation perpendicular the 
line of identity; SD2, Poincaré plot standard deviation along the line of identity. 

4. Discussion 

Based on our knowledge, our research is the first study to have assessed the HRV 
measurement among healthy individuals by biofeedback, which means it 



Computing and Artificial Intelligence 2024, 2(2), 1481.  

9 

demonstrated the significant correlation between ECG (as the golden-standard 
method) and biofeedback, especially at pre-exercise status. Therefore, this is the first 
time that HRV-bio is considered a swift real-time method for monitoring HRV among 
a healthy population before and after a physical activity performance (i.e., MEP). 

HRV is known as a productive way to understand the cardiovascular response in 
the human body [96]. Healthy heart oscillations are constantly changing, which helps 
the cardiovascular system adjust rapidly to any homeostasis challenges (either 
physical or psychological) [1,96]. HRV has assessed the neuro-cardiac function, which 
shows the direct relation between cardiac rhythm and the ANS branches, including the 
sympathetic and parasympathetic systems [97]. Therefore, HRV represents an 
emergent property of interdependent regulating systems, which provide various time 
scales to respond to any psycho-environmental challenges [98]. In healthy individuals, 
it reflects the satisfied regulation of different items in the body, such as autonomic 
balance, blood pressure, gas exchange, gut, heart, and vascular tone [81], while any 
diseases would involve either a decrease or elevation in the complexity of the 
biological system [99]. Recently, De Groot et al. have declared that ANS dysregulation 
symptoms are associated with diabetes-related distress among adults suffering from 
type 1 diabetes [100]. As a result, close monitoring of electrocardiogram (ECG) 
morphology would declare that increased HRV values are due to common 
cardiovascular conditions, including hypertension, diabetes mellitus, myocardial 
infraction, and heart failure [101,102], atrial fibrillation [103], and an early indication 
of infection [104,105]. Pathologically, clinical-dependent bradycardia could stem 
from vagal tone withdrawal (i.e., parasympathetic activity reduction), which causes 
the cardiac pacemaker to be more vulnerable to sympathetic impacts [106]. 

On the other hand, HRV indices are beneficial far beyond clinical prediction, 
which are considerably strong biomarkers to monitor physiological activity and 
workout levels [57,96]. Therefore, it can be applied to evaluate the level of exercise 
stress, especially the acute intensity by changes of the ANS following any exercise, 
which means it would be considered either overtraining or an overreaching marker 
[107,108]. Based on the PNS activity of every individual, monitoring HRV would be 
used to check individualized training improvement [109]. It has been illustrated that 
guided training based on HRV is a beneficial way to improve performance [109]. 
Being exposed to any physical stressor lessens HRV, which occurs as a result of vagal 
tone withdrawal and activating the sympathetic nervous system for supplying any 
exercises and physical activities’ demands [108]. 

It is noted that an increased LF/HF ratio promotes cognitive performance [110], 
which is known as various strict internal operations reflected by behavior [111], while 
it is discovered that lessened vagal control (especially HF) is related to reduced ability 
of dynamical response to changing demands and environments, followed by the 
reduction of possible options’ range and the limitation of an individual’s ability to 
produce suitable responses and prevent inappropriate ones [112]. Likewise, it has been 
demonstrated that a low HRV is related to poorer performance associated with short- 
and long-term verbal memory [113]. If executive functioning is required for a 
cognitive task, therefore, vagal withdrawal is considered maladaptive [114], while it 
would be advantageous whenever a person is subjected to any mental stressors without 
including executive function, which means it is demonstrated as an individual’s ability 
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to deal with the stimulus successfully [115,116]. Moreover, it is expressed that cardiac 
vagal activity can be considered an index of self-regulatory and/or cognitive-related 
processing [117–119]. The study literature illustrates the necessity of monitoring HRV 
for both physical and mental purposes among healthy people via a swift real-time 
method. 

