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Abstract: Deepfake technology, which uses artificial intelligence to create and manipulate 

realistic synthetic media, poses a serious threat to the trustworthiness and integrity of digital 

content. Deepfakes can be used to generate, swap, or modify faces in videos, altering the 

appearance, identity, or expression of individuals. This study presents an approach for 

deepfake detection, based on a convolutional vision transformer (CViT), a hybrid model that 

combines convolutional neural networks (CNNs) and vision transformers (ViTs). The 

proposed study uses a 20-layer CNN to extract learnable features from face images, and a 

ViT to classify them into real or fake categories. The study also employs MTCNN, a multi-

task cascaded network, to detect and align faces in videos, improving the accuracy and 

efficiency of the face extraction process. The method is assessed using the FaceForensics++ 

dataset, which comprises 15,800 images sourced from 1600 videos. With an 80:10:10 split 

ratio, the experimental results show that the proposed method achieves an accuracy of 92.5% 

and an AUC of 0.91. We use Gradient-Weighted Class Activation Mapping (Grad-CAM) 

visualization that highlights distinctive image regions used for making a decision. The 

proposed method demonstrates a high capability of detecting and distinguishing between 

genuine and manipulated videos, contributing to the enhancement of media authenticity and 

security. 
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1. Introduction 

Technologies for altering images and videos are developing rapidly. The rise of 
fake technology has gained significant attention in recent years due to its ability to 
generate highly realistic, manipulated media. The different techniques and technical 
expertise needed to create and manipulate digital content are also easily accessible, 
as there is abundant reading material on the internet [1]. Currently, it is possible to 
seamlessly generate hyper-realistic digital images with a few resources and easy-to-
follow instructions available online [2]. Deepfake is a technique that aims to replace 
the face of a targeted person with the face of someone else in a video. It is created by 
splicing the synthesized face region into the original image. The term can also mean 
to represent the final output of a hyper-realistic video created. Deepfakes can be used 
for the creation of hyper-realistic Computer-generated imagery (CGI), Virtual 
Reality (VR), Augmented Reality (AR), Education, Animation, Arts, and Cinema. 
However, since Deepfakes are deceptive, they can also be used for malicious 
purposes [3]. Deepfake detection is the task of identifying and exposing digital 
falsifications of images, video, and audio that are created with machine learning 
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techniques [4]. This task poses a formidable challenge to privacy, democracy, and 
national security, as deepfakes can be used to manipulate public opinion, deceive 
voters, undermine trust in institutions, exacerbate social divisions, endanger public 
safety, disrupt international relations, and jeopardize national security. Detecting 
deepfakes is not only technically difficult but also socially and legally complex. 
Technical solutions, such as forensic analysis, digital watermarking, and immutable 
authentication trails, face limitations in accuracy, scalability, and usability [5]. Social 
and legal solutions, such as media literacy, platform regulation, and legal liability 
face trade-offs between free expression, privacy, and accountability. Moreover, 
deepfake creators can adapt to detection methods and exploit cognitive biases that 
make people susceptible to believing and spreading false information. Therefore, 
deepfake detection requires a multidisciplinary and collaborative approach that 
balances the benefits and harms of deepfake technology [6]. 

The challenge of deepfake detection is the diversity and complexity of deepfake 
generation methods. There are various types of deepfake techniques, such as face 
swapping, face reenactment, lip-syncing, voice cloning, and text generation [7]. Each 
of these techniques requires different approaches and models to create and 
manipulate digital content. Moreover, the quality and realism of fake media vary 
depending on the data, algorithms, and parameters used for the generation process. 
Therefore, it is difficult to design a universal and effective deep fake detector that 
can handle all kinds of deep fake scenarios. 

In this study, we propose to leverage the power of convolutional vision 
transformer (CViT) to develop a comprehensive and robust deepfake detection 
framework that can adapt to different types of deepfake techniques and media. By 
utilizing the capabilities of CViT and focusing on the inconsistency in pixel-level 
details, we aim to address the disadvantages of deepfake technology and provide a 
robust defense against its malicious usage. This study strives to contribute to the 
development of advanced deepfake detection techniques, enhancing the security and 
integrity of digital media in an increasingly vulnerable landscape [7]. 

