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Abstract: Rationale and objectives: Cribriform patterns are accepted as aggressive variants 

of prostate cancer. These adverse pathologies are closely associated with early biochemical 

recurrence, metastasis, castration resistance, and poor disease-related survival. A few 

publications exist to diagnose these two adverse pathologies with multiparametric magnetic 

resonance imaging (mpMRI). Most of these publications are retrospective and are not studies 

that have made a difference in diagnosing adverse pathology. It is also known that fusion 

biopsies taken from lesions detected in mpMRI are insufficient to detect these adverse 

pathologies. Our study aims to diagnose this adverse pathology using machine learning-based 

radiomics data from MR images. Materials and methods: A total of 88 patients who had 

pathology results indicating the presence of cribriform pattern and prostate adenocarcinoma 

underwent preoperative MRI examinations and radical prostatectomy. Manual slice-by-slice 

3D volumetric segmentation was performed on all axial images. Data processing and 

machine learning analysis were conducted using Python 3.9.12 (Jupyter Notebook, Pycaret 

Library). Results: Two radiologists, SE and MAG, with 7 and 8 years of post-graduate 

experience, respectively, evaluated the images using the 3D-Slicer software without 

knowledge of the histopathological findings. One hundred seventeen radiomic tissue features 

were extracted from T1 weighted (T1W) and apparent diffusion coefficient (ADC) sequences 

for each patient. The interobserver agreement for these features was analyzed using the 

intraclass correlation coefficient (ICC). Features with excellent interobserver agreement 

(ICC > 0.90) were further analyzed for collinearity between predictors using Pearson’s 

correlation. Variables showing a very high correlation (r ≥ ±0.80) were disregarded. The 

selected features for T1W and ADC images were First-order maximum, First-order skewness, 

First-order 10th percentile for ADC, and Gray level size zone matrix, Large area low gray 

level emphasis for T1W.As a result of the classification of PyCaret, the three best models 

were found. A single model was obtained by blending these three models. AUC, accuracy, 

recall, precision, and F1 scores were 0.79, 0.77, 0.85, 0.82, and 0.83, respectively. 

Conclusion: ML-based MRI radiomics of prostate cancer can predict the cribriform pattern. 

This prognostic factor cannot be determined through qualitative radiological evaluation and 

may be overlooked in preoperative histopathological specimens. 
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1. Introduction 

Cribriform pattern, among the adverse pathological features of prostate cancer, 

leads to a higher incidence of extraprostatic extension, lymph node involvement, 

metastasis, and biochemical recurrence compared to prostate adenocarcinoma. Due 
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to these characteristics, the mortality rates associated with prostate cancer are higher 

in patients exhibiting these patterns. These lesions are a diverse group of prostate 

pathologies that can be challenging to diagnose. These lesions encompass a spectrum 

of conditions, including normal anatomical variations, benign proliferative lesions, 

premalignant conditions, suspicious findings, clearly malignant tumors, and 

aggressive entities. In recent years, our understanding of cribriform prostate 

adenocarcinoma (CrP4) and intraductal carcinoma of the prostate (IDC-P) has 

significantly advanced. There is now a growing body of evidence suggesting that the 

presence of these morphologies plays an important role in clinical decision-making 

for managing prostate cancer. Therefore, it is crucial to accurately recognize and 

report the architectural features of CrP4 and IDC-P [1–8]. 

Prostate multiparametric magnetic resonance imaging (mpMRI) is a valuable 

technique for detecting tumor lesions in the prostate. However, despite its usefulness, 

there are still cases where clinically significant lesions are undetected [9]. It has been 

concluded that mpMRI may accurately identify prostate cancer (PCa) tumors located 

in the peripheral zone (PZ). Additionally, the mean apparent diffusion coefficient 

(ADC) value and ADC ratio can serve as predictors for the presence of the 

cribriform pattern in PCa [10]. 

In recent years, there have been significant advancements in imaging 

technology and analysis methods, leading to the emergence of a framework called 

radiomics, which is a method of texture analysis that extracts imaging features from 

digital images by converting them into mineable, quantifiable data, revealing the 

heterogeneity of tumors. This framework involves extracting comprehensive high-

dimensional features from imaging data and utilizing data mining techniques to 

develop analytical models that enhance decision support. Radiomics encompasses 

various features, including texture and shape, thereby providing rich information for 

precision medicine [11–13]. 