ECG is a traditional method for measuring HRV, which requires time and 
expertise. Moreover, other devices are high-priced, including clinical multi-lead ECG 
(e.g., Holter), which would not be practical for field-based monitoring in active and 
healthy individuals. Although multi-lead ECG devices are considered the golden 
standard, devices based on single-lead ECG or photo-plethysmography (PPG) are 
simple to apply [57]. Applying PPG technology to measure HRV is a recent and novel 
method, which is integrated into wearable wrist and finger-worn devices. Despite the 
motion artifact noted as a limitation of this method, their comfort and feasibility make 
them attractive alternatives to multi-lead ECG systems [58]. 
Regarding our study, there is significant agreement between ECG and BIO devices for 
measuring HRV indexes among healthy individuals at rest conditions. To prove this, 
the RR interval had moderate correlation (r = 0.639, p < 0.001), good ICC (r = 0.780, 
p < 0.001), and an average deviation of −0.01593 ms according to the Bland-Altman 
plots (95% LoA: −0.1984 to 0.1665 ms). As for SDNN, it showed high agreement (r 
= 0.779, p < 0.001), acceptable ICC (r = 0.874, p < 0.001), and an average deviation 
of −0.03843 ms according to the Bland-Altman plots (95% LoA: −0.5041 to 0.5664 
ms). Also, RMSSD noted moderate correlation (r = 0.625, p < 0.001), good ICC (r = 
0.769, p < 0.001), and an average deviation of −0.1465 ms according to the Bland-
Altman plots (95% LoA: −0.8594 to 0.5664 ms). Plus, LF noted moderate correlation 
(r = 0.524, p < 0.001), low ICC (r = 0.641, p < 0.001), and an average deviation of 
−0.8597 ms2 according to the Bland-Altman plots (95% LoA: −0.6665 to 2.386 ms2). 
In addition, as for HF, it showed moderate agreement (r = 0.589, p < 0.001), good ICC 
(r = 0.722, p < 0.001), and an average deviation of −0.1835 ms2 according to the 
Bland-Altman plots (95% LoA: −1.644 to 1.277 ms2). Despite this, PNN50 illustrated 
low correlation (r = 0.455, p < 0.05), moderate ICC (r = 0.612, p = 0.008), and an 
average deviation of −0.8882% according to the Bland-Altman plots (95% LoA: 
−3.386 to 1.609%). In addition, as for the LF/HF ratio, it showed moderate agreement 
(r = 0.559, p < 0.001), good ICC (r = 0.593, p < 0.001), and an average deviation of 
0.2213 according to the Bland-Altman plots (95% LoA: −0.1381 to 0.5808). Despite 
this, SD2 illustrated low correlation (r = 0.313, p < 0.05), low ICC (r = 0.47, p = 
0.008), and an average deviation of −0.4317 according to the Bland-Altman plots 
(95% LoA: −1.645 to 0.7821), while SD1 illustrated no correlation (r = 0.241, P = 
0.064), low ICC (r = 0.379, p = 0.035), and an average deviation of 0.2155 according 
to the Bland-Altman plots (95% LoA: −1.244 to 1.675) (Figure 3). On the other hand, 
at post-exercise status, the RR interval had low correlation (r = 0.496, p < 0.001), 
moderate ICC (r = 0.623, p < 0.001), and an average deviation of −0.1785 ms 
according to the Bland-Altman plots (95% LoA: −0.4270 to 0.07008 ms). As for 
SDNN, it did not show agreement (r = 0.099, p = 0.451), ICC (r = 0.180, p = 0.224), 
and had an average deviation of 0.3343 ms according to the Bland-Altman plots (95% 
LoA: −0.7245 to 1.393 ms). Also, RMSSD did not note any correlation (r = 0.118, p 
= 0.369), and ICC (r = 0.172, p = 0.235) had an average deviation of −1.150 ms 
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according to the Bland-Altman plots (95% LoA: −3.254 to 0.9540 ms). Whereas LF 
noted low correlation (r = 0.260, p < 0.05), low ICC (r = 0.438, p < 0.014), and an 
average deviation of −0.4675 ms2 according to the Bland-Altman plots (95% LoA: 
−3.195 to 2.260 ms2). In addition, as for HF, it showed low agreement (r = 0.369, p < 
0.01), moderate ICC (r = 0.553, p = 0.001), and an average deviation of −1.772 ms2 
according to the Bland-Altman plots (95% LoA: −4.602 to 1.059 ms2). Despite this, 