2. Literature review 

In “Deepfakes Detection with Automatic Face Weighting”, Montserrat et al. [8] 
proposed a novel method utilizing convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) to detect deepfakes. This approach extracts visual 
and temporal features from facial regions in videos for effective manipulation 
identification. The study uses the Deepfake Detection Challenge (DFDC) dataset, 
comprising over 100,000 videos with various facial modifications. The method 
employs CNNs and RNNs to detect and localize manipulated faces, showing 
competitive performance against existing techniques. It can handle videos with 
multiple faces, varying quality, and different manipulation methods, and provides a 
confidence score for each face region. The reported accuracy is 92.61% in detecting 
forgeries. However, the method struggles with highly realistic manipulations in 
blurry or low-quality images and does not incorporate audio information, which 
could enhance detection performance. In “MesoNet: A Compact Facial Video 
Forgery Detection Network,” Afchar et al. [9] present an efficient method for 
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detecting manipulated faces in videos, focusing on Deepfake and Face2Face 
techniques. They utilize two datasets: the Deepfake dataset, with 175 forged videos 
and frames extracted and aligned, and the FaceForensics-based Face2Face dataset, 
with over a thousand videos. Training and testing sets include 5111 forged and 7250 
real images, 2889 forged and 4259 real images, respectively, for Deepfake; and 300 
training and 150 testing videos for Face2Face. Traditional image analysis methods 
fail for videos due to compression issues, prompting the authors to propose two deep 
learning networks with few layers to analyze key features, achieving over 98% 
accuracy for Deepfake and 95% for Face2Face. 

Wodajo et al. [3] proposed a CViT for detecting Deepfakes, integrating a CNN 
with a ViT. The CNN extracts learnable features, which the ViT then processes 
using an attention mechanism for categorization. Trained on the DeepFake Detection 
Challenge (DFDC) dataset, their model achieves 95.8% accuracy, an AUC of 99.30, 
and a loss value of 0.32. The key contribution is the integration of a CNN module 
into the ViT architecture, resulting in competitive performance on the DFDC dataset. 
This combination leverages the strengths of both CNNs and ViTs, enhancing feature 
extraction and classification accuracy in Deepfake detection. 

Ha et al. [10] introduced a robust DeepFake detection method that combines 
ViT and CNN models. Experiments showed that the ViT model excels at processing 
side faces and low-quality videos. The method, which integrates the ResNeSt269 
model with the DeiT model using a weighted majority voting ensemble approach, 
achieved a 97.66% accuracy, surpassing the 96.78% accuracy of the current state-of-
the-art model in the DFDC. Additionally, when tested on a completely different 
dataset, the method demonstrated robustness and over 10% higher accuracy 
compared to the CNN model, thanks to ViT’s high generalization performance. 

3. Materials and methodology 

Face extraction using MTCNN and data augmentation are performed on the 
extracted face images. CViT combines CNNs for feature learning and ViTs for deep 
fake detection. CViT processes standardized face images (224 × 224 RGB), splitting 
them into patches for analysis. Utilizing the features from CNNs and ViTs, CViT 
accurately detects deepfake manipulation within face images. The entire process of 
the study is shown in Figure 1. 

 
Figure 1. Methodology. 
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3.1. Dataset 

FaceForensics++ [11] has 15,800 images extracted from 1,600 videos. The 
dataset is divided into training (72.38%, 11,448 images: 5835 fake, 5613 real), 
testing (19.62%, 3,103 images with a similar fake-real distribution), and validation 
(7.94%, 1252 images, evenly split between fake and real). 

3.2. Preprocessing component 

The preprocessing component plays a crucial role in preparing input data for the 
model. It consists of two key processes: face extraction and data augmentation. The 
face extraction component identifies and extracts faces from video frames, focusing 
the analysis on facial features. This step is vital, given that deepfakes often involve 
manipulations in this particular region. On the other hand, data augmentation 
enhances the model’s ability to generalize by diversifying the training dataset. This 
involves applying random transformations like rotation, scaling, flipping, and 
sharpening to face images. To illustrate, the face extraction process outputs images 
in a standardized 224 × 224 RGB format. Simultaneously, data augmentation creates 
additional training samples with slightly modified versions of the original data. 
Figure 2a is an example of some of the frames. After obtaining the frames (224 × 
224 RGB) as shown in Figure 2b, we calculated the facial region which is 
performed with the help of the MTCNN. After the face region has been obtained 
further processing and normalization are performed and the Figure 3 are the images 
obtained after the normalization. 

