
Computing and Artificial Intelligence 2024, 2(2), 1427. 

https://doi.org/10.59400/cai.v2i2.1427 

1 

Article 

The computational analysis of COVID-19-induced socio-economic, 

environmental, and climatic disruptions on the Indian food production 

system 

Adya Aiswarya Dash
*
, Sonu Sharma 

School of Engineering, University of Guelph, ON N1G 2W1, Canada 

* Corresponding author: Adya Aiswarya Dash, adash@uoguelph.ca 

Abstract: COVID-19 dominantly affected all the sectors of the Indian economy, surprisingly 

the impact is much lower with respect to the agricultural production (−2.7%) in India. The 

increase in yield of the crops can be attributed to the variables such as environmental, climatic, 

and socio-demographic factors. The study illustrates the relationship of the increase in crop 

yield in India during the first wave of COVID-19 along with the increase in the infection count 

and the land under cultivation attributed to supporting factors during the year 2020. The relation 

is explained by the method of ordinary least square (OLS) and geographically weighted 

regression (GWR). The distribution of the increase in crop yield across India is analyzed 

against COVID-19 infections along with other dominant factors. Useful intuitions against crop 

yield can be generated by studying the spatial relationships between them. The geographically 

weighted regression method depicted an increase in R2 value as compared to the global ordinary 

least regression method. The Akaike information criterion in the geographically weighted 

regression method is also lower as compared to the ordinary least square therefore explaining 

GWR as a better model as compared to OLS. The combination of the various variables 

affecting agricultural yield in India is found to vary geographically as well as with the type of 

crops. 

Keywords: agricultural yield; ordinary least square regression; geographically weighted 

regression; COVID-19 

1. Introduction 

The COVID-19 posed the most astounding impact on the Indian economy in 

comparison to other major climatic and socio-economic factors. The COVID-19 

affected the global supply chain whereas climatic factors such as droughts are more 

localized ones [1]. As a shielding method against COVID-19 pandemic, the 

government announced a nationwide lockdown on 25 March 2020, which affected the 

agricultural economy. The subsequent effect of COVID-19 resulted in a growth of 

3.4% in the agricultural sector during the month of April to June, which was though 

less as compared to the previous year of 2019–2020. The decline of 2.9% can be 

influenced by the COVID-19 pandemic. The explicit agricultural expansion for the 

year 2020–2021 can be attributed to the abundant crop harvest, increase in rainfall, 

more number of people being indulged in the agricultural sector, increase in the 

cultivated area under agriculture, and increase in the supply of agricultural input 

necessities such as fertilizers. The stupendous reserve of rice and wheat during the 

year 2019–2020 assisted the food system of India to face the pandemic [2,3]. 

During the initial phase of COVID-19 when the economy of all the major sectors 
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remained stagnant, the agricultural sector was excluded with many restrictions but 

still, it faced large-scale interruptions. Though the pandemic posed major challenges 

it also opened ways for other possibilities, especially in the logistic agricultural sector. 

With an increase in migration of people due to lock down, a consistent growth in the 

number of people employed in agricultural sector has been noticed. The people with 

skills and knowledge got involved in farmer producer organization to provide 

necessary insights on demand and supply. During the onset of COVID-19, that is by 

April 2020, the harvesting of rabi crops turned out to be complete for which the 

agricultural yield has been less affected [4]. Whereas the output of other sectors such 

as poultry (−19.5%) and fisheries (−13.6%) got heavily reduced. India is the largest 

producer of pulses and the second-largest producer of rice and wheat globally. Due to 

disruption in movement and mobility, the other sector has been hit harder in 

comparison to agriculture. For the Kharif crops, the area under cultivation stood higher 

than the previous year. Therefore, the agricultural sector became a segment of 

reassurance for the Indian economy. 

During the year 2020–2021, agriculture appeared to be a vivid field in the Indian 

economy. The record-breaking monsoon for the consecutive third year opened 

opportunities in agricultural production, therefore, leading to the growth of the whole 

sector. A huge amount of stocks for the staple food grains of India appeared to be 

higher for 6.5 times in rice and about twice in wheat [5]. The agricultural sector has 

been excluded from the lockdown guidelines and came to be aided by other 

components such as abundant rainfall, increasing employment in agriculture, boosting 

fertilizer production, and an increase in area under cultivation. 

With the announcement of nationwide lockdown during the COVID-19 

pandemic, about 45% of migrants shifted to their homes [6]. Both the agricultural and 

food sector got influenced by the COVID-19 epidemic [7]. A contemporary study 

considered the climatic impact on COVID-19 [8]. In a further study, the interrelation 

between COVID-19 infection with about 35 socio-economic and environmental 

variables has been explained through regression models such as Geographically 

weighted regression and (GWR) and multiscale GWR [9]. Many studies have 

explained the driving forces and their intuitions on agriculture. Few studies have 

elucidated the likely consequences on a local scale and accomplishing it to a socio-

economic and environmental factor. In comparison to the other economies of the 

world, the Indian economy during the pandemic is sustained by growth in the 

agricultural sector during the first wave of COVID-19 through the many consequences 

of it which is not yet well explained on a local scale. 

