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Abstract: The logical assessment formula (LAF) is a new theory proposed for evaluations 

with inaccurate ground-truth labels (IAGTLs) to assess the predictive models for artificial 

intelligence applications. However, the practicability of LAF for evaluations with IAGTLs has 

not yet been validated in real-world practice. In this paper, we applied LAF to two tasks of 

tumour segmentation for breast cancer (TSfBC) in medical histopathology whole slide image 

analysis (MHWSIA) for evaluations with IAGTLs. Experimental results and analysis show 

that the LAF-based evaluations with IAGTLs were unable to confidently act like usual 

evaluations with accurate ground-truth labels on the one easier task of TSfBC while being able 

to reasonably act like usual evaluations with AGTLs on the other more difficult task of TSfBC. 

These results and analysis reflect the potential of LAF applied to MHWSIA for evaluations 

with IAGTLs. This paper presents the first practical validation of LAF for evaluations with 

IAGTLs in a real-world application. 

Keywords: logical assessment formula; evaluations with inaccurate ground-truth labels; 

tumour segmentation; breast cancer 

1. Introduction 

The logical assessment formula (LAF) [1] has been proposed to achieve 
evaluations with inaccurate ground-truth labels (IAGTLs) to assess predictive models 
for various artificial intelligence applications. LAF aims to alleviate the situation of 
usual evaluations that need more or less accurate ground-truth labels (AGTLs) [2–6], 
and the situation of evaluations with IAGTLs that require the underlying true targets 
can be precisely defined [7–10]. LAF is suitable for evaluating the predicted targets 
of a predictive model in situations, where the underlying true targets are difficult to 
precisely define while multiple inaccurate targets that contain various information 
consistent with our prior knowledge about the underlying true target are available. 
Theoretical analysis of LAF revealed the practicability of LAF for evaluations with 
IAGTLs, which includes: 1) LAF can be applied for evaluations with IAGTLs on a 
more difficult task, able to act like usual strategies for evaluations with AGTLs 
reasonably; and 2) LAF can be applied for evaluations with IAGTLs simply from the 
logical point of view on an easier task, unable to act like usual strategies for 
evaluations with AGTLs confidently. 

However, the revealed practicability of LAF for evaluations with IAGTLs has 
not yet been validated in real-world practice. In this paper, we aim to address this issue. 
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We applied LAF to tumour segmentation for breast cancer (TSfBC) in medical 
histopathology whole slide image analysis (MHWSIA). Based on two TSfBC tasks, 
we respectively evaluated two series of approaches with AGTLs-based usual strategy 
and IAGTLs-based LAF. Particularly, the two TSfBC tasks include a task that aims to 
segment tumours in HE-stained pre-treatment biopsy images and a task that aims to 
segment residual tumours in HE-stained post-treatment surgical resection images. 
According to pathology experts, the tumour segmentation task in HE-stained post-
treatment surgical resection images is more difficult than the tumour segmentation 
task in HE-stained pre-treatment biopsy images. More details about the two tasks of 
TSfBC are available at Yang et al. [11]. A series of approaches chosen for evaluation 
include the baseline method (BaseLine) that directly learns from the inaccurate labels 
and various state-of-the-art methods for learning from inaccurate labels [12–19]. The 
other series of approaches chosen for evaluation include the approaches for the one 
series with one-step abductive multi-target learning (OSAMTL) [11] introduced. 
Extensive experiments were conducted, and corresponding results and analyses 
support that the practicability of LAF is valid in the case of TSfBC in MHWSIA, 
which reflect the potentials of LAF applied to MHWSIA for evaluations with IAGTLs. 

The rest of the contents of this paper are structured as follows. In Section 2, we 
briefly review the related works. In Section 3, we give the detailed overview of LAF. 
In Section 3, we give the details of the implementation of LAF applied to TSfBC in 
MHWSIA. In Section 4, we conduct extensive experiments and analyse the 
corresponding results to validate the practicability of LAF in the case of TSfBC in 
MHWSIA. Finally, we conclude and discuss the whole paper in Section 5. 

2. Related work 

The aim of this paper is to validate the practicability of LAF [1], which is a new 
theory proposed for evaluations with IAGTLs, in real-world practice. Thus, 
evaluations with IAGTLs and LAF are related to this paper.  

For evaluation with IAGTLs, two feasible types of methods have emerged. One 
is to firstly select some probably true targets from the inaccurate targets [9] within the 
given IAGTLs via probabilistic estimation, and then to achieve evaluations of unseen 
testing results by referring to the selected probably true targets [8,10]. The other is to 
achieve evaluations of unseen testing results by referring to the inaccurate targets [7] 
within the given IAGTLs with provided or estimated minimal rate of error 
corresponding to the true targets. Fundamentally, the assumption for these two types 
of methods is that there are true targets exist in the inaccurate targets represented by 
the given IAGTLs, which makes these two types of methods not suitable for the 
situation where the underlying true targets are difficult to be precisely defined or even 
do not exist, such as some applications in the field of MHWSIA [11,20,21]. 

To alleviate this issue, LAF [1] has been proposed. LAF has made two 
contributions to the literature of assessment for predictive models: 1) establishing a 
new theory for evaluations with IAGTLs, which does not need the assumption that 
there are true targets exist in the inaccurate targets represented by the given IAGTLs, 
and 2) offering a new addition to usual evaluations that require more or less AGTLs 
[2–6] as well as some existing methods for evaluations with IAGTLs [7–10]. More 
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detailed overview of LAF is provided in Section 3. 

3. Overview of logical assessment formula 

As the purpose of this paper is to validate the practicability of LAF for 
evaluations with IAGTLs in real-world practice, LAF is highly related to this work. In 
this section, we briefly present an overview of LAF. More details about LAF and its 
principles for evaluations with IAGTLs are provided at Yang [1]. 

3.1. Formation and usage of LAF 

The formation of LAF [1] can be formally denoted as 

𝐿𝐴𝐹

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑖𝑛𝑝𝑢𝑡𝑠: ቄ

𝑡
�̃� = {�̃�ଵ, ⋯ , �̃�}

𝑃𝐶 ቐ

𝐿𝐹 = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐹𝑎𝑐𝑡𝑁𝑎𝑟𝑟𝑎𝑡𝑒(�̃�; 𝑝ிே)

𝐿𝐶 = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑡, 𝐿𝐹; 𝑝ா)

𝐿𝐴𝑀 = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝐵𝑢𝑖𝑙𝑑(𝐿𝐶; 𝑝ெ)

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐿𝐴𝑀 = {𝐿𝐴𝑀ଵ, ⋯ , 𝐿𝐴𝑀௪}

 (1) 

Specifically, given the predicted target (𝑡) for the underlying true targets, which 

are difficult to precisely define, and multiple inaccurate targets (�̃� = {�̃�ଵ, ⋯ , �̃�}) that 
contain various information consistent with our prior knowledge about the underlying 

true target, we can obtain, via the processing components of LAF (𝐿𝐴𝐹: 𝑃𝐶), a series 

of logical assessment metrics (𝐿𝐴𝑀) for evaluations of the given predicted target (𝑡) 

compared with the underlying true target. 𝐿𝐴𝐹: 𝑃𝐶 is constituted by three components, 
including logical fact narration, logical consistency estimation, and logical assessment 
metric build. 