Numerous studies focusing on prostate radiomics have demonstrated promising 

outcomes in evaluating pathological characteristics, predicting treatment response, 

and stratifying risk groups. Radiomics features show promise as markers for 

assessing the aggressiveness of prostate cancer at both the histopathological and 

genomic levels. By correlating radiomics features with histopathological findings 

and genomic data, researchers are gaining insights into the aggressiveness and 

potential outcomes of prostate cancer. This has the potential to improve risk 

stratification, treatment selection, and personalized management for patients with 

prostate cancer [14,15]. 

The role of artificial intelligence in prostate cancer has been investigated 

because artificial intelligence (AI) may have the potential to revolutionize pathologic 

diagnosis and cancer patient management by serving as a predictive and prognostic 

biomarker. AI-based systems can analyze digitally scanned histopathology slides, 

enabling the differentiation between benign and malignant cells and low-grade and 

high-grade tumors. Deep learning models can process patient data from various 

sources, including individual or multimodal combinations, to identify patterns that 

can predict responses to different therapeutic options, assess the risk of recurrence or 

progression, and determine the prognosis for newly diagnosed patients. By 

leveraging AI-based models, treatment planning for prostate cancer patients can be 
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significantly improved, and the efficiency and cost-effectiveness of pathology 

laboratories can be enhanced [16–20]. However, to the best of our knowledge, there 

have been no studies in the English literature evaluating the predictive performance 

of ML-based MRI radiomics and the cribriform pattern for prostate cancer using 

multi-classifier models. Our study aims to assess the predictive performance of 

machine learning (ML)-based prostate cancer radiomics using Magnetic Resonance 

Imaging (MRI) to detect the cribriform pattern. 

1.1. Patients 

This retrospective study was approved by the institutional review board on 13 

September 2022, with approval number 20/280. The data were collected from 

patients with prostatic carcinoma who underwent radical prostatectomy between 

January 2018 and November 2022. Only patients who underwent radical 

prostatectomy were included because the cribriform pattern can be present focally 

and may be missed in prostate biopsy specimens. A total of 88 patients who 

underwent preoperative MRI examination were identified. All patients had PIRADS 

3 or above lesions. The cohort was divided into a training set (n = 70 subjects) and a 

test set (n = 18 subjects). 

1.2. Imaging technique and radiomics analysis 

All patients underwent standardized multiparametric MRI, which included 

multiplanar T1-weighted imaging (T1WI), axial diffusion-weighted imaging (DWI), 

and dynamic contrast-enhanced MRI (DCE-MRI) sequences at 3 Tesla using a 

phased array body coil. An endorectal coil was not used, and the imaging protocol 

adhered to the PI-RADS v2.1 standards. The MRI scans were performed on a 

MAGNETOM Avanto system from Siemens Medical Solutions in Erlangen, 

Germany. Apparent diffusion coefficient (ADC) maps were generated based on the 

DW images with all acquired b-values, and a calculated b = 1600 s/mm2 image was 

produced for PI-RADS classification. DCE-MRI was performed using intravenous 

gadobutrol (Gadavist, Bayer) contrast agent at a dose of 0.1 mL/kg body weight (0.1 

mmol/kg), infused at a rate of 2 mL/s, with imaging initiated simultaneously with the 

administration of contrast. 

Two radiologists, SE and MAG, with 7 and 8 years of post-graduate experience, 

evaluated the images using the 3D-Slicer software (version 4.11) [21]. They were 

blinded to the histopathological findings. DICOM images of the axial T1-weighted 

acquisition were obtained from the PACS system. The texture features, including 

first-order and second-order features, were extracted using Slicer-Radiomics 

(PyRadiomics v3.0.1) software (Figure 1). Before radiomics processing, the T1-

weighted signals within the lesion volumes of interest (VOIs) were normalized to a 

range between the mean value plus three times the standard deviation of the signal 

intensity within the VOI, as previously described [22,23]. The spatial resampling 

voxel size was set to 1 × 1 × 1 mm, and gray-level discretization was performed 

using a fixed bin width of 64 gray levels. 
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Figure 1. MRI-based radiomics workflow and the Hematoxylin Eosin (H&E) section are examples of cribriform 

patterns in prostate cancer. 