To explain the association between the variables, both global and local models 

can be used. Most of the factors explaining the relationships associated with COVID 

19 emphasize the global models such as OLS (ordinary least regression) [10,11]. The 

global models consider the relation between the dependent and the explanatory 

variables to be homogenous that is constant over the study area. The results in the 

datasets of the global model infer the absence of spatial auto-correlation, whereas the 

relationship between the dependent and explanatory variables can be geographically 

inconsistent and heterogeneous [12]. Due to the prevalence of fragile associations 

between the dependent and the explanatory variable in the global models such as OLS, 

it results in low accuracy. On the contrary, local models such as GWR [13,14] can 
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explain the geographically varying relationship on a local scale. The local method such 

as GWR can be used to explain the relationship between agricultural yield and other 

socio-environmental factors during the prevalence of COVID-19. 

Our investigation into the ramifications of COVID-19 on the Indian food 

production system presents a methodologically innovative approach, distinguished by 

the integration of ordinary least square (OLS) and geographically weighted regression 

(GWR) techniques. This fusion allows for a detailed examination of the intricate 

relationships between environmental, climatic, socio-demographic factors, and 

variations in crop yield during the pandemic. Unlike conventional studies that solely 

rely on OLS regression, the incorporation of GWR facilitates the capture of spatially 

varying effects, thus offering a more comprehensive understanding of the localized 

impacts across different regions of India. 

Moreover, our study showcases the superior performance of GWR over OLS, as 

evidenced by a notable increase in the R2 value and lower Akaike information criterion 

(AIC). This enhancement in model performance underscores the efficacy of GWR in 

elucidating the complex interplay of factors influencing agricultural yield amidst the 

pandemic. By harnessing spatial analysis techniques, we unveil geographical patterns 

and disparities in the impact of COVID-19 infections and other dominant factors on 

crop yield distribution across India. This spatial perspective enables the identification 

of localized impacts that may be overlooked in traditional analyses, thereby enhancing 

the robustness and applicability of our findings. 

In addition to our methodological innovation, our study is distinguished by the 

richness and specificity of the data utilized. Using a diverse range of data sources 

encompassing COVID-19 infection counts, agricultural statistics, environmental 

indicators, and socio-demographic variables, our dataset offers a comprehensive 

transparency of the multifaceted impacts of the pandemic on Indian agriculture. This 

comprehensive coverage ensures the relevance and applicability of our analysis to the 

unique challenges faced by the Indian food production system. 

Furthermore, the temporal and spatial granularity of our dataset is a notable 

feature, capturing changes in crop yield and COVID-19 dynamics over the critical 

period of the pandemic’s first wave in 2020. This temporal and spatial resolution 

enables a detailed examination of localized variations in agricultural performance and 

pandemic effects across different regions of India. Additionally, the customization of 

variables modified to the specific context of Indian agriculture, including land under 

cultivation, environmental conditions, socio-economic indicators, and crop-specific 

characteristics, further enhances the depth and accuracy of our analysis. 

The research gap we aim to address revolves around the extensive understanding 

of the impact of COVID-19 on the Indian agricultural sector, particularly the intricate 

interplay between socio-economic, environmental, and climatic factors, and their 

influence on crop yield dynamics. While existing literature provides insights into the 

broader socio-economic results of the pandemic, there remains a notable gap in 

extensively examining the spatio-temporal dynamics of COVID-19-induced 

disruptions specifically on agricultural production in India. This gap includes the need 

to: 

1) Explore the spatial variations in the relationship between COVID-19 infections 

and crop yield across different regions of India. 
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2) Investigate the specific environmental, climatic, and socio-demographic factors 

that contribute to variations in crop yield during the pandemic. 

3) Assess the effectiveness of different regression models in capturing these 

complex relationships and spatial variations. 

Our findings contribute actionable insights for public health and policy 

development by informing targeted interventions and resource allocation strategies 

aimed at safeguarding food security and livelihoods amidst the ongoing pandemic. 

Furthermore, our methodological advancements in spatial analysis pave the way for 

more robust and detailed assessments, thereby enhancing the evidence base for 

informed decision-making in public health and agricultural policy domains. 

Thus, the main objectives of this study were framed as: (1) To retrieve the socio-

economic, environmental, and climatic factors during COVID-19 pandemic driving 

the agricultural yield in India, (2) to illustrate the geographically varying relationship 

of agricultural yield with various factors by applying local model such as GWR, (3) to 

verify the outcome of both global (OLS) and local (GWR) models to establish which 

is more appropriate. 

2. Study area and data 

The spatial variation of agricultural yield is modeled based on state-level data 

across India. The agricultural yield data for the four major crops (rice, wheat, cereals, 

and pulses) have been cumulated from the Directorate of Economics and Statistics, 

Department of Agriculture and Farmers Welfare, Ministry of Agriculture and Farmers 

Welfare, Government of India [15]. The yield data for the agricultural period of June 

to September 2020 has been assembled. Five dominant factors are exploited to 

understand the relationship of geographically varying yield of major crops during the 

first wave of COVID-19 with socio-economic, environmental, and climatic factors. 

The precipitation data has been acquired from IMD [16]. The total amount of rainfall 

for the agricultural period of June to September 2020 has been obtained. Table 1 

summarizes the sources for all the datasets with their link, description, and variable 

type. 

