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Abstract: Similarly, to all coronaviruses, SARS-CoV-2 uses the S glycoprotein to enter host 

cells, which contains two functional domains: S1 and S2 receptor binding domain (RBD). 

Angiotensin-converting enzyme 2 (ACE2) is recognizable by the S proteins on the surface of 

the SARS-CoV-2 virus. The SARS-CoV-2 virus causes SARS, but some mutations in the RBD 

of the S protein markedly enhance their binding affinity to ACE2. Searching for new 

compounds in COVID-19 is an important initial step in drug discovery and materials design. 

Still, the problem is that this search requires trial-and-error experiments, which are costly and 

time-consuming. In the automatic molecular design method based on deep reinforcement 

learning, it is possible to design molecules with optimized physical properties by combining a 

newly devised coarse-grained representation of molecules with deep reinforcement learning. 

Also, structured-based virtual screening uses protein 3D structure information to evaluate the 

binding affinity between proteins and compounds based on physicochemical interactions such 

as van der Waals forces, Coulomb forces, and hydrogen bonds, and select drug candidate 

compounds. In addition, AlphaFold can predict 3D protein structures, given the amino acid 

sequence, and the protein building blocks. Ensemble docking, in which multiple protein 

structures are generated using the molecular dynamics method and docking calculations are 

performed for each, is often performed independently of docking calculations. In the future, 

the AlphaFold algorithm can be used to predict various protein structures related to COVID-

19. 

Keywords: angiotensin-converting enzyme 2; AlphaFold; Deep Q Network; molecular 

dynamics; SARS-CoV-2; reinforcement learning; virtual screening 

1. Introduction 

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged as a human pathogen in Wuhan, China at the end of 2019 and has 
since spread around the world, resulting in a pandemic [1]. Symptoms appear about 
four to five days after being infected with the virus but can take as long as two weeks. 
On the other hand, asymptomatic infections have also been reported [2]. The main 
symptoms include fever, cough, difficulty breathing, body malaise, chills, muscle pain, 
headache, sore throat, and loss of smell and taste. Elderly people and people with 
underlying health conditions such as heart disease or diabetes are more likely to 
develop severe pneumonia [3]. Respiratory symptoms, high fever, diarrhea, and taste 
disorders have also been reported in other generations. When infected during 
childhood, the symptoms are mild or asymptomatic, but viral infection itself occurs, 
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and transmission to the elderly due to asymptomatic infection has also been reported. 
The host range of SARS-CoV-2 is wide, and this virus infects not only humans and 
wild animals, but also livestock, pets, laboratory animals, and many other animals, 
causing various diseases. Genetic sequence analysis has shown that this virus is like 
the coronavirus found in bats and pangolins [4], and it has been pointed out that these 
viruses may have undergone genetic recombination. Understanding the structure and 
function of this virus is essential to developing vaccines and treatments for coronavirus 
infectious disease, which emerged in 2019 (COVID-19). 

Artificial Intelligence (AI) methods are being increasingly utilized to predict 
various aspects related to SARS-CoV-2. Here are some key findings from the search 
results: 
I) Prediction of COVID-19 severity based on blood protein profiling: 

・ A study aimed to classify COVID-19 patients into mild, severe, critical, and 
control groups based on blood protein profiling using deep learning, random 
forest, and gradient-boosted trees [5]. 

・ The ensemble classifier GBTs produced the highest accuracy in predicting 
disease severity (96.98%) [5]. 

・ This approach identified specific proteins associated with COVID-19 
severity, highlighting the potential for early diagnosis and treatment 
strategies [5]. 

II) Prediction of SARS-CoV-2 epitopes: 

・ Machine learning technologies have been used to predict target human 
proteins of the SARS-CoV-2 virus based on protein sequences and amino 
acid composition [6]. 

・ Studies have focused on epitope prediction for SARS-CoV-2 S protein using 
machine learning models and immunological data from SARS-CoV [7]. 

・ The aim is to identify nonallergenic, highly antigenic, and nontoxic epitopes 
that can be used in vaccine design against SARS-CoV-2 [7]. 

III) AI-based mutation prediction in SARS-CoV-2: 

・ Research is ongoing to develop AI models that predict the next variants of 
the SARS-CoV-2 virus based on genomic data. 

These studies demonstrated the potential of AI-based methods in predicting 
COVID-19 severity, identifying epitopes for vaccine design, and forecasting 
mutations in the SARS-CoV-2 virus. 

In this review, we focused our attention on the relevant new fields, such as the 
prediction of the SARS-CoV-2-related protein with AI, such as reinforcement learning 
and AlphaFold. 

2. Classification and structure of SARS-CoV-2 

Coronaviruses that infect birds and mammals belong to the order Nidovirales, 
family Coronaviridae, subfamily Orthocoronaviridae, which includes four genera: 
alphacoronavirus, betacoronavirus, gammacoronavirus, and deltacoronavirus. 
Currently, seven types of coronaviruses are known to infect humans; HCoV-229E, 
HCoV-NL63, HCoV-OC43, and HCoV-HKU1, which are human coronaviruses 
(HCoV) that routinely infect humans, SARS coronavirus (SARS-CoV-1), which 
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caused Severe Acute Respiratory Syndrome (SARS) in 2003, Middle East Respiratory 
Syndrome (MERS) coronavirus (MERS-CoV), which emerged in 2012, and the new 
coronaviruses (SARS-CoV-2) that is currently causing a pandemic [8]. Among the 
seven viruses mentioned above, HCoV-229E and HCoV-NL63 belong to the 
alphacoronavirus genus, and the remaining five viruses (HCoV-OC43, HCoV-HKU1, 
SARS-CoV-1, MERS-CoV, and SARS-CoV-2) is classified into the beta coronavirus 
genus, which is divided into four lineages (A, B, C, and D lineages) (Figure 1) [9]. 
Phylogenetic analysis indicates that all the coronaviruses that infect humans are 
derived from wild animals including bats and rodents. It is thought that coronaviruses 
originally carried by natural hosts including bats and rodents first infected intermediate 
hosts, and then eventually infected humans, causing disease. Regarding SARS-CoV-
2, the sequence of a coronavirus closely related to this virus has been found in bats, 
so, likely, the natural host of SARS-CoV-2 is also a bat. Additionally, a coronavirus 
closely related to SARS-CoV-2 has been detected in Malayan pangolins, so there is a 
theory that Malayan pangolins are an intermediate host, but the details are unknown. 

 
Figure 1. Taxonomy of coronaviridae family [10]. 

