
Computing and Artificial Intelligence 2024, 2(2), 1364.

https://doi.org/10.59400/cai.v2i2.1364

1

Article

Software cost estimation tool: A App based application, estimate the cost of

software project

Ajay Jaiswal*, Piyush Malviya, Lucky Parihar, Rani Pathak, Kuldeep Rajput

Computer Science & Engineering. Department, Prestige Institute of Engineering Management and Research, Indore 452010, India

* Corresponding author: Ajay Jaiswal, ajay.jaiswal55555@gmail.com

Abstract: This paper presents the design and implementation of a software cost estimation tool

integrated into a mobile application developed using Flutter. The tool incorporates various

techniques for software cost estimation, including expert judgment, function point analysis, 3D

point analysis, and the COCOMO model. The purpose of the program is to give software

engineers and project managers a practical and effective tool for calculating the time and

money needed for software development projects. The paper provides a thorough explanation

of each estimation technique’s implementation, along with a discussion of the app’s main

features and functionalities. Because of the app’s intuitive and user-friendly design, users can

quickly enter project data and get precise cost estimates. The tool’s efficacy is assessed using

case studies and contrasts with other software cost estimation methods currently in use. The

outcomes show that the app can produce trustworthy and precise cost estimates, which makes

it an important resource for software development projects.

Keywords: software cost estimation; flutter app development; project management tools;

function point analysis; COCOMO model

1. Introduction

Software development projects are renowned for their complexity, requiring

meticulous planning and precise budgeting to ensure successful completion. One of

the most critical aspects of project planning is accurate cost estimation, which involves

predicting the resources, time, and effort required to deliver a project. However,

traditional cost estimation methods often fall short, leading to budget overruns and

project delays. To address this challenge, we introduce “Software Cost Estimation”, a

groundbreaking tool designed to revolutionize software project budgeting and

planning. Our platform gives users precise and trustworthy cost estimates so they can

optimize their project budgets and make well-informed decisions. It does this by

utilizing the power of state-of-the-art algorithms, historical project data, and industry

best practices.

In this research paper, we provide a comprehensive overview of the design,

development, and evaluation of “Software Cost Estimation”. We discuss the tool’s key

features and functionalities, including its ability to analyze project requirements [1],

estimate costs, and generate detailed reports. Furthermore, we present the results of

empirical studies and case studies that demonstrate the effectiveness and accuracy of

our tool in real-world software projects.

By introducing “Software Cost Estimation” [2], we aim to empower software

development teams and project managers with a powerful tool that can streamline the

cost estimation process, reduce budget uncertainties, and improve overall project

CITATION

Jaiswal A, Malviya P, Parihar L, et

al. Software cost estimation tool: A

App based application, estimate the

cost of software project. Computing

and Artificial Intelligence. 2024;

2(2): 1364.

https://doi.org/10.59400/cai.v2i2.1364

ARTICLE INFO

Received: 7 May 2024

Accepted: 4 June 2024

Available online: 22 July 2024

COPYRIGHT

Copyright © 2024 by author(s).

Computing and Artificial Intelligence

is published by Academic Publishing

Pte. Ltd. This work is licensed under

the Creative Commons Attribution

(CC BY) license.

https://creativecommons.org/licenses/

by/4.0/

Computing and Artificial Intelligence 2024, 2(2), 1364.

2

planning. We believe that our tool has the potential to significantly impact the software

development industry, leading to more efficient and cost-effective project delivery.

Background:

Software cost estimation is a challenging and crucial aspect of project

management. Traditional estimation methods, such as expert judgment and analogy-

based estimation, often rely on subjective assessments and historical data that may not

accurately reflect the complexities of modern software projects. As a result, these

methods can lead to inaccurate estimates, which can have significant implications for

project budgets and schedules. The development of automated cost estimation tools

that use cutting-edge algorithms and machine learning approaches to increase the

precision and dependability of cost estimates has attracted increasing attention in

recent years. Based on past data and industry norms, these tools examine a variety of

project criteria, including size, complexity, and requirements [3], to produce estimates

that are more accurate.

Objectives:

The primary objective of this research paper is to introduce “Software Cost

Estimation” and demonstrate its effectiveness in improving software project cost

estimation. We aim to showcase the key features and functionalities of the tool,

highlight its advantages over traditional estimation methods, and present empirical

evidence supporting its accuracy and reliability. Additionally, we seek to compare

“Software Cost Estimation” with existing cost estimation approaches to highlight its

unique capabilities and potential impact on software project management practices.