The state-wise data for the number of COVID-19 infections is acquired from the 

website COVID19 INDIA [17] till the cumulative period of September 2020. The 

number of infections in each state is computed during the 1st wave of COVID-19. In 

other words, during the post-harvesting period of the Rabi crop. The infections at each 

state were calculated and standardized on a log 10 scale and used as a metric to define 

the variation of infection across the states of India. The geographical dispersal of 

COVID-19 infection is depicted in Figure 1. The third variable containing the amount 

of fertilizer supplied during the crop growing period of both rabi and Kharif crop has 

been acquired from the Department of Fertilizers, Government of India [18]. The 

fertilizer types such as urea, DAP, NPKS, and MOP are acquired in the study. The 

dataset on the number of people employed in the agricultural sector during the study 

period have been obtained from the Periodic Labor Force Survey [19] and the dataset 

for the area coverage under cultivation for the period of June to September 2020 is 

obtained from Department of Agriculture and Farmers Welfare [20]. 
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Figure 1. Spread of COVID-19 infections across India (represented on log10 scale). 

Table 1. Datasets summary. 

Dataset Dataset explanation Resource Names of variables Description 

Agricultural yield data 
Represents the yield of major 
crops up to September 2020. 

[15,17] 

Rice 

State level yield for the four major crops were 
obtained. 

Wheat 

Cereals 

Pulses 

Socio-economic data 
Comprises the state wise 
socio-economic data 

[15,19,20] 

LOG10 
State level COVID-19 infection rate till 
September 2020 

EAG 
State level employment in agriculture for the 
year 2020 

L_UC 
State wise area under cultivation for the four 
crops. 

Environmental 

The use of wide different 
kinds of fertilizers used and 
the nutrient content of the 
soil. 

[18] 

UREA 

State wise amount of fertilizer consumed for 
the cultivation of the four major crops. 

DOP 

MOP 

NPKS 

Climatic 
Describes the abundant 
rainfall 

[16] Rainfall 
State wise the amount of rainfall received in 
the year 2020. 

Furthermore, the state-level data obtained from each of the states are linked with 

the geospatial vector data format. 

3. Methodology 

In this study, the spatio-temporal dynamics of COVID-19-induced disruptions on 
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the Indian agricultural sector, a combination of regression techniques, including 

ordinary least square (OLS) and geographically weighted regression (GWR) has been 

used. These methodologies enable us to analyze the complex interactions between 

COVID-19 infections, environmental variables, socio-economic indicators, and crop 

yield variations across diverse regions of India. Moreover, insights have been drawn 

from recent advancements in spatio-temporal modeling of COVID-19 prevalence and 

mortality. Artificial neural network algorithms was used to model the spatial and 

temporal patterns of COVID-19 transmission and mortality rates [21]. By integrating 

findings from this study, the analysis with additional insights into disease prevalence 

and related variables, has enhanced the comprehensiveness of the study. 

3.1. Data preparation 

A sum of eight socio-economic, environmental, and climatic factors (Table 1) 

were chosen to describe the state-level geographical variation of the agricultural yield 

of each of the four major crops during the period of the COVID-19 pandemic. The 

socio-economic condition aimed to explain the agricultural yield included the 

employment of people in the agricultural sector for 2020–2021. The stupendous 

rainfall during 2020–2021 was taken as a climatic factor and the environmental factors 

included the fertilizer supplied to the crop i.e., urea, DAP, NPKS, and MOP. The area 

under cultivation was taken in terms of area in lakh hectares and the infection rate of 

COVID19 was taken as a summation from the period of June to September 2020–

2021. 

The exploratory regression model assisted in defining the variables chosen for 

the OLS model. In case we have a variable that doesn’t match any of the criteria 

mentioned in the exploratory regression tool, it can help us to define the suitable 

variable that has a strong relationship with the dependent variable. We found that out 

of the four major crops chosen in our study, the yield of pulses and cereals showed an 

R2 value less than 0.70, so we have not considered it as an input for study in the OLS 

model. Furthermore, the yield of wheat and rice showed a higher R2 value of 0.70 with 

different explanatory variables thus, taken as an input for the OLS model. 

3.2. Global model (ordinary least square) 

The OLS described the relations between the explanatory and the dependent 

variables and can be expressed as in Equation (1) [22]. 

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽 + 𝜀𝑖 (1) 

where 𝑦𝑖 is the yield of the crop at point location 𝑖 in each of the states during 2020, 

the explanatory variable is expressed in terms of 𝑥𝑖 with 𝛽 as the regression coefficient 

with 𝛽0 as intercept. 𝜀𝑖 is the error associated with it. The basic inference that global 

models such as OLS make is that the regression doesn’t vary over space and there is 

an absence of correlation with the error term [23,24]. As OLS considers the results to 

be independent with respect to each other so it is mostly considered as a misinterpreted 

model as in our case agricultural yield is spatially correlated with other variables 

during COVID-19 [23]. 