Narrating logical facts (𝐿𝐹) from the input multiple inaccurate targets (�̃�), the 

logical fact narration component produces a list of qualitative descriptions (𝐿𝐹 =

൛𝐿𝐹ଵ, … , 𝐿𝐹ൟ ) that logically represent the facts contained in the given multiple 

inaccurate targets (�̃�). Estimating the logical consistencies (𝐿𝐶) between the input 

predicted target (𝑡 ) and the narrated logical facts (𝐿𝐹 ), the logical consistency 

estimation component generates a list of qualitative descriptions (𝐿𝐶 = {𝐿𝐶ଵ, … , 𝐿𝐶௨}) 

that logically represent the consistencies between the given predicted target (𝑡) and the 

narrated 𝐿𝐹. Producing a series of logical assessment metrics (𝐿𝐴𝑀) based on the 

estimated logical consistencies (𝐿𝐶) between the input predicted target (𝑡) and the 

narrated logical facts (𝐿𝐹), the logical assessment metric build component outputs a 

series of abstractly formalised metrics (𝐿𝐴𝑀 = {𝐿𝐴𝑀ଵ, ⋯ , 𝐿𝐴𝑀௪}) that are derived 

from the qualitative descriptions of the estimated 𝐿𝐶 to represent the evaluations of 

the predicted target (𝑡) compared with the underlying true target.  
Formally, the usage of LAF can be denoted as 

𝐿𝐴𝑀 = 𝐿𝐴𝐹: 𝑃𝐶(𝑡, �̃�; {𝑝ிே, 𝑝ா , 𝑝ெ}) = {𝐿𝐴𝑀ଵ, ⋯ , 𝐿𝐴𝑀௪} (2)

Each 𝑝∗  of Equation (2) denotes the hyperparameters corresponding to the 

implementation of respective expression of 𝐿𝐴𝐹: 𝑃𝐶. 
In summary, the outline of LAF for evaluations with IAGTLs is shown as Figure 

1. 
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Figure 1. Outline of LAF for evaluations with IAGTLs [1,21,22]. 

3.2. LAF-based method performance evaluation 

The LAF-based method performance evaluation (LMP) strategy is to estimate the 
effectiveness of a method for addressing a task. As the method and the task should be 
specifically given in advance, LMP is task-specific (ts) and method-specific (ms). The 
input of LMP is a series of task-specific and method-specific logical assessment 

metrics (𝐿𝐴𝑀௧௦,௦). The output of LMP is some method performances (𝐿𝑀𝑃௧௦,௦), 

which are respectively quantized in the range [0,1], to reflect the superiorities of the 
given specific method for addressing a specific task. As a result, the processing 
procedure of LMP can be formally expressed as 

𝐿𝑀𝑃௧௦,௦ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑒𝑡ℎ𝑜𝑑𝑃𝑒𝑟𝑓𝐸𝑣𝑎𝑙൫𝐿𝐴𝑀௧௦,௦; 𝑝ெೞ,ೞ൯

= ൛𝐿𝑀𝑃௧௦,௦,ଵ, ⋯ , 𝐿𝑀𝑃௧௦,௦,௩ൟ, 𝑉𝑎𝑙(𝐿𝑀𝑃௧௦,௦,௩) ∈ [0,1] 
(3)

here, 𝑝ெ ೞ,ೞ  denotes the hyperparameters for implementation of Equation (3) 

and 𝑉𝑎𝑙(∗) denotes the value of ∗. 

3.3. Practicability of LAF 

The practicability of LAF is as follows: 
• Practicability 1. LAF can be applied for evaluations with IAGTLs on a more 

difficult task, able to act like usual strategies for evaluations with AGTLs 
reasonably. 

• Practicability 2. LAF can be applied for evaluations with IAGTLs simply from 
the logical point of view on an easier task, unable to act like usual strategies for 
evaluations with AGTLs confidently. 

4. LAF Applied to tumour segmentation for breast cancer 

In this section, we apply LAF to two tasks of tumour segmentation for breast 
cancer (TSfBC) in medical histopathology whole slide image analysis (MHWSIA) for 
evaluations with inaccurate ground-truth labels (IAGTLs). Since it is indeed difficult 
to accurately annotate the true targets for both of the two tasks [11], LAF-based 
evaluations with IAGTLs just provide a good alternative for this situation. In Section 
4.1, we briefly describe the two tasks of TSfBC. In Section 4.2, we give descriptions 
of the settings for the application of LAF to TSfBC. In Section 4.3, we provide the 
details of the implementations of LAF applied to TSfBC. 

4.1. Tumour segmentation for breast cancer 

The two tasks of TSfBC include a task that aims to segment tumours in HE-

𝐿𝐹ଵ 𝐿𝐹
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narrated logical facts

built logical assessment metrics

logical assessment 
meric build

logical fact narration

𝐿𝐴𝑀ଵ 𝐿𝐴𝑀௪
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estimated logical consistencies
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stained pre-treatment biopsy images and a task that aims to segment residual tumours 
in HE-stained post-treatment surgical resection images. Referring to additional 
suggestions from pathology experts, we here claim that the tumour segmentation task 
in HE-stained post-treatment surgical resection images is more difficult than the 
tumour segmentation task in HE-stained pre-treatment biopsy images. More details 
about challenges and difficulty comparisons for the two tasks of TSfBC are available 
at Yang et al. [11]. 

4.2. Application settings 

Since our main purpose in this application is to apply LAF to the two tasks of 
TSfBC for evaluations with IAGTLs, we focus more on the settings required by LAF 
instead of the details of the specific methods for addressing the two tasks.  

4.2.1. Inputs of LAF 

The outline of the inputs of LAF applied to TSfBC is shown as Figure 2. Due to 
the fact that the underlying true targets for the two tasks of TSfBC are difficult to 
precisely define, we set up the two tasks as problems of learning from inaccurate 
(noisy) labels [23,24]. Testing samples with IAGTLs provided by pathology experts 
for the two tasks of TSfBC are shown in the middle of Figure 2. In the middle of 
Figure 2, IAGTLs (1) include many non-tumour areas as tumour areas while IAGTLs 
(2) exclude many tumour areas as non-tumour areas, which indicates that preparing 
IAGTLs requires much less labour. Two types of inaccurate targets corresponding to 
the testing samples are extracted from the given IAGTLs via one-step abductive 
logical reasoning [11]. Examples of the two types of inaccurate targets extracted 
corresponding to the testing samples are shown on the left of Figure 2. The predicted 
targets corresponding to the testing samples are obtained via an image semantic 
segmentation model trained with methods for learning from inaccurate labels, which 
will be discussed later in Section 4.2.2–3. Examples of the predicted targets 
corresponding to the testing samples are shown on the right of Figure 2. 