Through this research, we hope to contribute to the advancement of software cost

estimation techniques and provide software development teams with a valuable tool

for optimizing their project budgets and schedules.

1.1. Cost estimation technique

Figure 1. Software cost estimation techniques.

Figure 1 shows the cost estimation of software can be approached in several

ways. One of the key stages in developing new software is figuring out its cost, which

involves estimating the time required, necessary resources, and the project’s overall

size. Research indicates that estimates for software projects can be off by up to 40%.

These methods [4] can be broadly categorized into algorithmic and non-algorithmic

Computing and Artificial Intelligence 2024, 2(2), 1364.

3

approaches. In this section, we will explore various methods, outlining their

advantages and disadvantages to help you decide which approach is most suitable.

Estimating the cost of a software project is a critical aspect of software engineering,

often determining the success or failure of a project or business deal. Throughout the

software development life cycle, accurately predicting the necessary work and its

associated cost is a primary focus of software cost estimation.

1.1.1. Algorithmic methods

Equations based [5] on empirical data and in-depth research are essential to the

pursuit of precise software cost estimation. These equations are designed to take use

of several inputs, including functional requirements, Source Lines of Code (SLOC),

design process, team experience, and risk assessments, among other factors that

influence costs. Among the many computational models that have shown to be

invaluable in this trial are COCOMO and function point analysis, to name just two. In

order to convert project parameters into quantitative estimations, they provide

methodical frameworks. These techniques attempt to aid in the calculation of software

costs by providing a few mathematical formulas.

Constructive Cost Model (COCOMO): The Constructive Cost Model

(COCOMO), developed by Barry Boehm in the late 1970s, is a seminal method for

estimating the effort, time, and cost required for software development projects.

Grounded in the belief that software development effort is influenced by various

factors, COCOMO provides a structured framework for assessing these factors and

deriving accurate estimates. Central to COCOMO’s approach is the recognition that

the size of the software product and the characteristics of the development

environment significantly impact project outcomes.

COCOMO offers three distinct models tailored to different stages of project

maturity and complexity [6]: Basic COCOMO, Intermediate COCOMO, and Detailed

COCOMO.

Basic COCOMO, the initial model in the series, is particularly suitable for early-

stage project planning when only limited information about the software product and

project environment is available. This model estimates effort as a function of software

size, typically measured in thousands of lines of code (KLOC), and incorporates a set

of cost drivers that capture various project attributes such as complexity, personnel

capability, and development tools. The formula for Basic COCOMO is represented as:

Effort = a × (KLOC)b

where a and b are constants empirically derived from historical data and represent the

scale and exponent factors respectively.

Intermediate COCOMO extends the capabilities of Basic COCOMO by

incorporating additional project-specific factors into the estimation process. In

addition to software size, Intermediate COCOMO considers parameters such as

development flexibility, team cohesion, and risk resolution capabilities. The

estimation formula for Intermediate COCOMO introduces an Effort Adjustment

Factor (EAF), which serves as a multiplier reflecting the combined effects of all cost

drivers:

Effort = EAF × (KLOC)b

The Effort Adjustment Factor (EAF) is determined based on a comprehensive

Computing and Artificial Intelligence 2024, 2(2), 1364.

4

assessment of various project attributes and is crucial in refining the estimation

accuracy.

Detailed COCOMO represents the most comprehensive and sophisticated version

of the model, suitable for large-scale and complex software development projects. In

addition [7], to the factors considered in Intermediate COCOMO, Detailed COCOMO

incorporates detailed assessments of personnel experience, software reliability

requirements, and product complexity.

COCOMO’s enduring relevance in software project management stems from its

ability to provide a structured and systematic approach to estimating development

effort and resource requirements. However, it is important to acknowledge that

COCOMO is not without limitations. Its reliance on historical data and assumptions

about project characteristics may introduce uncertainties, particularly in rapidly

evolving technological landscapes. As such, ongoing refinement and validation of

COCOMO estimates based on real-world data and project experience are essential for

enhancing its effectiveness and reliability.

