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Abstract: Rationale and objectives: Cribriform patterns are accepted as aggressive variants 

of prostate cancer. These adverse pathologies are closely associated with early biochemical 

recurrence, metastasis, castration resistance, and poor disease-related survival. A few 

publications exist to diagnose these two adverse pathologies with multiparametric magnetic 

resonance imaging (mpMRI). Most of these publications are retrospective and are not studies 

that have made a difference in diagnosing adverse pathology. It is also known that fusion 

biopsies taken from lesions detected in mpMRI are insufficient to detect these adverse 

pathologies. Our study aims to diagnose this adverse pathology using machine learning-based 

radiomics data from MR images. Materials and methods: A total of 88 patients who had 

pathology results indicating the presence of cribriform pattern and prostate adenocarcinoma 

underwent preoperative MRI examinations and radical prostatectomy. Manual slice-by-slice 

3D volumetric segmentation was performed on all axial images. Data processing and machine 

learning analysis were conducted using Python 3.9.12 (Jupyter Notebook, Pycaret Library). 

Results: Two radiologists, SE and MAG, with 7 and 8 years of post-graduate experience, 

respectively, evaluated the images using the 3D-Slicer software without knowledge of the 

histopathological findings. One hundred seventeen radiomic tissue features were extracted 

from T1 weighted (T1W) and apparent diffusion coefficient (ADC) sequences for each patient. 

The interobserver agreement for these features was analyzed using the intraclass correlation 

coefficient (ICC). Features with excellent interobserver agreement (ICC > 0.90) were further 

analyzed for collinearity between predictors using Pearson’s correlation. Variables showing a 

very high correlation (r ≥ ±0.80) were disregarded. The selected features for T1W and ADC 

images were First-order maximum, First-order skewness, First-order 10th percentile for ADC, 

and Gray level size zone matrix, Large area low gray level emphasis for T1W.As a result of 
the classification of PyCaret, the three best models were found. A single model was obtained 

by blending these three models. AUC, accuracy, recall, precision, and F1 scores were 0.79, 

0.77, 0.85, 0.82, and 0.83, respectively. Conclusion: ML-based MRI radiomics of prostate 

cancer can predict the cribriform pattern. This prognostic factor cannot be determined through 

qualitative radiological evaluation and may be overlooked in preoperative histopathological 

specimens. 
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1. Introduction 

Cribriform pattern, among the adverse pathological features of prostate cancer, 
leads to a higher incidence of extraprostatic extension, lymph node involvement, 
metastasis, and biochemical recurrence compared to prostate adenocarcinoma. Due to 
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these characteristics, the mortality rates associated with prostate cancer are higher in 
patients exhibiting these patterns. These lesions are a diverse group of prostate 
pathologies that can be challenging to diagnose. These lesions encompass a spectrum 
of conditions, including normal anatomical variations, benign proliferative lesions, 
premalignant conditions, suspicious findings, clearly malignant tumors, and 
aggressive entities. In recent years, our understanding of cribriform prostate 
adenocarcinoma (CrP4) and intraductal carcinoma of the prostate (IDC-P) has 
significantly advanced. There is now a growing body of evidence suggesting that the 
presence of these morphologies plays an important role in clinical decision-making 
for managing prostate cancer. Therefore, it is crucial to accurately recognize and report 
the architectural features of CrP4 and IDC-P [1–8]. 

Prostate multiparametric magnetic resonance imaging (mpMRI) is a valuable 
technique for detecting tumor lesions in the prostate. However, despite its usefulness, 
there are still cases where clinically significant lesions are undetected [9]. It has been 
concluded that mpMRI may accurately identify prostate cancer (PCa) tumors located 
in the peripheral zone (PZ). Additionally, the mean apparent diffusion coefficient 
(ADC) value and ADC ratio can serve as predictors for the presence of the cribriform 
pattern in PCa [10]. 

In recent years, there have been significant advancements in imaging technology 
and analysis methods, leading to the emergence of a framework called radiomics, 
which is a method of texture analysis that extracts imaging features from digital 
images by converting them into mineable, quantifiable data, revealing the 
heterogeneity of tumors. This framework involves extracting comprehensive high-
dimensional features from imaging data and utilizing data mining techniques to 
develop analytical models that enhance decision support. Radiomics encompasses 
various features, including texture and shape, thereby providing rich information for 
precision medicine [11–13]. 

Numerous studies focusing on prostate radiomics have demonstrated promising 
outcomes in evaluating pathological characteristics, predicting treatment response, 
and stratifying risk groups. Radiomics features show promise as markers for assessing 
the aggressiveness of prostate cancer at both the histopathological and genomic levels. 
By correlating radiomics features with histopathological findings and genomic data, 
researchers are gaining insights into the aggressiveness and potential outcomes of 
prostate cancer. This has the potential to improve risk stratification, treatment 
selection, and personalized management for patients with prostate cancer [14,15]. 