The homology of SARS-CoV-2 genomic RNA and viral proteins with SARS-
CoV-1 is 79.0% for genomic RNA, 76.2% for S protein, 94.7% for E protein, 90.1% 
for M protein, and 90.3% for N protein [11]. Betacornavirus lineage B, which is 
included by SARS-CoV-1 and SARS-CoV-2, and an enveloped, single-stranded RNA 
virus characterized by spikes protruding from its surface and an unusually large RNA 
genome whose size is approximately 27 to 32 kb that is the largest among currently 
known RNA viruses [12]. The SARS-CoV-2 genome, whose size is approximately 30 
kb, encodes four structural proteins; spike (S) protein, nucleocapsid (N) protein, 
membrane (M) protein, and envelope protein, each of which is essential for 
constructing the virus particle (Figure 2) [13]. The genomic RNA has a cap structure 
and a poly (A) sequence, at the 5’ end at the 3’ end, respectively, so it can infect host 
cells and function directly as mRNA. There are two open reading frames (ORF1a and 
ORF1b) in approximately 20 kb at the 5’ end of the viral RNA, and the start codon of 
ORF1b is located slightly upstream of the stop codon of ORF1b. Two proteins are 
translated from ORF1a and ORF1b:1a and 1a + 1b, which is synthesized by 
frameshifting of ribosomes. These proteins are cleaved by their proteases into more 
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than a dozen types of nonstructural proteins, including RNA-dependent RNA 
polymerase. 

 
Figure 2. SARS-CoV-2 genome organization and the canonical subgenomic 
mRNAs. The full-length genomic RNA (29,903 nt) which also serves as an mRNA, 
ORF1a and ORF1b are translated [14]. 

3. Interaction of SARS-CoV-2 S protein with a receptor on the cell 

Angiotensin-converting enzyme 2 (ACE2) is recognizable by the S protein on the 
surface of the SARS-CoV-2 or SARS-CoV virus [15]. On the other hand, it has also 
been shown that the S protein of SARS-CoV-2 does not recognize Dipeptidyl 
peptidase 4 (DPP4), the receptor for MERS-CoV, and APV, the receptor for HCoV-
229E [16]. ACE2 and S protein combine like a lock and key, allowing the virus to 
enter human cells [17]. The SARS-CoV-2 virus is very similar to the SARS-CoV virus 
that causes severe acute respiratory syndrome (SARS), but the receptor binding region 
of the S protein significantly enhances the binding affinity of the SARS-CoV-2 virus 
to ACE2 via several mutations [18]. Like all coronaviruses, SARS-CoV-2 uses the S 
glycoprotein to enter host cells, which contains two functional domains: S1 and S2 
RBDs [19]. The two subunits, S1 and S2 are cleaved from the S protein by host cell 
proteases [20]. S1 plays a role in receptor binding via RBD, and S2 plays a role in 
membrane fusion between the viral envelope and the cell [21].  

The SARS-CoV-2 S protein first binds to the host cell’s ACE2 receptor, which 
is a membrane protein with an enzyme domain in the cell membrane of human cells, 
via the S1 RBD [22]. The receptor specificity of the S protein is a major factor 
determining the host range and tissue tropism which is the ability to selectively infect 
specific tissues or organs of coronavirus [23]. It has been identified that ACE2 is the 
receptor for SARS-CoV-1, DPP4 is the receptor for MERS-CoV, aminopeptidase N 
(APN) is the receptor for HCoV-229E, and 9-O-acetylated sialic acid is a receptor for 
HCoV-OC43 and HCoV-HKU1, respectively [24]. The cell entry mechanisms of 
coronaviruses have two routes after binding to the receptor, 1) entry into the cell from 
the cell surface, and 2) entry into the cell via endosomes after the virus particle is taken 
into the cell by endocytosis [25]. When an enveloped virus invades a cell, the viral 
envelope needs to fuse with the cell’s lipid bilayer membrane [26]. In the case of 
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coronaviruses, the S protein subunit S2 contains a fusion peptide, which plays an 
important role in membrane fusion. In SARS-CoV-1, the second route is the main 
pathway, in which the viral S protein taken up by endocytosis is activated by host 
proteases and causes membrane fusion between the endosomes and the viral envelope 
[27].  

Host proteases that can activate the S protein of SARS-CoV-1 include cathepsin, 
trypsin, elastase, and TMPRSS2 [28]. Additionally, the S protein of MERS-CoV is 
cleaved into S1 and S2 by Furin [29]. One of the major differences between SARS-
CoV-1 and SARS-CoV-2 is that SARS-CoV-2 has a characteristic sequence of 
consecutive basic amino acids (RRAR) in the S1/S2 cleavage site of the S protein, 
called “Furin cleavage site” which is absent in SARS-CoV-1, but is present in the S 
protein of MERS-CoV and HCoV-OC43, and efficiently cleaved by Furin and other 
proteases. During the virus replication cycle, the S protein is cleaved into S1 and S2, 
but the location and timing of cleavage differs depending on the types of coronaviruses, 
that is 1) S protein is synthesized in infected cells and then cleaved by host protease, 
and 2) when a virus invades a target cell, the S protein binds to a receptor and is then 
cleaved by host protease [30]. 

The mechanism in SARS-CoV-1 is the latter, so the S protein exists in an 
uncleaved state on the surface of the virus particle, and when the virus invades cells, 
it is cleaved by host proteases (trypsin, elastase, cathepsin, TMPRSS2) [31]. In 
contrast, in the case of SARS-CoV-2, cleavage occurs within the cell after S protein 
synthesis due to the first mechanism [32]. Experiments using pseudotyped viruses 
have shown that the S protein of virus particles exists as cleaved forms of S1 and S2 
[33]. In addition, it has been suggested that the S protein cleavage site with the Furin 
needs SARS-CoV-2 to efficiently infect the human respiratory tract and that the S 
protein activation by TMPRSS2 is important [34]. The RBD in the SARS-CoV-1 S 
protein is composed of a core structure and a receptor binding motif (RBM), and the 
RBM directly binds to the ACE2 surface [35]. The six amino acids Y442, L472, N479, 
D480, T487, and Y491 in the RBM of SARS-CoV-1 are critical for binding to ACE2 
and are involved in determining the host range of SARS-related coronaviruses [36]. 
In SARS-CoV-2, those corresponding to these six amino acids are L455, F486, Q493, 
S494, N501, and Y505, but except for Y505 (Y491 in SARS-CoV-1), different from 
amino acids [37]. Regarding the binding affinity between the RBM of SARS-CoV-2 
and ACE2 in various animal species, such as humans using computer analysis of the 
protein structure, the RBM of SARS-CoV-2 has a high binding affinity for ACE2 in 
humans, civets, pigs, ferrets, cats, orangutans, monkeys (green monkeys), and bats 
(acetonide), and the high binding affinity of mouse and rat ACE2 was predicted to be 
low [38]. 