Variance inflation factor (VIF) is used to extricate redundancy from the 

explanatory variables. VIF can be explained as in Equation (2): 
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VIF𝑖 =
1

1 − 𝑅𝑖
2 (2) 

VIF is the ratio of the inclusive variance of the model to a distinct explanatory 

variable. VIF is computed by regressing one explanatory variable against all others. 

The resulting 𝑅𝑖
2  value is then used for determining VIF. The coefficient of 

determination is expressed as 𝑅𝑖
2, where i-th is the explanatory variable regressing on 

others. The equation for coefficient of determination 𝑅𝑖
2 can be expressed as shown in 

Equation (3): 

𝑅𝑖
2 = 1 −

𝑆𝑆𝐸𝑖

𝑆𝑆𝑇𝑖
 (3) 

where 𝑆𝑆𝐸𝑖  and 𝑆𝑆𝑇𝑖  stand for the sum of the square of errors and total variation 

respectively. The regression analysis of all the eight dependent variables is 

accomplished to estimate VIF. The variables with VIF greater than 7.5 are considered 

to be multicollinear. We found that the variables UREA, EAG, NPKS, and L_WHT 

have comparatively lower multicollinearity in the yield of wheat whereas low VIF is 

seen in the variables such as MOP and NPKS in the yield of rice. Accordingly, the 

variables are considered in the set of explanatory variables for the OLS model. The 

regression analysis is again conducted on the selected variables and their respective 

VIFs are listed in Tables 2 and 3 for the yield of wheat and rice. We can verify that 

the variables are not exceeding the value of 7.5 during the second iteration. The 

variables aligned with larger VIF are rejected one after another until it has no more 

variable with larger VIF value. 

Table 2. VIFs of the selected explanatory variable (wheat). 

Variable VIF (c) 

Intercept - 

EAG 1.338825 

UREA 8.127718 

NPKS 2.536351 

L_WHT 5.509770 

Table 3. VIFs of the selected explanatory variable (rice). 

Variable VIF (c) 

Intercept - 

MOP 4.394808 

NPKS 4.394808 

3.3. Local model (geographically weighted regression) 

In contrary to the global models which state that the relationship between the 

explanatory and the dependent variable to be constant and doesn’t vary over space, 

local models such as GWR assume the variables to vary spatially [25]. Through GWR 

the regression parameter is considered at every point rather than as a whole like in the 

case of OLS [24]. Fotheringham and Oshan [26] explained GWR as denoted in 

Equation (4:) 
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𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑗

𝑚

𝑗=1

𝑋𝑖𝑗 + 𝜀𝑖 , 𝑖 = 1, 2, … , 𝑛 (4) 

where at location 𝑖 of the state, 𝑦𝑖 is expressed as the yield of the crops for the period 

2020, the intercept is expressed as 𝛽𝑖0 , 𝑋𝑖𝑗  gives the value of the j-th explanatory 

variable. 𝜀𝑖 is the error term associated with it. The parameter estimates have been 

carried out as, Equation (5) [26]: 

𝛽(𝑖)̂ = (𝑋′𝑊(𝑖)𝑋)−1𝑋′𝑊(𝑖)𝑦 (5) 

where 𝛽 ̂is the vector parameter comprising (𝑚 × 1) parameter estimates. The matrix 

𝑋 explains the (n × m) variables. The matrix of spatial weights (𝑛 × 𝑛) is expressed 

as 𝑊(𝑖) and it is a diagonal matrix framed by assigning weights to the observation 

from the location 𝑖 [23,24]. Proper specification of bandwidth and kernel function is 

required to determine 𝑊(𝑖). Mostly, Euclidean distance (number of nearest neighbors) 

is used to analyze the bandwidth. Section of different bandwidths is responsible for 

affecting the choice of neighborhoods where the local weights are assigned. For 

selecting the bandwidth the Akaike information criteria (AICc) is used with 

adjustment incorporated in the GWR method. 

3.4. Model development 

The given step has been carried out to determine the suitable GWR model with 

appropriate variables. Variables with high variance inflation factor (VIF) seemed to 

have high multicollinearity, therefore, discarded being unsuitable for the model. The 

selected variables through regression analysis are considered as an input variable for 

both OLS and GWR models. The following are the steps conducted for selecting the 

suitable model for GWR. 

Step1: The eight explanatory variables in our study, each of them executed 

regression against an independent variable that is the yield of the crops such as pulses, 

cereals, rice, and wheat, respectively. The model with lower AICc and higher R2 value 

has been selected and incorporated in the model. 

Step 2: Similarly, the rest of the variables have been selected and incorporated 

into the model. The model with the lowest AICs and VIF less than 7.5 is considered. 

The above method is conducted in ArcGIS 10.8 software. For specification of the 

bandwidth an adaptive bi-square kernel is employed and the AIC (Akaike information 

criteria) helps to select the suitable optimal bandwidth [24]. Thus, a total of four 

variables has been selected for the study of the yield of wheat and two variables to 

study the yield of rice. Moreover, the selected variables are used to evaluate and 

compare both local and global models. 

4. Results 

Exploratory regression has been conducted at first to find all suitable coalitions 

of the explanatory variables that best explain the dependent variable which therefore 

can be taken as an input for the OLS and GWR model. A flow chart explaining the 

work of exploratory regression tool, OLS, and GWR has been provided in Figure 2. 
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Figure 2. Flow chart depicting the work of exploratory regression, OLS and GWR 

model. 