  
(a) (b) 

Figure 2. Frames and detection of face. (a) Frames in video; (b) Detection of face. 

 

Figure 3. After normalization. 

3.3. Multi-task cascaded convolutional neural networks 

 The Multi-task Cascaded Convolutional Neural Network 
(MTCNN) algorithm used to detect face and face landmarks, works in three 

steps and uses one neural network for each process. The initial part is a proposal 
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network that will predict potential face positions and their bounding boxes just like 
an attention network in Faster R-CNN. The result of this process is a large number of 
face detection sandlots of false detections. The second part uses images and outputs 
of the first prediction, thus making a refinement of the result to eliminate most of the 
false detections and aggregate bounding boxes. The last part refines the predictions 
and adds facial landmarks predictions in the original MTCNN implementation. 
Experimental results have always demonstrated that while keeping the reliability of 
real-time performance, this method consistently outperforms the sophisticated 
conventional methods across most of the challenging benchmarks. This better 
performance for real-time is of great importance in a surveillance system [12]. The 
equations involved in the MTCNN algorithm are shown in Equations (1)–(3). 

B = sigmoid (f1(x, y, w, h)) (1)
where B represents the bounding box coordinates, (x,y) are the coordinates of the 
top-left corner, (w, h) are the width and height of the bounding box, and f1 is the 
neural network function. 

ΔB = f2(B, I) (2)
where ΔB represents the refined bounding box coordinates based on the initial 
bounding box B and the input image I, and f2 is the neural network function. 

(P, L) = f3(B, I) (3)
where P represents the facial landmarks and L represents the probability of the face 
being real, and f3 is the neural network function. 

3.4. Feature selection using CNN 

Feature Learning (FL) is important in CNNs, especially for face recognition. It 
involves using blocks with convolutional layers to extract features from input face 
data. The features include the two eyes, nose, and the two sides of the mouth. These 
features are gradually learned and used as building blocks for higher-level analysis in 
the model. FL transforms raw data into meaningful representations, enabling more 
advanced processing in the neural network. 

3.5. Vision transformer 

The Vision Transformer (VT) within the CVIT framework is a key component 
that adapts transformer architecture, originally developed for natural language 
processing, to computer vision tasks. It processes learned features from the Feature 
Learning (FL) stage using self-attention, capturing global context information to 
understand relationships across different parts of the face. Following this, the MLP 
head, comprising fully connected layers and activation functions, refines these 
features for classification, distinguishing between real and fake inputs. The soft max 
function then assigns class probabilities based on raw scores from the MLP head, 
aiding in the final classification decision. The transformer encoder, meanwhile, 
handles linear projections of flattened patches from the Vision Transformer, refining 
features further by combining local and global information. These refined features 
are then fed into the MLP head for classification, enhancing the model’s predictive 
accuracy and robustness. Additionally, the validation component assesses the 
model’s performance on unseen data, incorporating FL and VT stages but operating 
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on a separate validation dataset to ensure an unbiased evaluation of the model’s 
generalization capabilities. 

3.6. Grad-CAM 

Grad-CAM calculates the gradient of a differentiable output, such as class score, 
in relation to the convolutional features of a selected layer. Grad-CAM is most 
commonly employed for image classification tasks, but may also be utilized for 
semantic segmentation. The soft max layer of the proposed model outputs a score for 
each class for each pixel to aid in semantic segmentation. For a particular class C 
with N number of pixels and AK as a feature map, Grad-CAM mapping is explained 
in Equation (4) [13]. 