After membrane fusion, the virus unsheathes and the virus genome is released 
into the cell, whereupon virus replication begins within the cytoplasm [39]. Since 
coronaviruses positive-strand genomic RNA can function as mRNA, it binds to host 
cell ribosomes and synthesizes RNA-dependent RNA polymerase and other 
substances necessary for virus replication [40]. Using the positive-strand genomic 
RNA as a template, the mRNA encoding each viral protein is transcribed based on the 
synthesized complementary negative-strand RNA, and the viral protein is produced 
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[41]. Replication of positive-strand genomic RNA for progeny viruses also takes place. 
Newly synthesized viral structural proteins (S, E, and M proteins) are transported to 
the endoplasmic reticulum-Golgi apparatus intermediate (ERGIC) [42]. The 
nucleocapsid formed by the N protein and viral RNA, together with other structural 
proteins, forms the virus particle and buds into the ERGIC [43]. M and E proteins play 
important roles in the virus budding step [44]. Progeny viruses budded within ERGIC 
are released outside the cell by exocytosis [45]. 

ACE is an enzyme that catalyzes the conversion of the peptide hormone 
angiotensin I (Ang I) to angiotensin II (Ang II) and is well-known as a vasoconstrictor 
that promotes muscle contraction of blood vessel walls and narrows the lumen of blood 
vessels [46]. ACE2, a viral receptor, also plays a role as a vasodilator. This is because 
it balances ACE and relaxes blood vessel walls [47]. Both ACE and ACE2 play pivotal 
roles in the renin-angiotensin system (RAS), which regulates blood pressure and blood 
flow in multiple organs, including the lung, heart, and kidney, and conjugates a 
complex network of enzymes, peptide hormones, and receptors [48]. Angiotensinogen, 
a precursor of Ang secreted by the liver, is cleaved by the kidney enzyme renin to 
produce Ang I, which is converted to Ang II, an eight amino acid hormone peptide by 
ACE [49]. Ang II binds to the type 1 angiotensin receptor (AT1R) on the surface of 
microvascular muscle cells, causing vasoconstriction and promoting salt reabsorption 
in the kidney [50]. Vasoconstriction and salt reabsorption both contribute to increased 
blood pressure [51]. Therefore, when ACE activity becomes abnormally high, the 
amount of Ang II increases, causing hypertension. 

On the other hand, ACE2 catalyzes the eight amino acid peptide of Ang II to a 
seven amino acid peptide (Ang 1–7) [52]. Though its action on a different receptor the 
Mas-1 receptor (MasR), it has the opposite effect on Ang II [53]. Although the detailed 
role of Ang 1–7 in blood pressure regulation is not completely understood, it is 
believed that Ang 1–7 decreases blood pressure and induces vasodilation [18]. Further, 
ACE2 splits Ang I into Ang 1–9, thereby balancing the effects of ACE by removing 
the substrate [54]. By converting Ang II to Ang (1–7) and Ang I to Ang 1–9, ACE2 
plays an important role in maintaining the balance between vasoconstriction and 
vasodilation to sustain blood pressure within an appropriate range [55]. 

4. Reinforcement learning 

4.1. Q-learning in a finite Markov decision process 

Reinforcement learning is a type of machine learning that is a “mechanism for 
AI to automatically learn” and is a technology for machines to automatically identify 
and predict based on learned data [56]. It refers to a technology in which the system 
learns appropriate control methods through repeated trials and error. Its main feature 
is that it can analyze data without human intervention. In conventional machine 
learning, humans had to extract and adjust “feature values”, which are indices for 
learning the data to be analyzed [57]. However, deep learning does not require human 
intervention to extract feature values, so machine learning can be easily performed 
[58]. Machine learning is mainly composed of the following three types: supervised 
learning with correct data, unsupervised learning with no correct data, and 
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reinforcement learning. The machine learns by recognizing many images as correct 
data. This method is called “supervised learning” [59].  

On the other hand, “unsupervised learning “is a method of learning without 
giving correct data [60]. Machines analyze the characteristics of data, making it 
possible to identify and classify data. In reinforcement learning, an agent placed in a 
certain environment act on the environment and seeks a policy that maximizes the 
reward obtained [61]. The learning progresses through a cycle in which the agent acts 
on the environment, the environment updates the state evaluates the action, and 
informs the agent of the state and reward. The action-value function and policy are 
optimized through learning so that the total reward obtained is maximized. The 
reinforcement learning repeats the following steps: 1) the agent acts on the 
environment, 2) the environment gives agents updated states and rewards, and 3) the 
agent modifies its behavioral strategy based on the reward and returns to 1). 

Q-learning, a kind of reinforcement learning, is one of the policy-off Temporal 
Difference (TD) learning of machine learning methods [62]. Q-learning converges to 
the optimal evaluation value when it tries an infinite number of episodes in which all 
states are sufficiently sampled in a finite Markov decision process [63]. In Q-learning, 
each rule to be executed has a value called Q-value, which indicates the effectiveness 
of the rule, which is a pair of a state and an agent’s possible actions under that state, 
and the value is updated each time the agent acts. For example, assume that the agent’s 
current state is St, and there are four possible actions a, b, c, and d in this state. At this 
time, the agent decides the action to take based on the four Q values, Q (St, a), Q (St, 
b), Q (St, c), and Q (St, d). 

Theoretically, the Q value convergence has been proven even if the trial is 
performed an infinite number of times. Still, to expedite the convergence, actions with 
a large Q value are selected with a high probability. As a selection method, select 
randomly with a small probability e, otherwise select the action with the maximum Q 
value, e-Greedy method, and roulette selection used in genetic algorithm, Boltzmann 
distribution as below softmax Equation (1) is used. 

π (St, a) = exp (Q (st, a)/T)/Σp ∈ Aexp (Q (St, p)/T) (1) 

where T is a positive constant and A is the set of possible actions of the agent in state 
St. If the action is decided, then update the state and the Q value of the action. As an 
example, the state St agent chooses action a and the state transitions to st + 1. The 
updated formula for the action-value function, Q function in Q-learning (2) is as 
follows. 

Q (st, at) =Q (st, at) + α [rt + 1 + γmaxat + 1εA (st + 1) Q (st + 1, at + 1) − Q (st, at)] (2)
here, alpha is called a learning rate, which is a numerical value that satisfies the 
conditions described later, and gamma is called a discount rate, which is a constant 
between 0 and 1 inclusive. Also, rt + 1 is the reward the agent got when it transitioned 
to St + 1. The above update formula means that when the current state moves to the 
next state, the Q value is brought closer to the value of the state with the highest Q 
value in the next state. This means that if a state has a high reward, that reward will 
propagate to states that can reach that state with each update. As a result, optimal state 
transition learning is performed. When the learning rate satisfies the following 
conditions, in Q-learning, all Q values converge to the optimal value with probability. 
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Due to this good convergence, many studies have been done on Q-learning, but 
some problems have been pointed out. 