4.1. Results of exploratory regression tool 

An elaborated summary of the suitable combinations of the explanatory variables 

has been provided in Tables A1–A4 (see Appendix) for the crops such as pulses, rice, 

cereals, and wheat respectively. The main reason for using the explanatory regression 

tools is that it gives the information in the form of detailed analysis of the explanatory 

variable that is best suited for fitting in the OLS and the GWR model. The highest 

adjusted R2 results of the yield of the four crops (pulse, rice, cereals, and wheat) are 

provided in Tables A1–A4 (see Appendix). The adjusted R2 value with the best 

possible combination can be seen there. Through the explanatory regression tools, it 

has been derived that variables explain the yield of rice and wheat better than the yield 

of pulses and cereals having a higher R2 value along with desirable residual spatial 

autocorrelation. So, it can be incorporated into the OLS and GWR model. The 

exploratory regression tool describes the best possible variables that can explain the 

dependent variable. 

4.2. Performance of OLS and GWR model 

The final variables EAG, UREA, NPKS, and L_WHT for the yield of wheat and 

MOP, NPKS for the yield of rice were incorporated in the OLS model. Detailed output 

of the OLS model is given in Tables 4 and 5 for wheat and rice respectively. All these 
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variables considered have low VIFs. The OLS model for wheat has an R2 value of 0.98 

which describes that about 98% of the yield of wheat is explained by the given 

variables and for rice, the R2 value is about 0.72 which explains that about 72% of the 

yield of wheat is explained by the dependent variables. Though, the R2 value of rice is 

comparatively less than wheat but it is taken into consideration taking into the good 

residual spatial autocorrelation. 

Table 4. Summary of OLS results—Model variables (wheat). 

Variable Coefficient (a) Std error t-statistic Probability (b) Robust SE Robust_t Robust_Pr (b) VIF (c) 

Intercept 14.941393 205.866115 0.072578 0.942595 76.182945 0.196125 0.845754 - 

EAG −120.054018 45.379331 −2.645566 0.012541* 52.384149 −2.291801 0.028645* 1.338825 

UREA 106.342278 9.447711 11.255877 0.000000* 14.057580 7.564764 0.000000* 8.127718 

NPKS −69.900249 8.639342 −8.090923 0.000000* 14.051380 −4.974618 0.000021* 2.536351 

L_WHT 277.033025 25.852112 10.716069 0.000000* 45.581898 6.077698 0.000001* 5.509770 

Table 5. Summary of OLS results—Model variables (rice). 

Variable Coefficient (a) Std error t-Statistic Probability (b) Robust_SE Robust_t Robust_Pr (b) VIF (c) 

Intercept 308.693558 500.874242 0.616310 0.541794 290.356013 1.063155 0.295205 - 

MOP 1019.001818 127.662920 7.981972 0.000000* 204.142366 4.991623 0.000017* 4.394808 

NPKS −137.775752 31.666428 −4.350846 0.000116* 50.685667 −2.718239 0.010257* 4.394808 

To verify spatial autocorrelation, Moran’s I has been analyzed which indicates 

the pattern to be random for both the yield of rice and wheat with Z score not being 

statistically significant in the yield of both. A spatial autocorrelation report of the OLS 

model for the yield of wheat and rice is given in Figure 3a,b. 

 
(a) (b) 

Figure 3. Spatial autocorrelation report—OLS model (a) wheat; (b) rice. 
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The Koenker Test is statistically significant in the case of the yield for both wheat 

and rice which explains the non-stationary relationship among the explanatory and 

dependent variables, therefore indicating that the model performance can be improved 

by moving towards the geographically weighted regression model. Table 6 explains 

the output of the GWR model for the yield of wheat and rice. The performance 

matrices of the OLS and the GWR model are summarized in Table 7. To explain the 

yield of rice the OLS model defines only 72% of the relationship whereas the same is 

explained by 76% in a local model. Similarly, for the yield of wheat, the global model 

describes only 98% whereas the local model explains about 99% of the relationship 

between dependent and explanatory variables The AICc for the yield of wheat and rice 

in OLS is 613.89 and 686.76 which is reduced to 603.07 and 686.37 in case of GWR. 

Therefore, describing GWR as a better model than OLS due to the lower value of AICc 

and higher R2 value. 

Table 6. Output of GWR model. 

Sr. No. Variable name Variable Definition Variable Definition 

1 Neighbours 17 - 24 - 

2 Residual squares 5,210,795.28771 - 125,599,617.913876 - 

3 Effective number 17.428555 - 10.284656 - 

4 Sigma 515.98914 - 2168.272064 - 

5 AICc 603.075612 - 686.372301 - 

6 R2 0.997218 - 0.827579 - 

7 R2Adjusted 0.994884 - 0.767656 - 

8 Dependent field 0 Wheat 0 Rice 

9 Explanatory field 1 EAG 1 Mop 

10 Explanatory field 2 Urea 2 NPKS 

11 Explanatory field 3 NPKS - - 

12 Explanatory field 4 l_WHT - - 

Table 7. Performance matrices of OLS and GWR model. 