Here, we omitted the details of extracting the two types of inaccurate targets since 
our main purpose in this section is to implement the application of LAF to TSfBC for 
evaluations with IAGTLs. But we claim that the extracted two types of inaccurate 
targets contain information consistent with our prior knowledge about the underlying 
true targets, referring to the one-step abductive logical reasoning presented in our 

previous work [11]. More specifically, the extracted targets (1) (�̃�்ௌ,ଵ) can maintain 

high recall of the underlying true targets of TSfBC, and the extracted targets (2) 

(�̃�்ௌ,ଶ) can maintain high precision of the underlying true targets of TSfBC. In 

summary, the two types of inaccurate targets can be extracted based on logical 
reasoning, and more details can be found in our previous work [11]. As a result, we 
denote the multiple inaccurate targets that contain various information consistent with 
our prior knowledge about the underlying true targets of TSfBC by 

�̃�்ௌ = ൛�̃�்ௌ,ଵ, �̃�்ௌ,ଶൟ (4)
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Figure 2. Outline of the settings for the inputs of LAF applied to TSfBC. Middle: 
testing samples with inaccurate ground-truth labels (IAGTLs); Left: inaccurate 
targets corresponding to testing samples; Right: predicted targets corresponding to 
testing samples. 

4.2.2. Image semantic segmentation model 

The base image semantic segmentation model (ISSM) for the predicted targets 
corresponding to the testing samples for the two tasks of TSfBC is a symmetric deep 
convolutional neural network (DCNN) that was built for the task of H. pylori 
segmentation [20,21]. The symmetric image semantic segmentation architecture was 
implemented by referring to the most commonly used fully convolutional network 
[25], which is representative of fully convolutional network-based solutions and has 
inspired various other solutions achieving state-of-the-art performances in image 
semantic segmentation. Another reason for choosing this architecture for 
implementing the base ISSM is processing efficiency, as the two tasks of TSfBC are 
defined on whole slide images, the dimensions of which are very large. More details 
about the architecture of the symmetric DCNN can be found in Yang et al. [21]. We 

let {𝑐𝑛𝑛}ୀ
  denote the transformation for each of the 𝑋 layers from the built base 

DCNN, {𝑤}ୀ
  denote the parameters of {𝑐𝑛𝑛}ୀ

 , and 𝑝ேே  denote the 

hyperparameters for the optimisation of {𝑤}ୀ
 . We assume that the input of the built-

in DCNN (an image instance) is 𝐼 and the output of the built base DCNN (a predicted 

target corresponding to the input image instance 𝐼 ) is 𝑡்ௌ . With all these 

denotations and assumptions, we can express the image semantic segmentation model 
(ISSM) for the two tasks of TSfBC by 

𝑡்ௌ = 𝐼𝑆𝑆𝑀(𝐼; {𝐷𝐶𝑁𝑁, 𝑝ேே}) (5)

𝐷𝐶𝑁𝑁 = {{𝑐𝑛𝑛}ୀ
 , {𝑤}ୀ

 } (6)

Note, in practice, 𝑝ேே  can be a designated method of learning from inaccurate 
labels based on deep learning, since we set up the two tasks of TSfBC as problems of 
learning from noisy labels. 
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4.2.3. Methods of learning from inaccurate labels 

In addition to the baseline method (BaseLine) that directly learns from the 
inaccurate labels, various state-of-the-art methods for learning from inaccurate labels, 
including Forward, Backward [12], Boost-Hard, Boost-Soft [13,14], D2L [15], SCE 
[16], Peer [17], DT-Forward [18], and NCE-SCE [19], are also chosen to designate 

the hyperparameter 𝑝ேே  for experimental investigations. These state-of-the-art 
methods are chosen due to their flexibility to be applied to the situation, where no 
clean dataset is available, the targeted object cannot be precisely defined, and any of 
the given inaccurate labels cannot be confidently regarded as probably true targets. In 
addition, these state-of-the-art methods, combined with an improved version of one-
step abductive multi-target learning (OSAMTL) [11], were also chosen to designate 

the hyperparameter 𝑝ேே  for experimental investigations. We set the 
hyperparameters of these approaches as suggested by the corresponding papers. We 

denote the designated 𝑝ேே  by the method-specific (ms) 𝑝௦
ேே . As a result, we 

rewrite the formulation of the image semantic segmentation model for the two tasks 
of TSfBC by 

𝑡்ௌ,௦ = 𝐼𝑆𝑆𝑀(𝐼; {𝐷𝐶𝑁𝑁, 𝑝௦
ேே}), 

𝑚𝑠 ∈ {𝐵𝑎𝑠𝑒𝐿𝑖𝑛𝑒, ⋯ , 𝑁𝐶𝐸 − 𝑆𝐶𝐸, 𝐵𝑎𝑠𝑒𝐿𝑖𝑛𝑒_𝑂𝑆𝐴𝑀𝑇𝐿, ⋯ , 𝑁𝐶𝐸 − 𝑆𝐶𝐸_𝑂𝑆𝐴𝑀𝑇𝐿} 
(7)

4.3. Implementation of LAF applied to TSfBC 

On the basis of LAF overviewed in Section 3 and the application settings required 
by LAF to be carried out, we provide an implementation of LAF suitable to be applied 
for evaluations with IAGTLs on TSfBC. 

4.3.1. Implementation of task-specific LAF 

We implement a task-specific LAF that is suitable for evaluations with IAGTL 
on TSfBC. Referring to Figure 1, the outline for the application of LAF to TSfBC is 
summarized as Figure 3. 

 
Figure 3. Outline for the application of LAF to TSfBC.  