In Q-learning, the Q-function was updated by updating the number of states s× 
the number of actions a. However, as the number of states grows, it becomes 
impractical to represent the Q function with a table. To solve this problem, the Deep 
Q Network (DQN) takes the approach of expressing the Q function with a 
convolutional neural network and devises ways to converge learning [64]. However, 
simply replacing the Q function with a convolutional neural network (CNN) does not 
result in successful learning, so efforts have been made to converge the learning. Deep 
reinforcement learning is a combination of reinforcement learning and deep learning 
methods, and the representative method is this DQN, which is an approximation that 
replaces the action value function, Q function in Q learning with a CNN. 

In the automatic molecular design method based on deep reinforcement learning, 
it is possible to design molecules with optimized physical properties by combining a 
newly devised coarse-grained representation of molecules with deep reinforcement 
learning. 

Reinforcement learning and virtual screening in drug discovery and materials 
design. 

Reinforcement learning is a type of machine learning that uses two factors: agent 
and environment. The agent acts and learns the feedback (reward) from the 
environment regarding that action, thereby deriving a behavioral guideline (strategy) 
to maximize the reward. The main feature is that it is less dependent on datasets. In 
reinforcement learning, based on feedback from the environment, it does not require 
a static dataset unlike unsupervised and supervised learning because the agent learns 
from the experience it collects. In other words, there is no need for data collection, 
preprocessing, or labeling before learning. The reinforcement learning workflow 
generally is as follows; (i) creating the environment: define the environment in which 
the agent operates, including the interface between the agent and the environment—
introducing simulation from the standpoint of safety and experiment ability. (ii) 
Definition of remuneration: define rewards for goals and decide how to calculate 
rewards. Rewards guide the agent’s behavioral choices. (iii) Creating an agent: define 
an agent consisting of a policy and a reinforcement learning algorithm. Specifically, 
the selection of the method of representing the policy: neural networks, lookup tables, 
etc. Choosing an appropriate learning algorithm: neural networks are commonly used 
because they are well suited for learning in large state and action spaces. (iv) Agent 
learning and verification: set conditions for learning, such as stopping conditions, and 
perform agent learning. After learning, verify the policy derived by the agent. 
Reconsider the design of reward signals and strategies, and rerun learning if necessary. 
Reinforcement learning is sample-inefficient, especially for model-free, on-policy 
algorithms, and can take minutes to days to train. Therefore, learning is often 
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parallelized on multiple central processing units (CPUs), Graphics Processing Units 
(GPUs), or clusters. (v) Development of measures: Investigate the learned strategies. 
Based on this result, the process may return to the initial stage of the workflow. 
Specifically, if the learning process and policy derivation do not converge within the 
calculation time, the following items need to be updated before relearning. 

Searching for new compounds is an important initial step in drug discovery and 
materials design, but the problem is that this search requires trial-and-error 
experiments, which are costly and time-consuming. On the other hand, in recent years, 
in silico drug discovery and materials search, in which chemical compounds are 
searched for in a computer, have been attracting attention. However, it is generally 
difficult to search the space of discrete chemical structures of compounds, and an 
efficient method is required. Therefore, in recent years, new search methods using 
deep neural networks (DNNs), such as methods using generative models such as 
variational autoencoders (VAE), have been proposed [65]. These techniques attempt 
to circumvent this problem by learning the mapping between the discrete compound 
space and the continuous latent space by a generative model approximated by DNNs, 
and by allowing compound optimization to be performed in this continuous latent 
space. 

However, this method had some problems. For example, there is no objective 
metric to evaluate whether the learned mapping is suitable for efficient optimization. 
In addition, the learning process of the generative model is separated from the 
optimization process of the compound concerning the score function of the 
optimization target molecule. On the other hand, in methods based on reinforcement 
learning; by thinking of molecular design as a Markov decision process, the agent 
learns the optimal policy through the rewards provided by the surrounding 
environment. 

Virtual screening (VS) in drug discovery is a method of selecting drug candidate 
compounds from many compounds using computers. Naturally, it cannot be used as a 
drug unless it shows medicinal efficacy, so VS mainly focuses on medical efficacy 
and evaluates the presence or absence of activity against drug target proteins. Such VS 
can be broadly divided into methods based on known active compounds (ligand-based 
VS; LBVS) and methods based on protein three-dimensional (3D) structure 
(structured-based VS; SBVS). LBVS is a method that mainly uses similarity 
evaluation of compounds and machine learning and uses known experimental results 
to construct regression prediction models and classification prediction models and 
uses these to select compounds [66]. While drug-candidate compounds can be selected 
with relatively high precision. Because it learns based on the few compounds that have 
been tested against the target protein, it is difficult to develop guidelines for how to 
optimize the chemical structure of selected drug candidate compounds due to the lack 
of novelty in the chemical structure of predicted active compounds and the lack of 3D 
structural knowledge, having been pointed out as major problems. 

On the other hand, SBVS uses protein 3D structure information to evaluate the 
binding affinity between proteins and compounds based on physicochemical 
interactions such as van der Waals forces, Coulomb forces, and hydrogen bonds, and 
select drug candidate compounds [67]. Although this method is less accurate than 
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LBVS because it does not use known experimental information about the target 
protein, it can discover highly novel drug candidates. Furthermore, the estimated 
binding mode between the protein and the compound can be obtained, which can 
provide guidelines for subsequent structural optimization of the compound. Due to the 
above two advantages, it is attracting a lot of attention just like LBVS. SBVS and 
LBVS are used together, and compounds commonly selected by both are sent to in 
vitro experiments. By introducing LBVS methods such as machine learning using 
information on known active compounds, drug candidate compounds are often 
narrowed down to a certain extent before the SBVS process is performed. On the other 
hand, many methods combine SBVS and machine learning, such as machine learning 
methods for protein 3D structures and for predicted binding structures obtained by 
docking calculations [68]. These methods hardly expose the weakness of LBVS, 
which is that the predicted active compound has little novelty in its chemical structure, 
due to the use of the structures of various proteins or the binding structures of various 
proteins and compounds rather than simply using knowledge of known compounds 
for specific proteins. 

In the investigation and selection of target proteins for drug discovery, first, the 
target protein is selected from among the proteins involved in SARS-CoV-2, which is 
the target of drug discovery [69]. In addition to selecting target proteins simply based 
on known infection mechanisms, protein selection is performed using bioinformatics 
methods, such as selecting target proteins using omics analysis. However, inhibiting 
proteins that play an important role in the human body can lead to side effects, so it 
must be avoided as much as possible. If there is an essential protein that has the same 
function as the target protein, even if it is not a perfect match, it is necessary to show 
selectivity despite slight structural differences, which increases the difficulty of drug 
discovery. It is also important to be able to conduct experiments using gene knockout 
rats and mice during non-clinical trials. In addition to these conditions, to perform 
SBVS, it is also necessary that the 3D structure of the protein is known, or that a 
reliable 3D structure can be estimated by homology modeling, etc. Furthermore, the 
final target protein should be determined by considering the difficulty of the drug 
binding site. 