 R2 AICc 

 OLS GWR OLS GWR 

Wheat 0.98 0.99 613.89 603.07 

Rice 0.72 0.76 686.76 686.37 

The observation of a random distribution pattern in the spatial autocorrelation 

analysis has several beneficial implications in this study. Firstly, it indicates that there 

are no spatially correlated clusters of high or low values of the variables, thereby 

suggesting a lack of spatial dependence or spatial structure in the data. This finding is 

valuable as it helps to identify regions where the variables exhibit spatial randomness, 

allowing for a more nuanced interpretation of the underlying spatial processes. 

Moreover, the absence of significant spatial clustering implies that there are no 

distinct spatial clusters of COVID-19 infections or agricultural outcomes, which may 

have practical implications for policy and intervention planning. In regions with 
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random distribution patterns, interventions may need to be more broadly targeted or 

tailored to specific local conditions rather than focused on clustered areas. 

4.3. Relationship between the agricultural yield of wheat and rice to 

socio-economic, environment and climatic factors 

The R2 values for the yield of wheat and rice are expressed in Figures 4 and 5, 

respectively. The R2 value for wheat falls in the range of 0.86–0.99. The northern, 

north-central, and northeastern parts of the country have a higher R2 value as compared 

to the central, eastern, and southeastern parts of the country which have a moderate 

value. Similarly, for the yield of rice, the north-eastern and eastern parts of the country 

have higher R2 values as compared to the northern and western parts of the country. 

 

Figure 4. Distribution of R2 values for GWR model—Wheat. 
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Figure 5. Distribution of R2 values for GWR model—Rice. 

The distribution of the coefficient of the explanatory variables with regards to the 

yield of wheat is shown in Figures 6 and 7. The dominant relationships have a higher 

coefficient value than the weaker ones. In Figures 6 and 7, the red color denotes a 

much stronger influence on the yield of wheat and rice than the rest in a decreasing 

manner. Figure 6a denotes the variable EAG that varies between the ranges of −3.42 

to 0.94. A negative sign indicates a relationship where an increase in the value of the 

explanatory variable results in a decrease in the value of the dependent variable and 

the case of a positive sign an increase in the value of the explanatory variable results 

in an increase in the value of the dependent variable. Figure 6a shows the regions such 

as Punjab, Haryana, Rajasthan, parts of south India like Karnataka, Kerala, Tamilnadu, 

Andhra Pradesh, Telangana, and areas of NE states such as Nagaland, Manipur, 

Mizoram, and Tripura describing a strong positive relationship with the variable EAG. 
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Figure 6. Assessment of local parameters through geographically weighted regression—Wheat; (a) EAG; (b) 

percentage of population employed in agricultural activities; (c) L_WHT; (d) NPKS; (e) UREA. 

The prevalence of lockdown throughout the country resulted in the decline of 

major sectors of production such as fishery declined to about 19.6%, poultry by 19.3% 

but the agricultural showed a minimal decline of only 2.3%. According, to the Periodic 

Labor Force Survey (PLFS), report the agricultural sector has shown positive growth 

in labor employment than in the previous years as shown in Figure 6b. The percentage 

of people employed in the agricultural sector during the period July to September 

2019 has been about 5.1% with a stupendous increase to 5.8% by the month July to 

September 2020. During, the period of crisis the agricultural sector has boosted the 

rural economy at large. Due to lockdown, the growth in migrant labor showed an 

increase with an increase of wage of about 8.36%. Figure 6c denotes the regions such 

as Karnataka, Kerala, Tamil Nadu, Andhra Pradesh, and Telangana where the variable 

L_WHT showed a strong relationship with wheat yield. Most of the area grown for 

the Kharif crops seems to be higher as compared to the last year. It may be because 
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Figure 7. Assessment of local parameters through geographically weighted regression—Rice; (a) MOP; (b) NPKS; 

(c) Fertiliser consumption (2005–2020). 

agriculture has been the only sector in boom during the pandemic. The overall 

consumption of fertilizers in the form of nutrients i.e., NPKS (Nitrogen, Phosphorous, 

Potash, and Sculpture) have shown a subsequent increase (see Figure 6d) mostly, in 

the southern parts of India. Similarly, the variable UREA (Figure 6e) has a stronger 

relationship with most of the northern parts of India. The consumption of fertilizer has 

played a vital role in both the yield of wheat and rice. For the yield of rice, the variable 

MOP (Figure 7a) has been more dominant in the northern and western part of the 

country whereas, in Figure 7b the variable NPKS has been significant in the north-

western part of the country. According, to the yearly report by the Department of 

Fertilizers, GOI the overall fertilizer production has been increased to about 2.7% for 

the year 2020. With the onset of the southwest monsoon during the year 2020, there 
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has been an increase in the sowing of crops, which increased the consumption, sale, 

and production of fertilizers. The fertilizer consumption (see Figure 7c) has increased 

from 127.9 kg/ha in the year 2018 to 133.4 kg/ha in the year 2020. Even during the 

first half of the year 2021, farmers has been piling up the stocks of fertilizers due to 

the prevalence of pandemic and the possibilities of a break on transportation along 

with an expectation of a good Kharif season. 