 
Figure 3. Bland-Altman plots of heart rate variability (HRV) parameters extracted via Kubios HRV and biofeedback 
device at pre-exercise status. Abbreviations: BIO, the biofeedback device; ECG, the electrocardiogram device; SDNN, 
Standard deviation of NN intervals; RMSSD, Root mean square of successive RR interval differences; LF, low-
frequency; HF, high-frequency; LF/HF, LF/HF ratio; SD1, Poincaré plot standard deviation perpendicular the line of 
identity; SD2, Poincaré plot standard deviation along the line of identity. 

PNN50 did not illustrate correlation (r = 0.135, p = 0.548), moderate ICC (r = 0.212, 
p = 0.295), and an average deviation of −1.603% according to the Bland-Altman plots 
(95% LoA: −4.926% to 1.720%). As for LF/HF ratio, it showed low agreement (r = 
0.394, p < 0.01), moderate ICC (r = 0.506, p < 0.001), and an average deviation of 
1.305 according to the Bland-Altman plots (95% LoA: −0.5411 to 3.151). Despite this, 
SD2 illustrated low correlation (r = 0.299, p < 0.05), low ICC (r = 0.394, p = 0.028), 
and an average deviation of 0.02067 according to the Bland-Altman plots (95% LoA: 
−0.8621 to 0.9035), while SD1 illustrated no correlation (r = 0.117, p = 0.372), ICC 
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(r = 0.178, p = 0.228), and an average deviation of −0.8513 according to the Bland-
Altman plots (95% LoA: −3.201 to 1.498) (Figure 4). Therefore, not only is a 
biofeedback device considered an effective method for monitoring autonomic balance 
[12,74], but it can also be applied among healthy individuals regarding our study, 
especially at pre-exercise status. 

 
Figure 4. Bland-Altman plots of heart rate variability (HRV) parameters extracted via Kubios HRV and biofeedback 
device at post-exercise. Abbreviations: BIO, the biofeedback device; ECG, the electrocardiogram device; SDNN, 
Standard deviation of NN intervals; RMSSD, Root mean square of successive RR interval differences; LF, low-
frequency; HF, high-frequency; LF/HF, LF/HF ratio; SD1, Poincaré plot standard deviation perpendicular the line of 
identity; SD2, Poincaré plot standard deviation along the line of identity. 

Altogether, this study showed a significant correlation between the golden 
method and the biofeedback device, which illustrates that the biofeedback device’s 
usefulness is far beyond its clinical activities. Despite this, it should not be overlooked 
that we had some limitations in this study. Firstly, since the purpose of this paper was 
to assess whether biofeedback can be applied for HRV measurement among healthy 
people, we did not include athlete populations. Secondly, although the women were in 
the initial follicular phase of the menstrual cycle during the experiment period, the 
ovarian hormone levels were not measured directly. Finally, to prevent any possible 
noises being caused by body movement, we could not apply the biofeedback device 
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while performing MEP. Therefore, further studies are required to elucidate the impacts 
of these limitations while measuring HRV by biofeedback among healthy individuals. 

5. Conclusion 

Monitoring HRV in the population could be advantageous for tailoring 
individualized training and exercise programs according to the onset of illness or 
infection, identifying the risk of overreaching and overtraining, quantifying cognitive 
performance, and as an overall measure of health [31–49]. Regarding the preceding 
paragraphs, although the HRVECG is known as the golden method, it has several 
limitations [120,121], such as either expertise or time requirements, and good-quality 
electrode signals [122], which also prevents its applicability for prolonged-daily 
measurement [123]. Uniquely, this study states that biofeedback can be considered a 
facilitative way to evaluate HRV among healthy people, especially at pre-exercise 
status. Further research would be relevant for specific the HRVBIO at different 
timelines of performing any exercises. 
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