In SBVS, even changes inside chains can greatly affect the results of docking 
calculations, so it is necessary to carefully prepare the protein 3D structure [70]. 
Various protein 3D structure is registered in the Protein Data Bank (PDB), but if the 
complex structure with a compound is known, the local structure is likely to allow the 
compound to bind easily, and highly accurate compound selection can be expected 
[71]. However, the required resolution is strict, and docking calculations require a 
resolution of at least 2.2A to 2.5A. On the other hand, if the protein 3D structure is 
unknown, it is necessary to predict the 3D structure. In SBVS, the ab initio method is 
rarely used due to the resolution mentioned above, and homology modeling is used to 
predict the 3D structure using homologous proteins whose structures are known. 
Examples of homology modeling tools include MODELLER and SWISS-MODEL, 
etc., [72]. 

However, the situation in protein 3D structure prediction changed significantly 
with the release of AlphaFold2 [73]. Furthermore, the ionization state of some protein 
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residues changes depending on the environment. Since interactions due to Coulomb 
forces are stronger than der Waals forces and hydrogen bonds, it is extremely 
important to consider the ionization state. However, changes in the ionization state 
cannot occur during docking calculations or molecular dynamics (MD) simulations. 
Therefore, it is necessary to generate an ionized state in advance, and PROPKA is 
most widely used for this purpose. In most cases, the human body has a nearly neutral 
environment, so an ionized state of pH 7.0 is often generated and used for docking 
calculations. However, it should be noted that proteins present in the stomach, for 
example, must produce an ionization state under acidic conditions. 

In drug binding site prediction and selection, identifying protein surface sites 
(druggable sites) where drugs can be expected to bind is essential for estimating more 
detailed binding structures [74]. The conditions for a druggable site include having a 
concave region called a “pocket” when a compound binds, the concave region being 
of appropriate size and deep enough and having a hydrophobic surface [75]. Among 
these features, widely used methods include POVME, which predicts drug binding 
sites based on the protein surface shape, Fpocket and SiteMap, which make 
estimations by considering the properties of the protein surface, and FTMap, which 
locates small probe molecules and finds energetically stable spaces [76]. When a clear 
active site exists, such as in an enzyme, drug design is often aimed at that active site, 
binding site estimation methods are especially important if a clear concave region 
appears only after a compound bind [77]. 

Examples of such cases include when a protein binds to a compound while 
changing its structure (induced fit), and when designed inhibitors of protein-protein 
interactions [78]. Another aspect of considering whether a site is a druggable site is 
the degree of conservation of the amino acid residues that make up the binding site. 
Significant differences in target protein sequences between experimental animals such 
as rats and mice and humans can lead to differences in drug efficacy, leading to the 
suspension of drug development during clinical trials. In addition, with antiviral drugs, 
it is possible to suppress the acquisition of drug resistance by designing drugs that 
target highly conserved sites that are essential for protein function [79]. For drug 
binding site prediction, binding site prediction using 3D convolutional neural 
networks (3D-CNN) has been actively proposed, such as DeepSite, Kalasanty, and 
DeepSurf, and a method for predicting peptide binding sites rather than compound 
binding sites [80]. 

Evaluation of compounds based on protein 3D structure usually involves 
computational difficulties. Furthermore, even if it is possible to estimate a drug 
candidate compound that promotes or inhibits protein function, many compounds are 
unsuitable as drugs due to problems such as compound solubility and side effects. 
Based on the above, compound filtering is performed from various perspectives. The 
most widely used rule for designed oral drugs is Lipinski’s rule of five. This is a rule 
that Lipinski et al. summarize the chemical properties of drugs approved for oral use. 
It lists four conditions: molecular weight of 500 or less, hydrogen bond accepting 
groups of ten or less, hydrogen bond donating groups of five or less, and water-octanol 
partition coefficient logP of five or less (It’s called the rule of five because everything 
is a multiple of five). QED (quantitative estimate of drug-likeness) is also widely used 
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as a method to evaluate this “oral drug-likeness” using real numbers [81]. 
Additionally, indicators related to side effects and toxicity have been proposed, such 
as PAINS, which summarizes the characteristics of compound substructures that 
frequently cause off-target effects that bind to and inhibit or activate other proteins. In 
addition, LBVS-like methods are often used to select compounds to reduce the amount 
of docking calculations. However, this should not be done too much, as the result 
approaches “the discovery rate of binding compounds is high, but the novelty of the 
compounds is low.” 

Like proteins, the ionization state of compounds also changes depending on the 
environment. Compounds often have a range of ionization states, and an ionization 
state of approximately pH 7.0 ± 2.0 is generated and used for docking calculations 
[82]. Tools that generate the ionization state of compounds include Schrodinger’s 
Epik, ChemAxon’s JChem Protonation Plugin, and the open-source software 
Dimorphite-DL [83]. Additionally, some compounds may have tautomers or optical 
isomers may not be separated and may be grouped in one compound entry. Such 
isomers often have significant effects, such as changes in the interaction mode with 
proteins and the occurrence of collisions with proteins due to changes in the 3D 
structure of the compound [84]. Therefore, it is necessary to generate each isomer for 
these as well. Regarding this, there are JChem Protonation Plugin from ChemAxon, 
LigPrep from Schrodinger, and open-source software Gypsum-DL. 

4.2. Protein-compound docking calculation 

Docking calculation is a method for predicting the binding affinity and binding 
mode of a certain compound to a drug-binding site of a protein. DUD-E is a benchmark 
data set for SBVS, and the enrichment factor (EF) is a ratio that indicates how much 
the proportion of active compounds has increased after selection compared to before 
selection [85]. For example, the EF (EFx%) when selecting the top x% is calculated 
as follows. 

EFx% = (Posx%/Allx%)/(Pos100%/All100%) 
The denominator is the proportion of active compounds included in the 

benchmark data set, and the numerator is the proportion of active compounds after 
selection, which based on docking calculations often narrows down the evaluation 
target to 1/100 or less, so it is often set to a small value such as EF1%. Commercial 
software such as Glid and Surflex have high prediction accuracy, whereas open-source 
software AutoDock and AutoDock Vina tend to have lower prediction accuracy. Also, 
docking calculation takes about ten seconds per compound in Glide SP mode when 
using one CPU core. In addition, GPU-based docking software such as Quantum. 
Ligand. Dock and BUDE have been developed, and AutoDock has been implemented 
with GPU, achieving 250 times faster speed than one CPU core when using NVIDIA 
Titan V [86]. 

While docking calculations consider structural changes in compounds, structural 
changes in proteins are generally not considered. The structure of a protein changes to 
a greater or lesser degree due to the binding of a compound (induced fit), so taking 
protein structural changes into account is important for improving prediction accuracy 
[87]. However, although there are methods that consider structural changes in protein 



Computing and Artificial Intelligence 2024, 2(2), 1279. 
 