GLCM, Gray-level co-occurrence matrix; GLDM, Gray-level difference method; GLRLM, Gray-level 
run-length matrix; GLSZM, Graylevel size zone; NGTDM, Neighbouring Gray Tone Difference Matrix. 

1.3. Statistical evaluation 

Statistical analysis was conducted using IBM SPSS Statistics software (version 

24.0, IBM Corp., Armonk, NY). Descriptive statistics were reported as frequencies 

for categorical variables and mean ± standard deviation or median for numerical 

variables. The normality of continuous variables was assessed using the 

Kolmogorov-Smirnov test. A p-value less than 0.05 was considered statistically 

significant. 

1.4. Dimension reduction 

The interobserver agreement for these features was assessed using the intraclass 

correlation coefficient (ICC). Features that demonstrated excellent interobserver 
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agreement (ICC > 0.90) were further examined for collinearity between predictors 

using Pearson’s correlation. Variables that exhibited a very high correlation (r ≥ 

±0.80) were excluded from the analysis.The selected features for T1-weighted 

(T1W) and apparent diffusion coefficient (ADC) images were first-order Maximum, 

first-order Skewness, and first-order 10th Percentile for ADC, as well as Gray level 

zone matrix, large area low gray level emphasis for T1W. 

1.5. Data handling and machine learning analysis 

Data handling and machine learning analysis were conducted using Python 2.3 

in Jupyter Notebook with the Pycaret library. [24]. The “classic method” random 

forest classifier was employed to select and reduce features [25]. The interobserver 

agreement for these features was assessed using the intraclass correlation coefficient 

(ICC). Features demonstrating excellent interobserver agreement (ICC > 0.90) were 

further examined for collinearity between predictors using Pearson’s correlation. The 

tune model function in Pycaret classification was utilized to identify the optimal 

hyperparameters. This function tunes the model’s hyperparameters and generates a 

scoring grid with cross-validated scores by fold. The best model is selected based on 

the defined metric in the optimized parameter. The get_metrics function allows 

access to the metrics evaluated during cross-validation, and custom metrics can be 

added or removed using the add_metric and remove_metric functions . 

The data was split into a training set (70%) and a test set (30%). Z-score scaling 

was applied for normalization, and 5-fold cross-validation was performed to avoid 

overfitting due to limited dataset size. The synthetic minority oversampling 

technique was used to address the issue of imbalanced datasets. 

Fourteen machine learning algorithms were employed to determine significant 

models. The predictive performance of these algorithms was compared using metrics 

such as AUC, accuracy, recall, precision, and F1 scores. The top three models based 

on accuracy and AUC were evaluated on the test set. To optimize results, these three 

models were combined into a single ensemble model, leveraging the strengths of 

each model to improve overall performance and predictive accuracy. A receiver 

operating characteristic (ROC) and learning curves were plotted. AUC, accuracy, 

recall, precision, and F1 scores were provided along with the confusion matrix. 

2. Results 

The patients had a mean age of 66.05. Among them, there were 49 cases (55%) 

of pure prostatic adenocarcinoma and 39 cases (45%) of cribriform pattern prostatic 

adenocarcinoma, all of which were tumors. A total of 117 texture features were 

extracted. The 14 machine learning algorithms demonstrated varying AUC and 

accuracy values on the train set, ranging from 0.50% to 0.76% and 31% to 72%, 

respectively. The top three models identified were the AdaBoost classifier, with an 

AUC of 0.76 and an accuracy of 72%; the random forest classifier, with an AUC of 

0.80 and an accuracy of 71%; and the extra trees classifier, with an AUC of 0.78 and 

an accuracy of 71% (Table 1). The voting classifier, which combines these models, 

yielded the following scores: AUC of 0.77, accuracy of 0.79, recall of 0.85, precision 

of 0.82, and F1 score of 0.83 (Table 2). The confusion matrix and classification 
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report, along with the receiver operating curve (ROC), illustrating the predictive 

performance of the blended model, are presented in Figure 2. Figure 3 shows the 

decision boundary and hyperparameters of the blended model. 

Table 1. The predictive performances of machine learning based MRI radiomics models for cribriform pattern of 

prostate cancer. 