The role of artificial intelligence in prostate cancer has been investigated because 
artificial intelligence (AI) may have the potential to revolutionize pathologic diagnosis 
and cancer patient management by serving as a predictive and prognostic biomarker. 
AI-based systems can analyze digitally scanned histopathology slides, enabling the 
differentiation between benign and malignant cells and low-grade and high-grade 
tumors. Deep learning models can process patient data from various sources, including 
individual or multimodal combinations, to identify patterns that can predict responses 
to different therapeutic options, assess the risk of recurrence or progression, and 
determine the prognosis for newly diagnosed patients. By leveraging AI-based 
models, treatment planning for prostate cancer patients can be significantly improved, 
and the efficiency and cost-effectiveness of pathology laboratories can be enhanced 
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[16–20]. However, to the best of our knowledge, there have been no studies in the 
English literature evaluating the predictive performance of ML-based MRI radiomics 
and the cribriform pattern for prostate cancer using multi-classifier models. Our study 
aims to assess the predictive performance of machine learning (ML)-based prostate 
cancer radiomics using Magnetic Resonance Imaging (MRI) to detect the cribriform 
pattern. 

Patients 

This retrospective study was approved by the institutional review board on 13 
September 2022, with approval number 20/280. The data were collected from patients 
with prostatic carcinoma who underwent radical prostatectomy between January 2018 
and November 2022. Only patients who underwent radical prostatectomy were 
included because the cribriform pattern can be present focally and may be missed in 
prostate biopsy specimens. A total of 88 patients who underwent preoperative MRI 
examination were identified. All patients had PIRADS 3 or above lesions. The cohort 
was divided into a training set (n = 70 subjects) and a test set (n = 18 subjects). 

2. Materials and methods 

2.1. Imaging technique and radiomics analysis 

All patients underwent standardized multiparametric MRI, which included 
multiplanar T1-weighted imaging (T1WI), axial diffusion-weighted imaging (DWI), 
and dynamic contrast-enhanced MRI (DCE-MRI) sequences at 3 Tesla using a phased 
array body coil. An endorectal coil was not used, and the imaging protocol adhered to 
the PI-RADS v2.1 standards. The MRI scans were performed on a MAGNETOM 
Avanto system from Siemens Medical Solutions in Erlangen, Germany. Apparent 
diffusion coefficient (ADC) maps were generated based on the DW images with all 
acquired b-values, and a calculated b = 1600 s/mm2 image was produced for PI-RADS 
classification. DCE-MRI was performed using intravenous gadobutrol (Gadavist, 
Bayer) contrast agent at a dose of 0.1 mL/kg body weight (0.1 mmol/kg), infused at a 
rate of 2 mL/s, with imaging initiated simultaneously with the administration of 
contrast. 

Two radiologists, SE and MAG, with 7 and 8 years of post-graduate experience, 
evaluated the images using the 3D-Slicer software (version 4.11) [21]. They were 
blinded to the histopathological findings. DICOM images of the axial T1-weighted 
acquisition were obtained from the PACS system. The texture features, including first-
order and second-order features, were extracted using Slicer-Radiomics (PyRadiomics 
v3.0.1) software (Figure 1). Before radiomics processing, the T1-weighted signals 
within the lesion volumes of interest (VOIs) were normalized to a range between the 
mean value plus three times the standard deviation of the signal intensity within the 
VOI, as previously described [22,23]. The spatial resampling voxel size was set to 1 
× 1 × 1 mm, and gray-level discretization was performed using a fixed bin width of 64 
gray levels. 
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Figure 1. MRI-based radiomics workflow and the Hematoxylin Eosin (H&E) section are examples of cribriform 
patterns in prostate cancer. 
GLCM, Gray-level co-occurrence matrix; GLDM, Gray-level difference method; GLRLM, Gray-level run-length matrix; GLSZM, Graylevel 
size zone; NGTDM, Neighbouring Gray Tone Difference Matrix. 

2.2. Statistical evaluation 

Statistical analysis was conducted using IBM SPSS Statistics software (version 
24.0, IBM Corp., Armonk, NY). Descriptive statistics were reported as frequencies 
for categorical variables and mean ± standard deviation or median for numerical 
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variables. The normality of continuous variables was assessed using the Kolmogorov-
Smirnov test. A p-value less than 0.05 was considered statistically significant. 