13 

side chains during docking calculations, they have not become common due to the 
computational complexity problem [88]. Ensemble docking, in which multiple protein 
structures are generated using the molecular dynamics (MD) method and docking 
calculations are performed for each, is often performed independently of docking 
calculations [89]. However, since the amount of calculation is doubled by the number 
of protein structures used in the docking calculation, the number of applications is 
limited to a small number of cases. 

In protein-compound docking calculations, a reranking method has been 
proposed that outputs multiple predicted bond structures in the docking calculation 
and predicts the interaction mode or interaction energy of the bond structures [90]. 
Therefore, accuracy is improved compared to ranking based on scores obtained by 
docking calculations. 3D-CNNs that use the connection structure as an input are being 
proposed for these as well, but interestingly, there is no significant performance 
difference between methods that use the interaction mode as a feature and deep 
learning methods [91]. This suggests a lack of data for deep learning and sufficient 
maturity of domain knowledge regarding interactions. An example of the application 
of SBVS to COVID-19 is that SBVS was performed on approximately 2100 approved 
drugs and active compounds with IC50 < 10 microns were identified [92]. As a result 
of binding energy estimation using the MM-PBSA method for each compound, since 
they showed good binding energies of −8.73 kcal/mol or less, in vitro assays were 
performed on all of them, and a good hit compound with IC50 < 10 microns was 
obtained. 

4.3. Compound selection using the MD method 

MD methods, which simulate the temporal changes in the coordinates of each 
atom in environments where solutions such as proteins and solvents such as water 
exist, are used in a variety of analyses [93]. Programs that perform MD simulations 
include AMBER, GROMACS, NAMD, CHARMM, and Desmond. In addition, in 
MD simulation, the speedup rate by using accelerators such as GPU is extremely high. 
From the perspective of SBVS, MD simulation makes it possible to evaluate the 
binding strength between a protein and a compound while explicitly considering 
protein structural changes, solvation, entropic effects, etc., making it possible to select 
compounds with higher precision [94]. In MD calculations for SBVS, simulations are 
performed using the predicted binding structure from docking calculations as the 
starting points. For example, several methods of conducting multiple short-term 
simulations and evaluating how stable the predicted bond structure is and of highly 
accurate estimation for binding energy using MM-GBSA, MM-PBSA, or MP-
CAFEE, etc., have been proposed. Since the orientation of even a single side chain is 
important for protein structures in drug discovery, there is a possibility that attention 
will be focused on estimating protein structures to which compounds can easily bind 
using MD simulations [95]. 

5. Prevention of asymptomatic infections of COVID-19 

To control the SARS-CoV-2 pandemic, many countries have placed restrictions 
on non-essential travel, and have subsequently implemented travel restrictions using a 
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combination of the following four strategies to lift restrictions: whitelist, unrestricted 
travel permission; gray list, travelers providing proof of a negative PCR and reverse 
transcription before arrival; red list, travelers quarantined on arrival; blacklist, ban on 
non-essential travel. Decisions about which list to assign to this vary by country and 
are often based on publicly available population-level epidemiological indicators: 
cases per capita, deaths per population, and positivity rate [96]. However, it has been 
pointed out that these indicators are incomplete, with problems such as underreporting, 
bias in symptomatic populations, and reporting delays. 

To address these issues, it will be possible to derive optimal border policies by 
using real-time estimates of COVID-19 prevalence and estimating the number of 
asymptomatic infected people with high accuracy. Unlike normal restriction protocols, 
allocations can be made from limited information, based on demographic information 
and past test results of the incoming population. This system estimates the prevalence 
of COVID-19 based on test results used in the past; i) Adaptively extract a minimum 
set of traveler types based on demographic characteristics, country, region, age, and 
gender, using the least absolute shrinkage and selection operator (LASSO) regression 
from high-dimensional statistic [97]. ii) Estimate the prevalence of each type using the 
empirical Bayes method, deriving prior probabilities from previous experience. This 
system environment is such that the prevalence of COVID-19 is low, two in 1,000 
people and arrival rates vary widely by country. As a result, testing data is unbalanced 
(few cases among those eligible for testing) and sparse (few arrivals from specific 
countries). These data characteristics are sequentially processed using the empirical 
Bayes method to perform appropriate processing. Utilizing the prevalence estimates 
described above, a subset of travelers for PCR testing is derived based solely on 
traveler type. This allocation of tests is done by adjusting the exploration-exploitation 
trade-off between the two objectives. Specifically, i) maximize the number of infected 
asymptomatic travelers based on current information (exploitation), and ii) assign tests 
based on experience to travelers for whom there is no accurate estimate, and accurately 
understand and update the epidemic status (exploration). For a greedy allocation to 
this tradeoff, allocating tests to concentrate on types with high prevalence, test data 
for the types with the highest number of patients and moderate prevalence will not be 
extracted. As the prevalence of COVID-19 is rapidly increasing in some cases, it is 
necessary to understand as much as possible of moderate symptoms to carry out 
appropriate learning. These challenges can be viewed as multi-armed bandit problems 
in reinforcement learning especially batch bandit problems with non-stationary, 
contextual, delayed feedback, and constraints. Information from pipeline tests, that are 
not returning results, must be considered. To solve this exploration-exploitation trade-
off, the algorithm is built based on the Gittins index. Each type introduces a 
deterministic index representing a risk score, incorporating both estimated prevalence 
and uncertainty, according to which allocations are made. 

Reinforcement learning, machine learning, and VS have been utilized in the 
search for inhibitors against SARS-CoV-2-related proteins. machine learning 
techniques are commonly employed to identify potential compounds for drug 
development quickly and accurately. In a study focusing on the SARS-CoV-2 main 
protease (3CLpro), machine learning-based virtual screening was used to predict new 
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inhibitors. Algorithms such as K-nearest neighbor (KNN), support vector machine 
(SVM), and Random Forest (RF) were employed, with RF showing the best 
performance in classifying phytochemicals as potential inhibitors. 

The use of VS combined with molecular docking and molecular dynamics 
simulations has led to the identification of high-potential therapeutic compounds that 
could inhibit SARS-CoV-2 pathogenesis. These advanced computational approaches 
have helped narrow down a list of over 4000 compounds to 26 promising candidates 
[98]. 

In another study, deep reinforcement learning was employed after an initial 
virtual screening to design dual-target inhibitors against SARS-CoV-2 main protease 
(Mpro) and papain-like protease (PLpro) [99]. Additionally, graph generative models 
have been explored for designing novel drug candidates targeting SARS-CoV-2 viral 
proteins. Addressing minor issues, it is important to note that while virtual screening 
is a powerful tool for drug discovery, it can yield a high proportion of false positive 
hits. To mitigate this, machine learning-based approaches are increasingly being 
integrated into virtual screening workflows to enhance accuracy and efficiency. 