Function point analysis:

Function point analysis (FPA) [8] is a widely recognized and systematic method

for estimating the size and complexity of software systems based on the functionalities

they deliver to users. Introduced by Allan Albrecht in the late 1970s, FPA focuses on

quantifying the functional requirements of a software product, independent of

technology or implementation details. The core concept of FPA [9] revolves around

identifying and categorizing functional components within a software system, such as

inputs, outputs, inquiries, internal data files, and external interfaces. By assigning

weights to each functional component based on its complexity and significance, FPA

enables the computation of a function point (FP) metric, which serves as a standardized

measure of software size. The formula for calculating Function Points typically

involves summing the weighted values of individual functional components:

FP = ∑n, i = 0 (Weighti × Counti)

where Weighti represents the complexity weight assigned to each functional

component, Counti denotes the count of occurrences of that component, and n is the

total number of functional components considered. FPA [10,11] offers a holistic

perspective on software size and complexity, capturing both internal and external

aspects of system functionality. This makes it a valuable technique for estimating

development effort, resource requirements [12], and project duration. However, like

any estimation method, FPA [13] requires careful application and consideration of

contextual factors to ensure accurate and reliable results.

1.1.2. NON-algorithmic techniques

Precise cost estimation is critical to software development project planning,

budgeting, and resource allocation. Non-algorithmic approaches mostly rely on expert

judgment and qualitative evaluations, whereas algorithmic approaches use

mathematical models and historical data to estimate expenses. This section explores

the types, formulas, and applications of several non-algorithmic cost estimation

strategies.

Expert judgment:

Expert judgment stands [14] as a cornerstone in software cost estimation, drawing

Computing and Artificial Intelligence 2024, 2(2), 1364.

5

upon the insights and experiences of seasoned professionals in the field. This

technique leverages the collective wisdom of experts who possess domain knowledge,

project management expertise, and a nuanced understanding of the software

development lifecycle. Through deliberative discussions, brainstorming sessions, and

peer reviews, experts offer informed opinions on cost drivers, project complexities,

and resource requirements.

Types of expert judgment:

Delphi technique: The Delphi technique fosters consensus among a panel of

experts through iterative rounds of anonymous feedback and controlled

communication. Experts individually provide estimates, which are aggregated and

refined in subsequent rounds until convergence is achieved. This method mitigates

biases and encourages diverse viewpoints, thereby enhancing the accuracy of cost

estimates.

Analogous-Based estimation: Analogous estimation draws parallels between

the current project and past trials, extrapolating costs based on similarities in scope,

size, and technological complexity. By referencing historical data and benchmarking

against analogous projects, experts can derive preliminary cost estimates, often

expressed as a percentage deviation from past efforts.

Estimation techniques:

Expert-based cost estimates are dependent on the projects in which they were

utilized since they represent the knowledge of the experts who were consulted. Data

gathering and discovery may be impeded in several commonplace scenarios. In these

situations, the “expert judgment” method is effective. It is the accepted technique [15]

for estimating the duration of a software project. One method for utilizing expert

opinion in cost estimation is the Wideband Delphi Method. These people are subject

to two rounds of evaluation. The work breakdown structure is an additional example

of expert opinion.

Top-down estimating method:

The term “Macro Model” is often used to refer to the top-down estimation

technique it describes. Using this technique, the overall software project cost estimate

is determined from the project’s global attributes, and then the project is broken down

into its constituent low-level mechanisms or components. The Putnam model is a

technique that takes this perspective. For preliminary cost calculation when only

global parameters are available, the Top-Down approach is preferable. Due to a lack

of specifics at the outset, top-down approaches are ideal for estimating software costs.

Bottom-up estimating method:

A predicted total project cost is then calculated by adding the individual product

costs determined using the base-up costing method. The goal of a bottom-up approach

is to build a framework’s gauge from data gathered about its constituent parts and how

they interact. The point-by-point model used by COCOMO is the technique using this

approach.

2. Literature review

Software cost estimation has been a longstanding challenge in the field of

software engineering, with researchers and practitioners continually seeking to

Computing and Artificial Intelligence 2024, 2(2), 1364.

6

improve the accuracy and reliability of cost estimation methods. While expert

judgment and analogy-based estimating are two popular traditional cost estimation

methodologies, they are frequently prone to errors since they rely on subjective

assessments and historical data that might not fully reflect the current project context.