2.3. Dimension reduction 

The interobserver agreement for these features was assessed using the intraclass 
correlation coefficient (ICC). Features that demonstrated excellent interobserver 
agreement (ICC > 0.90) were further examined for collinearity between predictors 
using Pearson’s correlation. Variables that exhibited a very high correlation (r ≥ ±0.80) 
were excluded from the analysis.The selected features for T1-weighted (T1W) and 
apparent diffusion coefficient (ADC) images were first-order Maximum, first-order 
Skewness, and first-order 10th Percentile for ADC, as well as Gray level zone matrix, 
large area low gray level emphasis for T1W. 

2.4. Data handling and machine learning analysis 

Data handling and machine learning analysis were conducted using Python 2.3 
in Jupyter Notebook with the Pycaret library. [24]. The “classic method” random 
forest classifier was employed to select and reduce features [25]. The interobserver 
agreement for these features was assessed using the intraclass correlation coefficient 
(ICC). Features demonstrating excellent interobserver agreement (ICC > 0.90) were 
further examined for collinearity between predictors using Pearson’s correlation. The 
tune model function in Pycaret classification was utilized to identify the optimal 
hyperparameters. This function tunes the model’s hyperparameters and generates a 
scoring grid with cross-validated scores by fold. The best model is selected based on 
the defined metric in the optimized parameter. The get_metrics function allows access 
to the metrics evaluated during cross-validation, and custom metrics can be added or 
removed using the add_metric and remove_metric functions . 

The data was split into a training set (70%) and a test set (30%). Z-score scaling 
was applied for normalization, and 5-fold cross-validation was performed to avoid 
overfitting due to limited dataset size. The synthetic minority oversampling technique 
was used to address the issue of imbalanced datasets. 

Fourteen machine learning algorithms were employed to determine significant 
models. The predictive performance of these algorithms was compared using metrics 
such as AUC, accuracy, recall, precision, and F1 scores. The top three models based 
on accuracy and AUC were evaluated on the test set. To optimize results, these three 
models were combined into a single ensemble model, leveraging the strengths of each 
model to improve overall performance and predictive accuracy. A receiver operating 
characteristic (ROC) and learning curves were plotted. AUC, accuracy, recall, 
precision, and F1 scores were provided along with the confusion matrix. 

3. Results 

The patients had a mean age of 66.05. Among them, there were 49 cases (55%) 
of pure prostatic adenocarcinoma and 39 cases (45%) of cribriform pattern prostatic 
adenocarcinoma, all of which were tumors. A total of 117 texture features were 
extracted. The 14 machine learning algorithms demonstrated varying AUC and 
accuracy values on the train set, ranging from 0.50% to 0.76% and 31% to 72%, 
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respectively. The top three models identified were the AdaBoost classifier, with an 
AUC of 0.76 and an accuracy of 72%; the random forest classifier, with an AUC of 
0.80 and an accuracy of 71%; and the extra trees classifier, with an AUC of 0.78 and 
an accuracy of 71% (Table 1). The voting classifier, which combines these models, 
yielded the following scores: AUC of 0.77, accuracy of 0.79, recall of 0.85, precision 
of 0.82, and F1 score of 0.83 (Table 2). The confusion matrix and classification report, 
along with the receiver operating curve (ROC), illustrating the predictive performance 
of the blended model, are presented in Figure 2. Figure 3 shows the decision boundary 
and hyperparameters of the blended model. 

Table 1. The predictive performances of machine learning based MRI radiomics models for cribriform pattern of 
prostate cancer. 

Model Accuracy AUC Recall Prec. F1 

Random Forest Classifier  0.7143 0.8061 0.8155 0.7906 0.7978  

Extra Trees Classifier 0.7145 0.7864 0.8156 0.7916 0.7964  

Gradient Boosting Classifier 0.6429 0.7609 0.6889 0.7912 0.7106  

Logistic Regression 0.6714 0.7639 0.7111 0.8076 0.7591  

Ada Boost Classifier 0.7286 0.7622 0.7033 0.8178 0.7699  

Light Gradient Boosting Machine 0.7143 0.7417 0.7489 0.8256 0.7837  

K Neighbors Classifier 0.6714 0.8075 0.6887 0.8363 0.7291  

Linear Discriminant Analysis 0.7000 0.6522 0.7733 0.8061 0.7382  

Naive Bayes 0.6514 0.6428 0.6467 0.8181 0.6143  

Decision Tree Classifier 0.6714 0.6006 0.7911 0.7386 0.7615  

Quadratic Discriminant Analysis 0.5857 0.5872 0.6057 0.7086 0.6547  

Dummy Classifier 0.5143 0.5000 0.0000 0.0000 0.0000  

SVM-Linear Kernel 0.5000 0.0000 0.6179 0.4945 0.5258  

Ridge Classifier 0.7000 0.0000 0.7733 0.8051 0.7832  

Table 2. The predictive performances of blended machine learning models (random 
forest, extra trees, Ada boost) for cribriform pattern of prostate cancer. 