Referring to Equation (1) and letting 𝑡𝑠 = 𝑇𝑆𝑓𝐵𝐶 and 𝑚 = 2, we can denote the 
task-specific LAF that is suitable for evaluations with IAGTL on TSfBC as 

𝐿𝐴𝑀்௦,ଵ:  𝐿𝑇𝑃 = 𝑡்ௌ


∩ �̃�்ௌ,ଶ


𝐿𝐴𝑀்௦,ଶ:  𝐿𝐹𝑃 = 𝑡்ௌ


∩ �̃�்ௌ,ଵ


𝐿𝐴𝑀்௦,ଷ:  𝐿𝐹𝑁 = 𝑡்ௌ
 ∩ �̃�்ௌ,ଶ



𝐿𝐴𝑀𝑇𝑠𝑓𝐵𝐶,4:  𝐿𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐿𝐴𝑀𝑇𝑠𝑓𝐵𝐶,5:  𝐿𝑟𝑒𝑐𝑎𝑙𝑙

𝐿𝐴𝑀𝑇𝑠𝑓𝐵𝐶,6:  𝐿𝑓1

𝐿𝐴𝑀𝑇𝑠𝑓𝐵𝐶,7:  𝐿𝑓𝐼𝑜𝑈

𝐿𝐹்ௌ,ଵ: pixels included in negative areas of
�̃�்ௌ,ଵ are most probably true tumor negatives
𝐿𝐹்ௌ,ଶ: pixels included in positive areas of
�̃�்ௌ,ଶ are most probably true tumor positives

𝐿𝐶்ௌ,ଵ: the intersection of positive
areas of 𝑡்ௌ (𝑡்ௌ

 ) and negative
areas of �̃�்ௌ,ଵ(�̃�்ௌ,ଵ

 ) can be con
sidered as logically false positives
𝐿𝐶்ௌ,ଶ: the intersection of positive
areas of 𝑡்ௌ (𝑡்ௌ

 ) and positive
areas of �̃�்ௌ,ଶ(�̃�்ௌ,ଶ

 ) can be con
sidered as logically true positives
𝐿𝐶்ௌ,ଷ: the intersection of negativ
e areas of 𝑡்ௌ (𝑡்ௌ

 ) and positiv
e areas of �̃�்ௌ,ଶ(�̃�்ௌ,ଶ

 ) can be c
onsidered as logically false negatives

(2) logical consistent 
estimation

(3)logical assessment metric build

(1) logical fact narration

extracted inaccurate targets (1)
(�̃�்ௌ,ଵ)

extracted inaccurate targets (2)
(�̃�்ௌ,ଶ)

predicted targets
(𝑡்ௌ)
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𝐿𝐴𝐹

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑖𝑛𝑝𝑢𝑡𝑠: ቊ

𝑡்ௌ

�̃�்ௌ = ൛�̃�்ௌ,ଵ, �̃�்ௌ,ଶൟ

𝑃𝐶 ൞

𝐿𝐹்ௌ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐹𝑎𝑐𝑡𝑁𝑎𝑟𝑟𝑎𝑡𝑒൫�̃�்ௌ ; 𝑝்ௌ
ிே ൯

𝐿𝐶்ௌ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒൫𝑡்ௌ , 𝐿𝐹்ௌ; 𝑝்ௌ
ா ൯

𝐿𝐴𝑀்ௌ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝐵𝑢𝑖𝑙𝑑൫𝐿𝐶்ௌ; 𝑝்ௌ
ெ ൯

𝑜𝑢𝑡𝑝𝑢𝑡𝑠: 𝐿𝐴𝑀்ௌ

 (8) 

We need to clearly define each 𝑝்ௌ
∗  of respective processing component for 

the implementation of task-specific LAF, regarding to the inherent characteristics of 
TSfBC. 
(1) Logical facts narration 

On the basis of the claim that the inaccurate targets �̃�்ௌ = ൛�̃�்ௌ,ଵ, �̃�்ௌ,ଶൟ 

in Section 4.2.1 contain information consistent with our prior knowledge about the 

underlying true target, and the given inaccurate target �̃�்ௌ,ଵ can keep high recall of 

the underlying true target of TSfBC and the given inaccurate target �̃�்ௌ,ଶ can keep 

high precision of the underlying true target of TSfBC, we introduce two reasonings 
(Reasoning 1 and Reasoning 2). The validity of the two derived reasonings are 
respectively proved by Proof-R1 and Proof-R2 which are provided in Supplementary. 

Reasoning 1. If �̃�்ௌ,ଵ is given, then pixels included in negative areas of �̃�்ௌ,ଵ 

are most probably true tumour negatives. 
Reasoning 2. If �̃�்ௌ,ଶ is given, then pixels included in positive areas of �̃�்ௌ,ଶ are 

most probably true tumour positives. 

Referring to Equation (8) and using Reasonings 1 and 2 as 𝑝்ௌ
ிே , we implement 

the 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐹𝑎𝑐𝑡𝑁𝑎𝑟𝑟𝑎𝑡𝑒, which narrates two logical facts from �̃�்ௌ, as follows 

𝐿𝐹்ௌ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐹𝑎𝑐𝑡𝑁𝑎𝑟𝑟𝑎𝑡𝑒൫�̃�்ௌ; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 1, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 2}൯

= ቊ
𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐹𝑎𝑐𝑡𝑁𝑎𝑟𝑟𝑎𝑡𝑒൫�̃�்ௌ,ଵ; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 1}൯,

𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐹𝑎𝑐𝑡𝑁𝑎𝑟𝑟𝑎𝑡𝑒൫�̃�்ௌ,ଶ; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 2}൯
ቋ

= ൛𝐿𝐹்ௌ,ଵ, 𝐿𝐹்ௌ,ଶൟ 

(9) 

Details of the narrated two logical facts are provided in Table 1. 

Table 1. Details of the narrated logical facts. 

Narrated Logical Facts 

𝐿𝐹்ௌ,ଵ: pixels included in negative areas of �̃�்ௌ,ଵ are most probably true tumour negatives 

𝐿𝐹்ௌ,ଶ: pixels included in positive areas of �̃�்ௌ,ଶ are most probably true toumour positives 

(2) Logical consistency estimation 
On the basis of the prediction of the image semantic segmentation model for 

tumour segmentation for breast cancer (𝑡்ௌ) in Section 4.2.2 and the two narrated 

logical facts 𝐿𝐹்ௌ = ൛𝐿𝐹்ௌ,ଵ, 𝐿𝐹்ௌ,ଶൟ , we introduce two reasonings 

(Reasoning 3 and Reasoning 4). The validity of the two derived reasonings are 
respectively proved by Proof-R3 and Proof-R4 which are provided in Supplementary. 

Reasoning 3. If 𝑡்ௌ is given and 𝐿𝐹்ௌ,ଵ is given, then the intersection of pixels 

of 𝑡்ௌ  that are predicted as tumour positives (𝑡்ௌ
 ) and pixels included in 

negative areas of �̃�்ௌ,ଵ (�̃�்ௌ,ଵ
 ) can be considered as logically false positives. 
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Reasoning 4. If 𝑡்ௌ is given and 𝐿𝐹்ௌ,ଶ is given, then the intersection of pixels 

of 𝑡்ௌ  that are predicted as tumour positives (𝑡்ௌ
 ) and pixels included in 

positive areas of �̃�்ௌ,ଶ (�̃�்ௌ,ଶ
 ) can be considered as logically true positives, and 

the intersection of pixels of 𝑡்ௌ that are predicted as tumour negatives (𝑡்ௌ
 ) 

and pixels included in positive areas of �̃�்ௌ,ଶ  ( �̃�்ௌ,ଶ
 ) can be considered as 

logically false negatives. 