The application of machine learning techniques and quantitative models for software

cost assessment has gained popularity in recent years. These methods improve the

accuracy of project cost predictions by utilizing project features, historical project

data, and other considerations. One well-known quantitative model that estimates the

time and money needed for software development is the Constructive Cost Model

(COCOMO), which takes into account the size, complexity, and other aspects of the

project.

Machine learning techniques, such as regression analysis, decision trees, and

neural networks, have also been applied to software cost estimation with promising

results. These techniques can learn from past project data and adjust their predictions

based on new information, improving the accuracy of cost estimates over time.

Another area of research in software cost estimation is the use of parametric estimation

models, which estimate project costs based on a set of predefined parameters. These

models can be customized to fit the specific characteristics of a project, making them

potentially more accurate than generic estimation approaches.

Despite these advancements, challenges remain in software cost estimation,

particularly in the context of agile and iterative development methodologies. Agile

projects [16] are characterized by their dynamic nature, frequent changes, and

evolving requirements, making traditional cost estimation methods less suitable.

Researchers are exploring new approaches that can adapt to the iterative nature of agile

development and provide more accurate cost estimates in such environments. Overall,

the literature suggests that while significant progress has been made in software cost

estimation, there is still room for improvement. New technologies, such as machine

learning and agile development methodologies, are reshaping the landscape of cost

estimation, offering new opportunities to enhance the accuracy and reliability of cost

estimates in software projects.

3. Methodology

The development process of the ‘Software Cost Estimation Tool’ using Flutter

involved several key steps. Initially, a new Flutter project was set up, and the necessary

dependencies were configured. The user interface was designed to accommodate the

various features of the app, focusing on simplicity and usability. Each feature,

including expert judgment, analogous estimation, parametric estimation, 3D point

estimation, COCOMO model [17], and function point analysis, was implemented

using Flutter widgets and libraries. For expert judgment, a user-friendly interface was

created for users to input their estimates based on their expertise. Analogous

estimation utilized historical data from similar projects, requiring integration with a

database or API. Parametric estimation involves implementing algorithms to calculate

estimates based on project parameters.

Implementing 3D point estimation was complex, requiring the development of

algorithms for more accurate cost estimates. The COCOMO model was integrated into

Computing and Artificial Intelligence 2024, 2(2), 1364.

7

the app to estimate costs based on project size and complexity, involving the

implementation of COCOMO equations and algorithms. Function point analysis was

implemented using algorithms to calculate function points and estimate project size

and effort based on functionality.

During development, challenges were encountered, such as technical limitations

of Flutter, especially regarding performance and compatibility. These challenges were

addressed through code optimization and the use of alternative approaches.

Implementing complex features, like 3D point estimation and mathematical models,

required breaking down the implementation into smaller tasks and seeking expert

advice when needed. Ensuring a smooth user experience, particularly with features

like expert judgment and input validation, was achieved through thorough testing and

user feedback incorporation.

4. Case study

E-commerce optimizer software development at XYZ corporation:

Background: XYZ Corporation, a mid-sized e-commerce company, aimed to

enhance its operational efficiency and customer experience through the development

of a comprehensive software solution. Named “E-Commerce Optimizer”, the software

aimed to integrate various functionalities such as inventory management, order

processing, and customer relationship management into a unified platform.

Project scope:

The project involved the following key objectives:

⚫ Development of a user-friendly interface facilitating inventory management,

order processing, and customer interactions.

⚫ Integration of the software with existing systems and databases to ensure

seamless data flow. Implementation of analytics features for monitoring sales,

customer behavior, and inventory levels.

⚫ Ensuring scalability and security to accommodate future growth and protect

sensitive data.

Methodology:

XYZ corporation adopted the Agile methodology for its flexibility and

adaptability. The project was divided into iterative sprints, each focusing on specific

features or functionalities. Regular meetings were conducted to review progress,

gather feedback, and adjust plans accordingly.

Cost estimation:

The cost estimation process involved a combination of bottom-up and top-down

approaches. Task breakdowns were used to estimate time and resources required for

each component of the project. Additionally, industry benchmarks and past projects

were analyzed to validate estimates and identify potential cost-saving opportunities.

Result:

Based on the cost estimation process, XYZ Corporation projected the

development cost for E-Commerce Optimizer to be approximately $500,000. This

estimation encompassed expenses related to software development, testing,

infrastructure setup, and project management.

Conclusion:

Computing and Artificial Intelligence 2024, 2(2), 1364.