Fold  Accuracy  AUC  Recall  Prec.  F1  

0  0.7857  0.7760  0.9000  0.8182  0.8571  

1  0.8571  0.9000  0.8000  1.0000  0.8889  

2  0.7143  0.7200  0.8000  0.8000  0.8000  

3  0.6429  0.6887  0.7778  0.0000  0.7368  

4 0.8571 0.9556 1.0000 0.8182 0.9000 

Mean  0.7714  0.7994  0.8556  0.6273  0.8056  

Std  0.0833  0.1119  0.0837  0.5089  0.0608  
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(a) (b) 

 
 

(c) (d) 

 
(e) 

Figure 2. Plot graphics of blended three machine learning classifiers: (a) confusion matrix; (b) learning curve; (c) 
classification report; (d) receiver operating characteristic curve; (e) Kolmogorov Smirnov statistic plot. 
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(a) (b) 

Figure 3. Plot graphic and hyperparameters of blended three machine learning classifiers: (a) decision boundary; (b) 
hyperparameters of blended models with Pycaret classification. 

4. Discussion 

This study assessed the predictive performance of machine learning-based MR 
radiomics for prostatic adenocarcinoma, focusing on the cribriform pattern. The 
machine learning algorithms exhibited high rates of AUC and accuracy. The voting 
classifier model, in particular, demonstrated excellent accuracy in predicting the 
cribriform status. 

It is worth noting that the cribriform pattern has been associated with a poorer 
prognosis, characterized by lower survival rates and a higher prevalence of advanced 
stage, positive surgical margin, lymph node metastasis, lymphovascular invasion, and 
recurrence. Therefore, it has been suggested that the cribriform pattern could be 
utilized for risk stratification and guiding therapy management [4,26–29]. 

Early diagnosis in patients with prostate cancer having cribriform pathology is of 
critical importance in selecting the most appropriate patient management. Detecting 
the cribriform pattern in prostate biopsies beforehand is challenging. Thus, risk 
stratification to better identify patients at risk is necessary to identify low-grade 
prostate cancer that needs active surveillance. This difficulty has been attempted to be 
overcome through imaging techniques. 

In a study using PSMA PET/CT, the incidence of the cribriform pattern in 
patients with prostate cancer was reported to be 39% [30]. Truong et al. published their 
study, which compares the results of fusion biopsies using MRI combined ultrasound 
fusion with the specimens obtained after radical prostatectomy; they demonstrated that 
only 17.3% of the cribriform pattern could be detected using MRI [31]. These studies 
indicate that even with targeted biopsies using MRI, the sensitivity for detecting 
patients with cribriform architecture is not high. Therefore, there is a need for 
advanced imaging techniques that can detect the lesion with higher accuracy. To our 
knowledge, this is the first report that has investigated the potential role and the 
predictive performance of machine learning-based MRI radiomics for detecting the 
cribriform pattern in prostate cancer in the existing English literature. 

Our study exposed that the best three models for predicting the cribriform pattern 
in prostate cancer were the AdaBoost, random forest, and extra trees classifiers. These 
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models demonstrated high AUC and accuracy rates, indicating their predictive solid 
performance. It is important to note that increasing the number of training samples 
likely improved the generalization of these models. Therefore, we recommend 
conducting further studies with a larger patient population to enhance and validate our 
results. 

This study has several limitations that should be acknowledged. Firstly, it is 
essential to note that the study design was retrospective, which inherently carries the 
risk of data loss and potential biases. Secondly, the patient population included in the 
study was relatively small. We specifically focused on the histopathological findings 
of radical prostatectomy specimens to ensure the presence of the cribriform pattern, as 
tumor heterogeneity could lead to its absence in prostate biopsy specimens. However, 
a larger patient population would be beneficial for further validation and 
generalization of the results. To address these limitations, we recommend conducting 
a prospective, multi-center study that evaluates the predictive value of machine 
learning models for the cribriform pattern and its impact on prognosis. Such a study 
would provide more robust and reliable evidence for this purpose. 

5. Conclusion 

Qualitative radiological examinations alone are insufficient for accurately 
determining the presence of the cribriform pattern in prostate cancer lesions. 
Additionally, this pattern can be missed on preoperative histopathological specimens 
due to the inherent heterogeneity of the lesion. Therefore, there is a clear need for an 
objective method to identify and predict the cribriform pattern reliably. In our study, 
we propose that machine learning-based MRI radiomics of prostate cancer can 
effectively predict the presence of the cribriform pattern. By utilizing advanced 
algorithms and analyzing a wide range of imaging features, this approach has the 
potential to provide valuable guidance to clinicians in making informed decisions 
regarding therapy management. It offers an objective and quantifiable method to assist 
in accurately identifying and characterizing the cribriform pattern, ultimately 
improving patient care and outcomes. 
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