𝑀௖ = 𝑅𝑒𝐿𝑈∑ ∝௖
௄ 𝐴௄௄   (4)

where, 
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಼ )௜,௝   (5)

3.7. Real time implementation 

During testing, the user uploads the video, and after face extraction, the 
extracted features are loaded with our CViT model. Leveraging the validated model, 
this component aims to predict the authenticity of new content, such as videos or 
frames, by determining whether they are real or fake. During testing, a predefined 
threshold of 0.5 is established to serve as the decision boundary. It gives the 
prediction score which if it is less than 0.5 is a real video otherwise it is a fake video. 

4. Experiments and analysis 

The experiment is conducted using Python language with Intel(R) Core (TM) 
i5-13500H CPU, windows 11 operating system, with 8 GB RAM. 

Table 1. Results of videos along with prediction score (Samples are from the 
dataset). 

SN Sample Inputs Prediction Score Result 

1 Sample 1.mp4 0.051 Real 

2 Sample 2.mp4 0.67 Fake 

3 Sample 3.mp4 0.03 Real 

4 Sample 4.mp4 0.15 Real 

5 Sample 5.mp4 0.96 Fake 

6 Sample 6.mp4 0.26 Real 

7 Sample 7.mp4 0.02 Real 

8 Sample 8.mp4 0.9 Fake 

The system evaluates the uploaded video and determines whether it’s authentic 
or fake based on the prediction score from the model. If the score exceeds a 
threshold of 0.5, the video is flagged as fake otherwise, it’s considered real, with the 
capability to predict whether a video is real or fake achieved. The above Table 1 
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comprises the file name, the prediction score through which we can predict whether 
the video is real or fake, and the prediction. 

Throughout the training process, the training accuracy achieved by the model 
on this dataset was 92.5%. The accuracy graph is shown in Figure 4 and training 
loss is shown in Figure 5. Additionally, the model’s capacity was assessed using a 
Receiver Operating Characteristic (ROC) curve. The Area Under the Curve (AUC) 
value, representing the area covered by the ROC curve, was determined to be 0.91. 

 
Figure 4. Training Accuracy. 

 
Figure 5. Training Loss. 

A higher AUC suggests that the model has a strong ability to distinguish 
between the positive and negative classes. The ROC curve is shown in Figure 6. We 
conducted a 10-fold cross-validation and obtained an average accuracy of 92.5%, an 
average AUC of 0.91, an average precision of 0.91, and an average recall of 0.93. 
The K-fold result is shown in the Table 2. 
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Figure 6. ROC curve. 

Table 2. K-Fold cross-validation results. 

Fold Accuracy (%) AUC Precision Recall 

1 87.5 0.92 0.86 0.88 

2 88.2 0.91 0.87 0.89 

3 89.6 0.92 0.88 0.90 

4 90.1 0.93 0.89 0.91 

5 91.4 0.94 0.90 0.92 

6 92.0 0.95 0.91 0.93 

7 92.3 0.94 0.92 0.94 

8 93.0 0.96 0.93 0.95 

9 93.8 0.97 0.94 0.96 

10 94.0 0.98 0.95 0.97 

Avg 92.5 0.91 0.91 0.93 

Grad-CAM is used to understand which parts of the input image are crucial for 
the deep learning model to determine whether an image or video is real or fake. For 
this we created a heatmap on the image to visualize the regions of interest, we can 
gain insights into how the model makes its decisions and potentially identify artifacts 
or inconsistencies indicative of manipulation. Figure 7 shows the Grad-CAM over 
frames for fake video content. 

 
Figure 7. Grad-CAM of fake image. 
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5. Conclusion 

The study focuses on deepfake detection, employing a fusion of MTCNN 
architecture for feature extraction and Vision Transformer for video classification, 
which has yielded a noteworthy accuracy of 92.5% on the FaceForensics++ dataset, 
containing 15,808 images encompassing both genuine and fabricated instances. This 
outcome underscores the efficacy of our methodology. 

To enhance future iterations, enlarging the dataset could bolster the model’s 
capacity for generalization and resilience across diverse scenarios, potentially 
augmenting accuracy further. Moreover, integrating audio analysis alongside visual 
data offers a promising avenue for fortifying deepfake detection capabilities. By 
harnessing both visual and auditory cues, we can develop more comprehensive and 
dependable detection systems to counteract the escalating threat of media 
manipulation. 
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