Referring to Equation (8) and using Reasonings 3 and 4 as 𝑝்ௌ
ா , we implement 

the 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 , which estimates three logical consistencies 

between 𝑡்ௌ and 𝐿𝐹்ௌ, as follows 

𝐿𝐶்ௌ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ൬𝑡்ௌ , 𝐿𝐹்ௌ; ൜
𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 3,
𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 4

ൠ൰

= ቊ
𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒൫𝑡்ௌ , 𝐿𝐹்ௌ,ଵ; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 3}൯,

𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒൫𝑡்ௌ , 𝐿𝐹்ௌ,ଶ; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 4}൯
ቋ

= ൛𝐿𝐶்ௌ,ଵ, 𝐿𝐶்ௌ,ଶ, 𝐿𝐶்ௌ,ଷൟ 

(10)

Details of the estimated three logical consistencies are provided in Table 2. 

Table 2. Details of the estimated logical consistencies. 

Estimated Logical Consistencies 

𝐿𝐶்ௌ,ଵ: the intersection of 𝑡்ௌ
  and �̃�்ௌ,ଵ

  can be considered as logically false positives 

𝐿𝐶்ௌ,ଶ: the intersection of 𝑡்ௌ
  and �̃�்ௌ,ଶ

  can be considered as logically true positives 

𝐿𝐶்ௌ,ଷ: the intersection of 𝑡்ௌ
  and �̃�்ௌ,ଶ

  can be considered as logically false negatives 

(3) Logical assessment metric build 

Based on the estimated 𝐿𝐶்ௌ , referring to Equation (8) and using usual 

definitions for assessment of image semantic segmentation as 𝑝்ௌ
ெ , we implement 

𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝐵𝑢𝑖𝑙𝑑  to abstractly formalize a series of logical 
assessment metrics, which can be expressed as 

𝐿𝐴𝑀்ௌ

= 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝐵𝑢𝑖𝑙𝑑 ൭𝐿𝐶்ௌ; ൝

𝑇𝑃, 𝐹𝑃, 𝐹𝑁,
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙,

𝑓1, 𝑓𝐼𝑜𝑈
ൡ൱

= ൜
𝐿𝐴𝑀்௦,ଵ, 𝐿𝐴𝑀்௦,ଶ, 𝐿𝐴𝑀்௦,ଷ,

𝐿𝐴𝑀்௦,ସ, 𝐿𝐴𝑀்௦,ହ, 𝐿𝐴𝑀்௦,, 𝐿𝐴𝑀்௦,
ൠ. 

(11)

Details of the built logical assessment metrics are provided in Table 3. 

Table 3. Details of the build logical assessment metrics. 

Built Logical Assessment Metrics 

𝐿𝐴𝑀்௦,ଵ: 𝐿𝑇𝑃 = 𝑡்ௌ


∩ �̃�்ௌ,ଶ
  

𝐿𝐴𝑀்௦,ଶ: 𝐿𝐹𝑃 = 𝑡்ௌ


∩ �̃�்ௌ,ଵ
  

𝐿𝐴𝑀்௦,ଷ: 𝐿𝐹𝑁 = 𝑡்ௌ
 ∩ �̃�்ௌ,ଶ

  

𝐿𝐴𝑀்௦,ସ: 𝐿𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

்ାி
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Table 3. (Continued). 

Built Logical Assessment Metrics 

𝐿𝐴𝑀்௦,ହ: 𝐿𝑟𝑒𝑐𝑎𝑙𝑙 =
்

்ାிே
  

𝐿𝐴𝑀்௦,: 𝐿𝑓1 =
ଶ×௦×

௦ା
  

𝐿𝐴𝑀்௦,: 𝐿𝑓𝐼𝑜𝑈 =
்

்ାிାிே
  

(4) Result 

Based on the implemented task specific LAF (𝐿𝐴𝐹்ௌ), we can get a series of 

abstractly formalized metrics that that are suitable for evaluations with IAGTL on 
TSfBC. As a result, referring to Equations (8) and (2), the abstractly formalized 
metrics can be denoted by 

𝐿𝐴𝑀்ௌ = 𝐿𝐴𝐹: 𝑃𝐶൫𝑡்ௌ , �̃�்ௌ; ൛𝑝்ௌ
ிே , 𝑝்ௌ

ா , 𝑝்ௌ
ெ ൟ൯

= ൛𝐿𝐴𝑀்௦,ଵ, ⋯ , 𝐿𝐴𝑀்௦,ൟ 
(12)

4.3.2. Implementation of method-specific LAF 

Regarding the various methods of learning from noisy labels referred to Section 

4.2.3, we can designate 𝑡்ௌ to be associated with a specific method of learning 

from noisy labels. With the 𝑡்ௌ designated to be associated with a specific method 

of learning from noisy labels, we can transform the abstractly formalised 𝐿𝐴𝑀்ௌ 

into quantitative values of assessment to implement the method-specific LAF for 

evaluations with IAGTL on TSfBC. Referring to Equation (12) and letting 𝑚𝑠 be a 
specific method of learning from noisy labels, the transformed quantitative values of 
assessment can be denoted by 

𝐿𝐴𝑀்ௌ,௦ = 𝐿𝐴𝐹: 𝑃𝐶൫𝑡்ௌ,௦, �̃�்ௌ൯ 

= ൛𝐿𝐴𝑀்௦,௦,ଵ, ⋯ , 𝐿𝐴𝑀்௦,௦,ൟ, 𝑚𝑠 ∈ {𝐵𝑎𝑠𝑒𝐿𝑖𝑛𝑒, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑, ⋯ , 𝑂𝑆𝐴𝑀𝑇𝐿}. 
(13)

4.3.3. Implementation of LAF based method performance evaluation 

Based on the transformed quantitative values of assessment for evaluations with 

IAGTL on TSfBC (𝐿𝐴𝑀்ௌ,௦), and referring to Equations (13) and (3), we can 

derive LAF based method performance (LMP). For a simple implementation of LMP, 

we set the hyper-parameters 𝑝ெೄಳ,ೞ  for implementation of 

𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑒𝑡ℎ𝑜𝑑𝑃𝑒𝑟𝑓𝐸𝑣𝑎𝑙 by ‘selecting the metric of overall performance (SMOP)’, 
which can be expressed as 

𝐿𝑀𝑃்ௌ,௦ = 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑒𝑡ℎ𝑜𝑑𝑃𝑒𝑟𝑓𝐸𝑣𝑎𝑙൫𝐿𝐴𝑀்ௌ,௦;ᇱ 𝑆𝑀𝑂𝑃ᇱ൯ 

= ൛𝐿𝐴𝑀்௦,௦,, 𝐿𝐴𝑀்ௌ,௦,ൟ 
(14)

5. Verification for practicability of LAF 

On the basis of the application of LAF to two tasks of tumour segmentation for 
breast cancer (TSfBC) in medical histopathology whole slide image analysis 
(MHWSIA) presented in Section 4, in this section, we conduct experiments and give 
corresponding analysis to further verify the practicability of LAF for evaluations with 
inaccurate ground-truth labels (IAGTLs). 
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5.1. Preliminary 

5.1.1. Overall design 

Referring to the summarised practicability of LAF, we consider two key points 
that need to be experimentally verified to better realise the pros and cons of LAF. The 
two key points include: 1) on a more difficult task, LAF is able to act like usual 
strategies for evaluations with AGTLs reasonably; and 2) on an easier task, LAF is 
unable to act like usual strategies for evaluations with AGTLs confidently.  