 

Figure 8. (a) historical yield—Wheat (2001–2020); (b) historical yield—Rice (2001–2020); (c) rainfall (2015–2020). 
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Agricultural is one of the pivotal sectors which have shown a positive increase in 

the gross value added in the production of food grains resulting in an increase of 3.0% 

in the year 2020–2021. The agricultural yield has seen consecutive positive growth in 

the last 10 years. The yield of wheat (see Figure 8a) has risen from 107,860.5 kg/ha 

in 2019–2020 to 109,517 kg/ha in 2020–2021. The yield of rice has also shown 

positive growth in the last 10 years. The yield of rice increased from 118,870.3 in 

2019–2020 to 122,265.4 in 2020–2021 (see Figure 8b). One of the factors that aided 

such bumper harvest is rainfall. With the arrival of the southwest monsoon, it stood 

ahead at 9% from the past long average rainfall (Figure 8c). According to the area, 

much of the states received rainfall above past series except the north-western part of 

the country. Due to a good amount of rainfall, the area grown under Kharif crops 

increased by 4.8%. Even the area covered under rabi crops especially wheat has 

increased subsequently. 

From Figures 4 and 5 we can determine the variation in the R2 values which 

shows the relative variation of the yield of wheat and rice. With the help of R2 values, 

we can determine the regions where the yield is higher and the regions where the yield 

is lower. We can relate that the R2 values (Figure 4) in the case of wheat are 

significantly not much affected in the COVID-19 infected areas (see Figure 1) and the 

range also stood higher from R2 value 0.96 to R2 value 0.99. Areas with highly infected 

COVID-19 cases such as Uttar Pradesh, Haryana, and Punjab do also have high R2 

values for the yield of wheat with 0.997, 0.996, and 0.996 respectively. In much of the 

high yield states for wheat, we can state that they have a stronger positive relationship 

with the variables EAG and UREA as compared to that of NPKS and L_WHT. 

In the case of rice, the R2 values for the yield usually varied to a wider range from 

0.50 to 1.00. The states most dominantly affected by COVID-19 cases such as West 

Bengal also have a higher R2 value of 0.859 (see Figure 5). The areas with moderate 

R2 values such as Uttar Pradesh, Punjab, Bihar, and Assam also depict higher COVID-

19 cases. On the contrary, the southern states such as Andhra Pradesh Telangana and 

Tamil Nadu have a much lower R2 value of 0.538, 0.547, and 0.573 respectively. These 

southern states are also heavily infected by COVID-19 cases. Note, that for most of 

the high-yield rice areas the variable MOP has a negative relationship whereas the 

variable NPKS has a positive relationship. In areas with lower R2 values for the yield 

of rice e.g., the southern part of India it shows a negative relationship with both 

variable MOP and NPKS. 

5. Discussion 

To evaluate the relationship between agricultural yields of two major crops in 

India such as wheat and rice with other factors during the COVID-19 pandemic, the 

distribution of yield and infection of COVID-19 has been studied. The western part of 

the country has more cases of COVID-19 as compared to the other parts of the country. 

Through, the local GWR model the relationship between the agricultural yield of 

wheat and rice to the socio-economic, environmental, and climatic factors during the 

COVID-19 pandemic has been successfully analyzed. Through this, we were able to 

find out the dominant factors influencing the yield of wheat such as (ⅰ) employment in 

agriculture (ⅱ) land under cultivation of wheat (ⅲ) use of urea as dominant fertilizer 
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and (ⅳ) the ratio of the nutrient percentage of the soil in the form of NPKS. 

Similarly, for the yield of rice, we have found the most influencing dominant 

factors to be (ⅰ) use of MOP as fertilizer and (ⅱ) the ratio of the nutrient percentage of 

the soil in the form of NPKS. We have also compared the global model and the local 

model. Previous literature has covered the relationship of COVID-19 with various 

other factors but to our optimum knowledge, this is the first study that encompasses 

the socio-economic and climatic factors affecting yield in India during COVID-19. 

The local model that is GWR performs better as compared to that of the global 

OLS model with a higher R2 and lower AICc value. We have also calculated Moran’s 

I for both the yield of wheat and rice which explains the absence of spatial 

autocorrelation amidst the residuals of the local model. Therefore, it states that the 

relationships between the dependent and explanatory variables are not homogenous. 

The outcome of the study presents the positive relationships among the yield of 

wheat and the variables EAG and UREA in the areas where there is a significantly 

higher COVID-19 infection. Earlier studies have shown favorable relation between 

the yield of wheat and EAG [27]. Similarly, earlier reports explain the positive 

relationship between the variable UREA and the yield of wheat [28]. Though a strong 

positive union is observed between these two variables there are other parts of India 

where a weaker relationship is observed. We can find a more dominant relationship 

between the yield of wheat and EAG in the areas more affected by COVID-19. Due 

to lockdown, more persons migrated to their native lands which have subsequently 

resulted in an increase in labor in those areas and employment in agriculture [29]. 