6. SARS-CoV-2 protein structure prediction by AlphaFold 
algorithm 

With the increasing number of COVID-19 cases, the AlphaFold algorithm, a 
deep-learning algorithm developed by DeepMind, was utilized to predict various 
protein structures related to COVID-19 [100]. Given the amino acid sequence, and the 
building blocks of a protein, AlphaFold can predict 3D protein structures. The analysis 
of amino acid sequences into 3D structures is typically a long-term and intensive 
process, involving visualization techniques for a variety of protein and structural 
analyses, including nuclear magnetic resonance, cryo-electron microscopy, and X-ray 
crystallography, and is costly. However, AlphaFold, which is an AI system predicting 
the 3D structure of proteins from amino acid sequence information and won the 
CASP13 (Critical Assessment of Structure Prediction) competition, an international 
competition for protein 3D structure prediction, eschews these techniques and uses a 
DNN that predicts distances and angles between amino acids scored with gradient 
descent, resulted in achieving a dramatic high score [72]. Proteins have a variety of 
functions due to the folding of linear chains of amino acids linked by peptide bonds to 
form 3D structures. By elucidating this structure, it will be possible to elucidate the 
proteins involved in most diseases involving proteins, especially those related to 
SARS-CoV-2. However, the method by which proteins fold into their final 3D 
structure remains a black box. Because the theoretical number is astronomical, it has 
been pointed out that enumerating all possible configurations of a typical protein by 
brute force calculations takes a long time and is known as the “protein folding 
problem.” By using free modeling, AlphaFold can ignore similar structures in 
predictions, which is particularly useful for COVID-19. 

AlphaFold consists of three different layers of DNNs [101]. The first layer 
consists of a variational autoencoder stacked with an attention model to generate 
realistic fragments based on a single amino acid sequence. In the second layer, it is 
divided into two sublayers. The first sublayer uses a 1D Convolutional Neural 
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Network (CNN) on the contact map to optimize inter-residue distances. This is a 2D 
amino acid residue distance representation by projection of the contact map into one 
dimension for input into the CNN. In the second sublayer, it optimizes the scoring 
network and the degree to the generated substructures observed like proteins using 
CNN with 3D structure. After normalization, a third neural network layer is added that 
scores the generated proteins against the actual model. AlphaFold’s structure module 
takes as input the features of the amino acid sequence corresponding to the input 
sequence and the pair representation features of the MSA (Multiple Sequence 
Alignment) extracted by the Evoformer part and outputs the coordinates of all atoms 
and the prediction reliability score pIDDT for each residue [70]. AlphaFold2 consists 
of four modules. i) Data preparation module: using the amino acid sequence (input 
sequence) of the predicted 3D structure as a query, create MSA from the database and 
search template 3D structure (template structure) from the database using 
bioinformatics tools. However, the use of a template 3D structure is optional. ii) 
Embedding module: the creation of an MSA representation that links raw MSA with 
target sequence information and a pair representation that records the relative 
positional relationship between residues [102]. Dense vector transformation with 
embedding, which fully connected layer without activation for sparse input values. iii) 
Evoformer (Transformer for molecular evolution) module: feature extraction from 
MSA and pair representation [103]. Information exchange between MSA and pair 
representation. Axial attention and triangular attention are performed keeping in mind 
the characteristics of MSA and the physical constraints of spatial graphs (proteins). iv) 
Structure module: integration of MSA representation, residue pair representation, and 
current 3D structure using IPA (Invariant point attention) module. Prediction of 
relative movement instructions for each residue (= (3, 3) rotation matrix and (x, y, z) 
translation vector for the number of residues) and side chain torsion angle. The 
structure module consists of eight layers with shared weights [104]. Each layer updates 
the features S of the amino acid sequence and the 3D representation plotted in the 
coordinate system Ti (corresponding to object coordinates) defined for each residue. 
Ti is a pair of a rotation matrix Ri, which represents a rotation that superimposes the 
coordinate system defined for each residue on the global coordinate system, and a 
vector ti, which represents a translation. 

Ti = (Ri, ti) (5) 
This model was trained on Protein Data Bank, a freely accessible database 

containing 3D structures of larger biomolecules, including proteins and nucleic acids. 
The output is a distribution map containing the secondary structure and accessible 
surfaces predicted. After cross-validation of the results for the COVID-19 spike 
protein using the experimentally determined structure, they submitted predictions for 
proteins whose structure is not readily determined. These proteins have membrane 
proteins, proteins 3a, nsp2, nsp4, nsp6, and C-terminal domains such as papain. The 
structures of these proteins may represent docking sites for new drugs and therapeutics 
and could aid drug development in efforts to contain COVID-19. Utilizing a protein 
structure prediction AI program for the unique structure of the “mutant strain” of 
SARS-CoV-2 has the potential to change the way research is done in the field of 
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biology, allowing researchers to search for potential targets for new treatments before 
samples physically arrive. 

AlphaFold2 has been released, making highly accurate protein structure 
prediction results available [105]. The premise of SBVS is that there is a reliable 3D 
protein structure, and as the 3D structures of proteins have been known so far, the 
targets for SBVS are naturally limited. In contrast, with the advent of AlphaFold, it 
has become possible to perform SBVS on proteins whose structures are unknown. 

AlphaFold has significantly advanced the prediction of protein structures, 
including those of SARS-CoV-2, the virus responsible for COVID-19. The algorithm 
predicts the three-dimensional structures of proteins from their amino acid sequences, 
a process that traditionally requires extensive experimental techniques such as cryo-
electron microscopy, nuclear magnetic resonance, and X-ray crystallography.  
I. S protein 

The SARS-CoV-2 spike (S) glycoprotein, which is the main target of antibodies, 
has been a primary focus for AlphaFold predictions. These predictions have helped 
elucidate the structural features of the spike protein, including its interaction with the 
angiotensin-converting enzyme 2 (ACE2) receptor, which is critical for the virus’s 
entry into human cells [106]. AlphaFold’s predictions have also been used to study the 
structural changes in different variants of the spike protein, such as those in the 
Omicron variant, to understand their impact on vaccine efficacy and viral transmission 
[107]. 
II. Other SARS-CoV-2 proteins 

AlphaFold has also been used to predict the structures of several other SARS-
CoV-2 proteins that are less well-studied but are essential for the virus’s lifecycle. 
These include the membrane protein, Nsp2, Nsp4, Nsp6, and the papain-like 
proteinase (C-terminal domain) [106]. 
III. Methodology and Validation 

AlphaFold employs a neural network architecture that integrates evolutionary, 
physical, and geometric constraints of protein structures. The algorithm uses multi-
sequence alignments and a deep neural network to predict distances and angles 
between amino acids, achieving high accuracy even when no homologous structures 
are available [108]. The accuracy of AlphaFold’s predictions has been validated by 
comparing them with experimentally determined structures, showing close agreement 
in many cases [106]. Thus, AlphaFold has revolutionized the field of protein structure 
prediction, particularly for SARS-CoV-2, by providing high-accuracy models that 
facilitate drug development and enhance our understanding of viral biology. 