To verify these two key points, we first conduct experiments that employ LAF to 
produce evaluations of various methods for learning from inaccurate labels with 
IAGTLs and experiments that employ the usual strategy (US) to produce evaluations 
of various methods for learning from inaccurate labels with AGTLs, on the two tasks 
of tumour segmentation for breast cancer (Figure 2). For each of the two tasks, we 
conduct two series of experiments, including a number of state-of-the-art methods 
[12–19] for learning from inaccurate labels and their respective combinations with an 
improved version of OSAMTL [11]. As the previous work [11] has confirmed the 
advantages of the improved OSAMTL series compared with the state-of-the-art series 
[12–19] using US-based evaluations with AGTLs, we can compare the results of the 
improved OSAMTL series with the results of the state-of-the-art series using LAF-
based evaluations with IAGTLs to observe whether the LAF-based evaluations with 
IAGTLs can maintain the advantages of the improved OSAMTL series.  

According to the two key points that need to be verified, specifically, we have 
two expectations in advance: 1) Evaluations of LAF with IAGTLs can show the 
advantages of the improved OSAMTL series compared with the state-of-the-art series, 
just being able to reasonably act like evaluations of US with AGTLs on the task of 
tumour segmentation in HE-stained post-treatment surgical resection images, which is 
more difficult; 2) Evaluations of LAF with IAGTLs cannot show the advantages of 
the improved OSAMTL series compared with the state-of-the-art series, just being 
unable to confidently act like evaluations of US with AGTLs on the task of tumour 
segmentation in HE-stained pre-treatment biopsy images, which is easier. 

5.1.2. Data preparation 

For evaluations with IAGTLs using LAF on the task of tumour segmentation in 
HE-stained pre-treatment biopsy images, we prepared 248 image patches with 

IAGTLs (1) corresponding to �̃�்ௌ,ଵ  and 36 image patches with IAGTLs (2) 

corresponding to �̃�்ௌ,ଶ . For evaluations with AGTLs using US on the task of 

tumour segmentation in HE-stained pre-treatment biopsy images, we prepared 158 
image patches with corresponding AGTLs. 

For evaluations with IAGTLs using LAF on the task of tumour segmentation in 
HE-stained post-treatment surgical resection images, we prepared 736 image patches 
with IAGTLs (1) corresponding to �̃�்ௌ,ଵ and 358 image patches with IAGTLs (2) 

corresponding to �̃�்ௌ,ଶ . For evaluations with AGTLs using US on the task of 

tumour segmentation in HE-stained pre-treatment biopsy images, we prepared 242 
image patches with corresponding AGTLs. 

The image patches prepared for experiments were cropped at 10 × magnification 
of some digital whole slide images, and the size of each cropped image patch was 256 
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× 256 pixels (width × height). Some examples of the image patches prepared for 
evaluations with IAGTLs or AGTLs on the two tasks are provided in Figure 4. From 
Figure 4, we can note that the preparation of the image patches for evaluations with 
IAGTLs is much less labour intensive than the preparation of the image patches for 
evaluations with AGTLs. 

 
Figure 4. Examples of the image patches prepared for evaluations with IAGTLs or 
AGTLs on the two tasks of TSfBC. (A) the task of tumour segmentation in HE-
stained pre-treatment biopsy images; (B) the task of tumour segmentation in HE-
stained post-treatment surgical resection images. 

5.1.3. Experimental settings 

All of our experiments were performed on an Intel Core Xeon E5-2630 v4s with 
a memory capacity of 128GB and eight NVIDIA GTX 1080Ti GPUs. Our developing 
environment is based on Tensorflow 1.10.1 and Python 3.5. More detailed 
experimental settings for training the image semantic segmentation model with the 
two series of methods of learning from inaccurate labels to produce the predictions 
can be found in our previous work [11]. 

5.2. Results of LAF-based evaluations with IAGTLs 

Referring to the implementations of LAF applied on TSfBC presented in Section 
4, the LAM and LMP results of LAF-based evaluations with IAGTLs for various 
methods of learning from inaccurate labels for the tumour segmentation in HE-stained 
pre-treatment biopsy images and the tumour segmentation in HE-stained post-
treatment surgical resection images are respectively shown in Tables 4 and 5. 
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Table 4. LAF-based evaluations with IAGTLs on the task of tumour segmentation in HE-stained pre-treatment biopsy 
images. 

Solution 

LAM 

LTP LFP LFN Lprecision Lrecall 
LMP 

Lf1 LfIoU 

BaseLine 17,619 6956 1698 71.69 91.21 80.28 67.06 

Forward 17,455 5680 1861 75.45 90.37 82.24 69.83 

Backward 15,175 7032 4141 68.33 78.56 73.09 57.59 

Boost-Hard 17,497 7104 1820 71.12 90.58 79.68 66.22 

Boost-Soft 15,685 6564 3631 70.50 81.20 75.47 60.61 

D2l 17,506 7697 1811 69.46 90.62 78.64 64.80 

SCE 16,627 5601 2690 74.80 86.07 80.04 66.73 

Peer 17,669 6775 1648 72.28 91.47 80.75 67.72 

DT-Forward 16,731 5814 2586 74.21 86.61 79.93 66.58 

NCE-SCE 16,901 6605 2415 71.90 87.50 78.94 65.20 

BaseLine_OSAMTL 15,428 4165 3888 78.74 79.87 79.30 65.70 

Forward_OSAMTL 14,132 3282 5184 81.15 73.16 76.95 62.54 

Backward_OSAMTL 15,414 3816 3902 80.16 79.8 79.98 66.63 

Boost-Hard_OSAMTL 14,928 3812 4389 79.66 77.28 78.45 64.54 

Boost-Soft_OSAMTL 15,511 5198 3805 74.9 80.3 77.51 63.27 

D2l_OSAMTL 15,220 4267 4097 78.1 78.79 78.45 64.54 

SCE_OSAMTL 14,982 4264 4334 77.84 77.56 77.7 63.54 

Peer_OSAMTL 14,637 4182 4680 77.78 75.77 76.76 62.29 

DT-Forward_OSAMTL 14,675 2956 4641 83.23 75.97 79.44 65.89 

NCE-SCE_OSAMTL 14,238 3993 5078 78.1 73.71 75.84 61.08 

Table 5. LAF-based evaluations with IAGTLs on the task of tumour segmentation in HE-stained post-treatment 
surgical resection images. 