Previous literature has also been harmonious with the increase of yield during the 

pandemic mostly in the states of Punjab, Rajasthan, Telangana, and Gujarat. One of 

the surprising observations is that in most of the high R2 values for the yield of wheat, 

a negative relationship is found with the variable L_WHT. The agricultural land may 

have declined due to floods in the areas of Assam and Bihar, because of irregular or 

deficient presence of nutrient NPKS in the soil, overuse of UREA that has led the soil 

barren, lack of advent technology in agriculture, and deficient of irrigation. In the case 

of the yield of rice, the variation in R2 value is wider. The most dominant crop-growing 

states such as Andhra Pradesh and Tamil Nadu are also highly affected by COVID-

19. Thus, shows a negative relationship with variables MOP and NPKS whereas areas 

such as West Bengal though have a higher amount of COVID cases also have a 

comparatively higher yield with a positive relationship with the variable NPKS. Areas 

such as Uttar Pradesh, Punjab, Haryana, and Telanagana which have moderate 

COVID-19 infections have moderate R2 values for the yield of rice showing mostly a 

negative relationship with the variable NPKS. Therefore, it can be inferred that in the 

areas where rice cultivation is dominant, there is more use of urea as fertilizer. The 

green revolution has made dependence on high-yielding varieties of seeds which have 

resulted in the use of more urea ultimately leading to an imbalance of soil nutrients in 

the form of NPKS [30]. Areas such as Arunachal Pradesh have low COVID-19 

infections, comparatively higher yield with a stronger relationship with the variable 

NPKS. 

There are certain limitations in this research that can be resolute in future work. 

Due to the unavailability of the latest district-wise data for the yield of wheat and rice 

during the year 2020, the state-wise data has been incorporated so the distinctness of 
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the data may have been reduced. Because of certain inaccessible data factors such as 

farmer’s income, MSP prices, outcomes of various policies, Pradhan Mantri Fasal 

Bima Yojna, Kisan credit cards, the impact of groundwater level has not been included 

in the study. However, with all those limitations, this is one is the first study that has 

explained the geographically varying relationships of the major crops of India with 

various socio-economic, environmental, and climatic factors during the prevalence of 

COVID-19. 

Limitations and future research 

Researchers and policymakers should recognize the uncertainties associated with 

our data and consider alternative sources or supplementary analyses to validate the 

results. Moreover, future research should aim to conduct more detailed and temporally 

dynamic analyses to capture localized variations and temporal trends with greater 

precision. Addressing the methodological limitations of this study analysis requires 

sensitivity testing and exploration of alternative modeling approaches to improve the 

validity and generalizability of our findings. 

Future research directions could focus on exploring causal mechanisms 

underlying COVID-19 impacts on agricultural productivity, investigating sector-

specific vulnerabilities, and resilience strategies, and incorporating qualitative 

research methods to capture stakeholder perspectives. By addressing these gaps, 

researchers can advance the understanding of the complex dynamics of COVID-19 

impacts on agriculture and inform evidence-based interventions to mitigate its effects. 

6. Conclusion 

In conclusion, our study highlights the substantial impact of COVID-19 on 

agricultural yield, revealing a geographically changing relationship with various 

influential factors across India. We observed that this relationship is not constant, 

attributed to the dynamic interplay of socio-economic, environmental, and climatic 

factors across different regions. Through the application of the geographically 

weighted regression (GWR) model, we elucidated the efficacy of this relationship, 

with GWR demonstrating superior performance compared to the global ordinary least 

squares (OLS) model. Specifically, GWR exhibited a higher R2 value and lower AICc, 

underscoring its suitability for capturing localized variations and providing a more 

accurate representation of the spatial dynamics of agricultural yield. These findings 

underscore the importance of adopting spatially explicit modeling techniques like 

GWR to better understand and address the nuanced impacts of COVID-19 on 

agricultural productivity, thus informing targeted interventions and policy decisions 

to support agricultural resilience in India and beyond. 
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Appendix 

Table A1. Summary of exploratory regression—Wheat. 

Adj R2 AICc JB K (BP) VIF SA Model 

0.94 665.34 0.00 0.00 1.00 0.24 +L_WHT*** 

0.84 698.78 0.04 0.08 1.00 0.00 +DAP*** 

0.76 714.91 0.43 0.00 1.00 0.00 +UREA*** 

Table A2. Summary of exploratory regression—Pulses. 

Adj R2 AICc JB K (BP) VIF SA Model 

0.94 535.87 0.00 0.00 1.00 0.50 +L_PUL*** 

0.43 621.64 0.00 0.00 1.00 0.14 +DAP*** 

0.36 626.17 0.00 0.00 1.00 0.23 +UREA*** 

Table A3. Summary of exploratory regression—Rice. 

Adj R2 AICc JB K (BP) VIF SA Model 

0.58 700.23 0.01 0.00 1.00 0.14 +MOP*** 

0.52 704.68 0.00 0.25 1.00 0.05 +UREA*** 

0.39 714.09 0.00 0.49 1.00 0.16 +DAP*** 

Table A4. Summary of exploratory regression—Cereals. 

Adj R2 AICc JB K (BP) VIF SA Model 

0.46 657.28 0.00 0.67 1.00 0.18 +MOP*** 

0.45 657.90 0.00 0.80 1.00 0.13 +NPKS*** 

0.43 658.95 0.01 0.00 1.00 0.79 +LOG10*** 

 