7. The application of AI in SARS-CoV-2-related proteins 

AI has been extensively applied in various aspects related to SARS-CoV-2 
proteins, particularly in COVID-19 drug discovery and vaccine design. Here are some 
examples of AI applications in this field: 
I) In prediction of vaccine candidates, AI tools like XGBoost have been used to 

predict vaccine candidates from non-structural proteins of SARS-CoV-2 [109]. 
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II) In prediction of HLA-binding peptides, feed-forward neural networks have been 
employed to predict HLA-binding peptides from the SARS-CoV-2 virus based 
on binding stability [109] 

III)  As for the design of multiple-epitope vaccines, deep neural networks have been 
utilized for the prediction and design of multi-epitope vaccines that can manage 
the mutation of the virus [109]. 
These applications demonstrate how AI and machine learning play a crucial role 

in accelerating the discovery of effective drugs, vaccines, and treatment strategies for 
combating COVID-19 by leveraging the understanding of SARS-CoV-2-related 
proteins. 

The computational techniques have been instrumental in various aspects related 
to SARS-CoV-2 research. These techniques have been applied in computational 
protein design for COVID-19 research, including the rapid design of peptides for 
detecting SARS-CoV-2 proteins [110]. In silico methods, computational tools, and 
bioinformatics resources have been utilized to annotate SARS-CoV-2 genomes and 
understand viral proteins [110]. Additionally, a computational study focused on 
cooperative binding to multiple SARS-CoV-2 proteins has been conducted, aiming to 
identify compounds with potential therapeutic effects through systems computational 
analysis [111]. These computational approaches play a crucial role in advancing our 
understanding of the virus and developing strategies for diagnosis and treatment. 

The application of reinforcement learning, machine learning, and virtual 
screening in SARS-CoV-2-related proteins has shown promising results in identifying 
potential inhibitors for the virus. Studies have utilized machine learning-based virtual 
screening, molecular docking, and molecular dynamics simulations to identify novel 
compounds with the potential to inhibit key proteins like the main protease (Mpro) 
and papain-like protease (PLpro) of SARS-CoV-2 [97]. These approaches have led to 
discovering inhibitors effectively targeting these proteins, offering new avenues for 
developing antiviral agents. Additionally, in silico reinforcement learning has been 
employed to design spike/ACE2 inhibitory macrocycles, showcasing the use of AI in 
drug discovery for COVID-19. The combination of deep reinforcement learning, and 
virtual screening has been instrumental in optimizing hit molecules and developing 
effective non-covalent inhibitors for SARS-CoV-2 proteins. Furthermore, a novel 
protein design framework using reinforcement learning has been proposed to design a 
variant of the human ACE2 that binds more tightly to the SARS-CoV-2 S protein, 
potentially aiding in developing therapeutic solutions for COVID-19. 

The application of AI in the study of SARS-CoV-2-related proteins has been a 
significant area of research, particularly in the context of the COVID-19 pandemic 
[112]. AI has been utilized in various domains including drug repurposing, structural 
biology, diagnostics, and vaccine development [113]. AI has played a crucial role in 
determining the structure of SARS-CoV-2 proteins. By predicting the structures of 
viral proteins, AI helps researchers understand the virus’s mechanisms and identify 
potential targets for drug development. 
I. Protein structure prediction and analysis 

AI techniques have been used to predict and analyze the structure of SARS-CoV-
2 proteins, which is crucial for understanding the virus and developing targeted 
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therapies. For example, deep learning models have been applied to predict protein 
structures and interactions [72]. 
II. Epitope prediction for vaccine design 

AI algorithms have been employed to identify potential epitopes on SARS-CoV-
2 proteins that could be targets for vaccine development. One study used 
computational analysis to compare SARS-CoV-2 nucleocapsid protein epitopes with 
those of related coronaviruses [114]. 
III. Drug target identification 

AI-powered approaches have been used to identify potential drug targets among 
SARS-CoV-2 proteins. For instance, graph convolutional neural networks have been 
applied to predict drug-target interactions [114]. 
IV. Vaccine candidate ranking 

Machine learning tools like Vaxign-ML have been developed to rank non-
structural proteins as potential SARS-CoV-2 vaccine candidates using network-based 
algorithms [115]. 
V. Inhibitor discovery 

AI has been utilized to rapidly screen large compound libraries to identify 
potential inhibitors of SARS-CoV-2 proteins. One study used deep docking to screen 
1.3 billion compounds for potential inhibitors of the SARS-CoV-2 main protease [114]. 
VI. Antigenicity prediction 

AI models have been used to predict the protective antigenicity of SARS-CoV-2 
proteins. The spike (S) protein was found to have the highest protective antigenicity 
score [116]. 
VII. Immunogenic landscape prediction 

AI techniques have been applied to predict the immunogenic landscape of SARS-
CoV-2, which can guide universal vaccine design strategies [116]. These applications 
demonstrate how AI is being leveraged to accelerate research on SARS-CoV-2 
proteins, potentially leading to faster development of effective drugs and vaccines 
against COVID-19. The integration of AI with biological and structural data has 
enabled researchers to rapidly analyze vast amounts of information and generate 
insights that can guide experimental work in the fight against the pandemic. 

8. Conclusions 

The SARS-CoV-2, like other coronaviruses, utilizes the S glycoprotein with S1 
and S2 domains to enter host cells by binding to ACE2 receptors. Mutations in the S 
protein’s RBD can enhance its affinity to ACE2. Searching for new compounds in 
COVID-19 involves trial-and-error experiments, but methods like deep reinforcement 
learning and structure-based virtual screening aid in drug discovery. AlphaFold, an AI 
system by DeepMind, predicts protein structures accurately by combining physical 
and biological approaches. It uses deep learning to predict 3D protein structures from 
amino acid sequences, achieving atomic accuracy even without homologous structures 
available. 

The SARS-CoV-2 virus is very similar to the SARS-CoV virus that causes SARS, 
but several mutations in the RBR of the S protein greatly enhance the binding affinity 
of the SARS-CoV-2 virus to ACE2. The SARS-CoV-2 uses the S glycoprotein to enter 
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host cells, which has two functional domains: S1 and S2 RBD. New search methods 
using DNNs, such as methods using generative models such as VAE can learn the 
mapping between the discrete compound space and the continuous latent space by a 
generative model approximated by DNNs, and by allowing compound optimization to 
be performed in this continuous latent space. The learning process in the generative 
model is separated from the optimization process of the compound concerning the 
score function of the optimization target molecule. On the other hand, in methods 
based on reinforcement learning; by thinking of molecular design as a Markov 
decision process, the agent learns the optimal policy based on the rewards provided by 
the surrounding environment. By utilizing the AI program of a protein structure 
prediction for the unique structure of the “mutant strain” of SARS-CoV-2, it has the 
potential to search for potential targets for new drugs for SARS-CoV-2. 
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