8

By employing robust cost estimation techniques and adhering to Agile principles,

XYZ Corporation successfully developed E-Commerce Optimizer within budget and

timeline constraints. The software’s implementation led to notable improvements in

operational efficiency, customer satisfaction, and overall business performance.

5. Results and discussion

The ‘Software Cost Estimation Tool app demonstrated its effectiveness in

providing accurate and efficient cost estimates for software projects. By incorporating

features such as expert judgment, analogous estimation, parametric estimation, 3D

point estimation, COCOMO model, and function point analysis, the app was able to

offer a comprehensive approach to cost estimation.

In a case study [18] comparing the app’s estimates with those from traditional

cost estimation methods, the app consistently provided estimates that were close to the

actual costs of software projects. This indicates that the app’s algorithms and models

are reliable and can be used with confidence by project managers and software

developers.

5.1. Comparison with traditional methods

Compared to traditional cost estimation methods, the Software Cost Estimation

Tool app offers several advantages. Traditional methods often rely on manual

calculations and subjective judgments, which can lead to inaccuracies and

inconsistencies in estimates. In contrast, the app uses algorithms and mathematical

models to provide more objective and reliable estimates. Additionally, the app’s ability

to incorporate historical data and project parameters allows for more precise estimates,

taking into account the specific characteristics of each project. This can result in more

accurate budgeting and resource allocation, leading to better project management and

decision-making.

Advantages

⚫ Accuracy: The app provides accurate cost estimates [19] based on algorithms and

mathematical models, reducing the risk of budget overruns.

⚫ Efficiency: The app streamlines the cost estimation process, saving time and

effort for project managers and software developers.

⚫ Comprehensiveness: By incorporating multiple estimation methods, the app

offers a comprehensive approach to cost estimation, ensuring that all relevant

factors are considered.

⚫ User-friendly: The app’s user-friendly interface makes it easy for users to input

data and generate cost estimates, even without specialized knowledge in cost

estimation techniques.

5.2. Limitations

⚫ Dependency on data: The accuracy of the app’s estimates depends on the quality

and relevance of the data used. Inaccurate or outdated data can lead to unreliable

estimates.

⚫ Complexity: Some features of the app, such as 3D point estimation and the

COCOMO model, may be complex for users without a background in software

Computing and Artificial Intelligence 2024, 2(2), 1364.

9

cost estimation.

⚫ Technical limitations: The app’s performance and accuracy may be affected by

technical limitations, such as hardware capabilities and network connectivity.

⚫ In conclusion, the Software Cost Estimation Tool app offers a reliable and

efficient solution for software cost estimation, providing accurate estimates that

can help project managers and software developers plan and manage their

projects more effectively. While the app has some limitations, its advantages

make it a valuable tool for cost estimation in software development projects.

6. Conclusion

The research paper presents the development and implementation of the

‘Software Cost Estimation Tool’ using Flutter. Key findings include the successful

integration of various cost estimation techniques such as expert judgment, analogous

estimation, parametric estimation, 3D point estimation, COCOMO model, and

function point analysis into a user-friendly mobile application. Through careful design

and implementation, the app provides software development teams with a

comprehensive tool for estimating project costs accurately and efficiently.

Implications for software development projects:

The ‘Software Cost Estimation Tool app holds significant implications for

software development projects. By providing a centralized platform for cost

estimation, the app empowers project managers and stakeholders to make informed

decisions regarding resource allocation, budgeting, and project planning. It enhances

project transparency and accountability by enabling teams to track and manage costs

effectively throughout the development lifecycle. Additionally, the app promotes

collaboration and communication among team members, facilitating a more

streamlined and efficient development process.

Future research directions:

While the ‘Software Cost Estimation Tool’ app represents a significant

advancement in software cost estimation, there are several avenues for future research

and improvement. Firstly, enhancing the accuracy and reliability of estimation

techniques, such as 3D point estimation and parametric estimation, could lead to more

precise cost predictions. Exploring advanced machine learning algorithms and data

analytics techniques may also offer insights into optimizing cost estimation models

based on real-time project data. Furthermore, integrating additional features such as

risk analysis [19,20], resource optimization, and project scheduling could further

enhance the app’s functionality and utility. Collaborating with industry experts and

practitioners to validate and refine the app’s algorithms and methodologies could

ensure its relevance and effectiveness in real-world software development scenarios.