Solution 

LAM 

LTP LFP LFN Lprecision Lrecall 
LMP 

Lf1 LfIoU 

BaseLine 16,131 7863 4525 67.23 78.09 72.26 56.56 

Forward 14,933 7440 5723 66.75 72.29 69.41 53.15 

Backward 15,196 8983 5460 62.85 73.57 67.79 51.27 

Boost-Hard 15,829 8878 4826 64.07 76.64 69.79 53.60 

Boost-Soft 17,123 9318 3533 64.76 82.90 72.71 57.13 

D2l 16,039 9634 4617 62.47 77.65 69.24 52.95 

SCE 15,099 7907 5567 65.63 73.06 69.15 52.84 

Peer 15,896 10,532 4759 60.15 76.96 67.52 50.97 

DT-Forward 13,787 5248 6869 72.43 66.75 69.47 53.22 

NCE-SCE 14,319 7150 6337 66.70 69.32 67.98 51.50 

BaseLine_OSAMTL 16,163 2230 4492 87.88 78.25 82.79 70.63 
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Table 5. (Continued). 

Solution 

LAM 

LTP LFP LFN Lprecision Lrecall 
LMP 

Lf1 LfIoU 

Forward_OSAMTL 16,197 2860 4459 84.99 78.41 81.57 68.88 

Backward_OSAMTL 16,167 3331 4489 82.92 78.27 80.52 67.4 

Boost-Hard_OSAMTL 16,560 2589 4095 86.48 80.17 83.21 71.24 

Boost-Soft_OSAMTL 15,778 2917 4878 84.4 76.38 80.19 66.93 

D2l_OSAMTL 16,108 2074 4547 88.59 77.99 82.95 70.87 

SCE_OSAMTL 14,907 2961 5748 83.43 72.17 77.39 63.12 

Peer_OSAMTL 16,983 4091 3673 80.59 82.22 81.39 68.63 

DT-Forward_OSAMTL 15,927 2045 4729 88.62 77.11 82.46 70.16 

NCE-SCE_OSAMTL 15,540 1971 5116 88.74 75.23 81.43 68.68 

5.3. Results of US-based evaluations with AGTLs 

The results of US-based evaluations with AGTLs for various methods of learning 
from inaccurate labels for the tumour segmentation in HE-stained pre-treatment 
biopsy images and the tumour segmentation in HE-stained post-treatment surgical 
resection images are respectively shown in Tables 6 and 7. 

Table 6. US-based evaluations with AGTLs on the task of tumour segmentation in HE-stained pre-treatment biopsy 
images. 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 22,707 13,298 3249 63.07 87.48 73.29 57.85 

Forward 23,494 15,160 2462 60.78 90.51 72.73 57.14 

Backward 21,858 13,453 4098 61.90 84.21 71.35 55.46 

Boost-Hard 22,184 12,652 3771 63.68 85.47 72.98 57.46 

Boost-Soft 23,724 15,849 2231 59.95 91.40 72.41 56.75 

D2l 23,068 14,632 2888 61.19 88.87 72.48 56.83 

SCE 22,753 13,499 3203 62.76 87.66 73.15 57.67 

Peer 22,658 12,704 3298 64.07 87.29 73.90 58.61 

DT-Forward 23,280 14,239 2676 62.05 89.69 73.35 57.92 

NCE-SCE 23,395 14,452 2561 61.81 90.13 73.34 57.90 

BaseLine_OSAMTL 21,010 6381 4946 76.70 80.94 78.77 64.97 

Forward_OSAMTL 20,215 5579 5740 78.37 77.88 78.13 64.11 

Backward_OSAMTL 20,818 6124 5137 77.27 80.21 78.71 64.9 

Boost-Hard_OSAMTL 20,230 5732 5725 77.92 77.94 77.93 63.84 

Boost-Soft_OSAMTL 20,657 5936 5298 77.68 79.59 78.62 64.77 

D2l_OSAMTL 20,348 5981 5608 77.28 78.39 77.83 63.71 

SCE_OSAMTL 19,719 5651 6236 77.73 75.97 76.84 62.39 

Peer_OSAMTL 20,379 6634 5577 75.44 78.51 76.95 62.53 

DT-Forward_OSAMTL 19,958 5347 5998 78.87 76.89 77.87 63.76 

NCE-SCE_OSAMTL 18,712 4594 7244 80.29 72.09 75.97 61.25 
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Table 7. US-based evaluations with AGTLs on the task of tumour segmentation in HE-stained post-treatment surgical 
resection images. 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 15,446 13,831 8467 52.76 64.59 58.08 40.92 

Forward 15,129 13,409 8783 53.01 63.27 57.69 40.54 

Backward 16,373 17,083 7540 48.94 68.47 57.08 39.94 

Boost-Hard 16,599 15,904 7313 51.07 69.42 58.85 41.69 

Boost-Soft 19,000 18,353 4912 50.87 79.46 62.03 44.95 

D2l 16,331 14,876 7581 52.33 68.30 59.26 42.10 

SCE 15,604 13,286 8309 54.01 65.25 59.10 41.95 

Peer 17,366 19,348 6546 47.30 72.62 57.29 40.14 

DT-Forward 15,374 15,525 8538 49.76 64.29 56.10 38.98 

NCE-SCE 16,356 16,574 7556 49.67 68.40 57.55 40.40 

BaseLine_OSAMTL 16,000 5649 7912 73.91 66.91 70.24 54.13 

Forward_OSAMTL 14,825 3948 9088 78.97 62.00 69.46 53.21 

Backward_OSAMTL 15,441 5648 8471 73.22 65.57 68.62 52.24 

Boost-Hard_OSAMTL 15,713 4611 8200 77.31 65.71 71.04 55.09 

Boost-Soft_OSAMTL 15,799 6017 8114 72.42 66.07 69.10 52.79 

D2l_OSAMTL 15,109 3599 8803 80.76 63.18 70.90 54.92 

SCE_OSAMTL 15,168 5151 8744 74.65 63.43 68.59 52.19 

Peer_OSAMTL 16,954 7478 6958 69.39 70.90 70.14 54.01 

DT-Forward_OSAMTL 15,175 4483 8737 77.20 63.46 69.66 53.44 

NCE-SCE_OSAMTL 13,101 2749 10,811 82.66 54.79 65.90 49.14 

5.4. Comparison between LAF and US 

Table 8. Results for LAF-based evaluations (Lf1 and LfIoU) and US-based evaluations (f1 and fIoU) on easier task. 