In conclusion, the ‘Software Cost Estimation Tool’ app represents a valuable

contribution to software development practices, offering a comprehensive solution for

estimating and managing project costs. Continual research and development efforts

are essential to further enhance the app’s capabilities and address evolving challenges

in the software development landscape.

Author contributions: Conceptualization, AJ and LP; methodology, PM; software,

Computing and Artificial Intelligence 2024, 2(2), 1364.

10

AJ; validation, AJ, LP, PM and RP; formal analysis, AJ; investigation, AJ; resources,

KR; data curation, AJ; writing—original draft preparation, AJ; writing—review and

editing, PM; visualization, AJ; supervision, AJ; project administration, LP; funding

acquisition, PM. All authors have read and agreed to the published version of the

manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

1. Firesmith D. Prioritizing Requirements. The Journal of Object Technology. 2004; 3(8): 35. doi: 10.5381/jot.2004.3.8.c4

2. Balaji N, Shivakumar N, Ananth VV. Software cost estimation using function point with non-algorithmic approach. Global

Journal of Computer Science and Technology Software & Data Engineering. 2013; 13(8): 1–4.

3. Karlsson J. Software Requirements Prioritizing. In: Proceedings of the International Conference on Requirement

Engineering; 1996.

4. Hamdan K, El Khatib H, Shuaib K. Practical software project total cost estimation methods. In: Proceedings of 2010

International Conference on Multimedia Computing and Information Technology (MCIT); 2010. doi:

10.1109/mcit.2010.5444853

5. Khan B, Khan W, Arshad M, Jan N. Software cost estimation: Algorithmic and non-algorithmic approaches. International

Journal of Data Science and Advanced Analytics. 2020; 2(2): 1–5.

6. Zuse H. Software Metrics-Methods to Investigate and Evaluate Software Complexity Measures. In: Proceedings of the

Second Annual Oregon Workshop on Software Metrics; 1991; Portland.

7. Kitchenham B, Mendes E. Software productivity measurement using multiple size measures. IEEE Transactions on Software

Engineering. 2004; 30(12): 1023–1035. doi: 10.1109/tse.2004.104

8. Westerville. Function Point Counting Practices Manual. International Function Point User Group (IFPUG); 1990.

9. Low GC, Jeffery DR. Function points in the estimation and evaluation of the software process. IEEE Transactions on

Software Engineering. 1990; 16(1): 64–71. doi: 10.1109/32.44364

10. Meli R, Santillo L. Function point estimation methods: A comparative overview. Data Processing Organization; 1999.

11. Meli R, Satillo L. Function Point Measurement Tool for UML Design Specification. Data Processing Organization; 1999.

12. Sadiq M, Ghafir S, Shahid M. A Framework to Prioritize the software Requirements using Quality Function Deployment. In:

Proceedings of the National Conference on Recent Development in Computing and its Application; 2009; Delhi, India.

13. Symons CR. Function point analysis: difficulties and improvements. IEEE Transactions on Software Engineering. 1988;

14(1): 2–11. doi: 10.1109/32.4618

14. Mansor ZB, Kasirun ZM, Arshad NHH, et al. E-cost estimation using expert judgment and COCOMO II. In: Proceedings of

2010 International Symposium on Information Technology; 2010. doi: 10.1109/itsim.2010.5561466

15. Boehm BW. Software Engineering Economics. Prentice Hall; 1981.

16. Alliance A. Agile Methodologies. Available online: https://www.agilealliance.org/agile101/agile-methodologies/ (accessed

on 13 March 2024).

17. Rush C, Roy R. Expert Judgement in Cost Estimating: Modelling the Reasoning Process. Concurrent Engineering. 2001;

9(4): 271–284. doi: 10.1177/1063293x0100900404

18. Chirra SMR, Reza H. A Survey on Software Cost Estimation Techniques. Journal of Software Engineering and Applications.

2019; 12(06): 226–248. doi: 10.4236/jsea.2019.126014

19. Gupta D, Sadiq M. Software Risk Assessment and Estimation Model. In: Proceedings of 2008 International Conference on

Computer Science and Information Technology; 2008. doi: 10.1109/iccsit.2008.184

20. Hoodat H, Rashidi H. Classification and Analysis of Risks in Software Engineering. World Academy of Science,

Engineering and Technology. 2009; 56: 446–452.