Solution (Metric) 
Mean (CI) 

SotA (Lf1) 
78.91 (76.36–81.46) 

SotA (LfIoU) 
65.23 (61.83–68.63) 

SotA (f1) 
72.90 (72.23–73.57) 

SotA (fIoU) 
57.36 (56.53–58.19) 

SotA-OSAMTL(Lf1) 
78.04 (76.78–79.29) 

P = 0.372    

SotA-OSAMTL(LfIoU) 
64.00 (62.32–65.68) 

 P = 0.343   

SotA-OSAMTL(f1) 
77.76 (76.89–78.63) 

  P < 0.001  

SotA-OSAMTL (fIoU) 
63.62 (62.46–64.78) 

   P < 0.001 

For the comparison between LAF and US, we compute the mean values with 
corresponding confident intervals (CI) and the P values of the overall performances 
for the state-of-the-art methods (SotA) and SotA combined with the improved 
OSAMTL (SotA-OSAMTL). The results for LAF-based evaluations with IAGTLs 
(Lf1 and LfIoU) and US-based evaluations with AGTLs (f1 and fIoU) on the task of 
tumour segmentation in HE-stained pre-treatment biopsy images (i.e., easier task) are 
shown in Table 8. The results for LAF-based evaluations with IAGTLs (Lf1 and 
LfIoU) and US-based evaluations with AGTLs (f1 and fIoU) on the task of tumour 



Computing and Artificial Intelligence 2024, 2(2), 1443.  

16 

segmentation in HE-stained post-treatment surgical resection images (i.e., a more 
difficult task) are shown in Table 9. 

Table 9. Results for LAF-based evaluations (Lf1 and LfIoU) and US-based evaluations (f1 and fIoU) on more 
difficult task. 

Solution (Metric) 
Mean (CI) 

SotA (Lf1) 
69.53(67.88–71.19) 

SotA (LfIoU) 
53.32(51.36–55.28) 

SotA (f1) 
58.30(56.75–59.86) 

SotA (fIoU) 
41.16(39.60–42.72) 

SotA-OSAMTL(Lf1) 
81.39(79.74–83.04) 

P < 0.001    

SotA-OSAMTL(LfIoU) 
68.65(66.35–70.96) 

 P < 0.001   

SotA-OSAMTL(f1) 
69.37(67.96–70.77) 

  P < 0.001  

SotA-OSAMTL (fIoU) 
53.12(51.48–54.75) 

   P < 0.001 

5.5. Analysis 

From Table 8, we can summarise that, on the easier task, the results of US-based 
evaluations with AGTLs (f1 and fIoU) show the advantages of the SotA-OSAMTL 
series compared with the SotA series (f1: P < 0.001, fIoU: P < 0.001), while the results 
of LAF-based evaluations with IAGTLs (Lf1 and LfIoU) do not show the same 
conclusions (Lf1: P = 0.372, LfIoU: P = 0.343). Since the previous work [11] has 
confirmed the advantages of the improved OSAMTL series compared with the state-
of-the-art series [12–19] using US-based evaluations with AGTLs, the summarization 
from Table 8 indicates that evaluations of LAF with IAGTLs cannot show the 
advantages of the SotA-OSAMTL series compared with the StoA series, just being 
unable to confidently act like evaluations of US with AGTLs on the easier task. 

From Table 9, we can summarise that, on the more difficult task, the results of 
US-based evaluations with AGTLs (f1 and fIoU) show the advantages of the SotA-
OSAMTL series compared with the SotA series (f1: P < 0.001, fIoU: P < 0.001), while 
the results of LAF-based evaluations with IAGTLs (Lf1 and LfIoU) as well show the 
same conclusions (Lf1: P < 0.001, LfIoU: P < 0.001). Identically, since the previous 
work [11] has confirmed the advantages of the improved OSAMTL series compared 
with the state-of-the-art series [12–19] using US-based evaluations with AGTLs, the 
summarization from Table 9 indicates that evaluations of LAF with IAGTLs can show 
the advantages of the SotA-OSAMTL series compared with the StoA series, just being 
able to reasonably act like evaluations of US with AGTLs on the more difficult task. 

As a result, the summarizations from Tables 8 and 9 reflect that the practicability 
of LAF for evaluations with IAGTLs is valid in the case of TSfBC in MHWSIA. 

6. Conclusion and discussion 

In this paper, we validate the practicability of the logical assessment formula 
(LAF) for evaluations with inaccurate ground-truth labels (IAGTLs). The 
practicability of LAF for evaluations with IAGTLs includes: 1) LAF can be applied 
for evaluations with IAGTLs on a more difficult task, able to act like usual strategies 
for evaluations with AGTLs reasonably; and 2) LAF can be applied for evaluations 
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with IAGTLs simply from the logical point of view on an easier task, unable to act 
like usual strategies for evaluations with AGTLs confidently. We applied LAF to two 
tasks of tumour segmentation for breast cancer (TSfBC) in medical histopathology 
whole slide image analysis (MHWSIA), and implemented a specific LAF solution that 
is suitable for evaluations with IAGTLs in the case of TSfBC in MHWSIA. 
Experimental results and analyses of this application support that the practicability of 
LAF for evaluations with IAGTLs is valid in the case of TSfBC in MHWSIA. Thus, 
the primary significance of this paper is that it reports a positive study that reflects the 
potential of LAF applied to MHWSIA for evaluations with IAGTLs. This paper 
presents the first practical validation of LAF for evaluations with IAGTLs in a real-
world application. 

Although the application of LAF to TSfBC in MHWSIA showed good support 
for the practicability of LAF, the problem that remains unsolved is how to estimate 
whether a given task is a difficult one or an easy one in the application of LAF for 
evaluations without AGTL. Since the practicability of LAF reflects that evaluations of 
LAF with IAGTLs on a difficult task are more reliable (more consistent with 
evaluations of usual strategies with AGTL) than on an easier task, the definition of a 
given task as difficult or easy is the key foundation for the application of LAF for 
evaluations with IAGTL. In this paper, the estimation of the two tasks of TSfBC in 
MHWSIA to be difficult or easy is qualitatively formed by the problem analyses and 
suggestions from pathology experts [11] (Section 4.1), and fortunately, the two tasks 
are suitable to validate the practicability of LAF. This specific validation demonstrates 
the practicability of LAF is valid with the case of TSfBC in MHWSIA, but it is not 
persuasive enough to help deciding whether LAF is suitable for evaluations IAGTL 
on any other given task. However, if the difficulty of a given task can be quantitatively 
estimated, then it will be much easier for us to decide whether LAF is suitable for 
evaluations with IAGTL on the given task via an appropriate threshold of task 
difficulty. Moreover, more applications of LAF applied to other tasks need to be 
conducted. In future works, these issues should be addressed. 

Supplementary materials: Detailed proofs for the reasoning results presented in this 
article are provided in the supplementary materials. 
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