Model Accuracy AUC Recall Prec. F1 

Random Forest Classifier  0.7143 0.8061 0.8155 0.7906 0.7978  

Extra Trees Classifier 0.7145 0.7864 0.8156 0.7916 0.7964  

Gradient Boosting Classifier 0.6429 0.7609 0.6889 0.7912 0.7106  

Logistic Regression 0.6714 0.7639 0.7111 0.8076 0.7591  

Ada Boost Classifier 0.7286 0.7622 0.7033 0.8178 0.7699  

Light Gradient Boosting Machine 0.7143 0.7417 0.7489 0.8256 0.7837  

K Neighbors Classifier 0.6714 0.8075 0.6887 0.8363 0.7291  

Linear Discriminant Analysis 0.7000 0.6522 0.7733 0.8061 0.7382  

Naive Bayes 0.6514 0.6428 0.6467 0.8181 0.6143  

Decision Tree Classifier 0.6714 0.6006 0.7911 0.7386 0.7615  

Quadratic Discriminant Analysis 0.5857 0.5872 0.6057 0.7086 0.6547  

Dummy Classifier 0.5143 0.5000 0.0000 0.0000 0.0000  

SVM-Linear Kernel 0.5000 0.0000 0.6179 0.4945 0.5258  

Ridge Classifier 0.7000 0.0000 0.7733 0.8051 0.7832  

Table 2. The predictive performances of blended machine learning models (random 

forest, extra trees, Ada boost) for cribriform pattern of prostate cancer. 

Fold  Accuracy  AUC  Recall  Prec.  F1  

0  0.7857  0.7760  0.9000  0.8182  0.8571  

1  0.8571  0.9000  0.8000  1.0000  0.8889  

2  0.7143  0.7200  0.8000  0.8000  0.8000  

3  0.6429  0.6887  0.7778  0.0000  0.7368  

4 0.8571 0.9556 1.0000 0.8182 0.9000 

Mean  0.7714  0.7994  0.8556  0.6273  0.8056  

Std  0.0833  0.1119  0.0837  0.5089  0.0608  
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(a) (b) 

 
 

(c) (d) 

 
(e) 

Figure 2. Plot graphics of blended three machine learning classifiers: (a) confusion matrix; (b) learning curve; (c) 

classification report; (d) receiver operating characteristic curve; (e) Kolmogorov Smirnov statistic plot. 
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(a) (b) 

Figure 3. Plot graphic and hyperparameters of blended three machine learning classifiers: (a) decision boundary; (b) 

hyperparameters of blended models with Pycaret classification. 

3. Discussion 

This study assessed the predictive performance of machine learning-based MR 

radiomics for prostatic adenocarcinoma, focusing on the cribriform pattern. The 

machine learning algorithms exhibited high rates of AUC and accuracy. The voting 

classifier model, in particular, demonstrated excellent accuracy in predicting the 

cribriform status. 

It is worth noting that the cribriform pattern has been associated with a poorer 

prognosis, characterized by lower survival rates and a higher prevalence of advanced 

stage, positive surgical margin, lymph node metastasis, lymphovascular invasion, 

and recurrence. Therefore, it has been suggested that the cribriform pattern could be 

utilized for risk stratification and guiding therapy management [4,26–29]. 

Early diagnosis in patients with prostate cancer having cribriform pathology is 

of critical importance in selecting the most appropriate patient management. 

Detecting the cribriform pattern in prostate biopsies beforehand is challenging. Thus, 

risk stratification to better identify patients at risk is necessary to identify low-grade 

prostate cancer that needs active surveillance. This difficulty has been attempted to 

be overcome through imaging techniques. 

In a study using PSMA PET/CT, the incidence of the cribriform pattern in 

patients with prostate cancer was reported to be 39% [30]. Truong et al. published 

their study, which compares the results of fusion biopsies using MRI combined 

ultrasound fusion with the specimens obtained after radical prostatectomy; they 

demonstrated that only 17.3% of the cribriform pattern could be detected using MRI 

[31]. These studies indicate that even with targeted biopsies using MRI, the 

sensitivity for detecting patients with cribriform architecture is not high. Therefore, 

there is a need for advanced imaging techniques that can detect the lesion with 

higher accuracy. To our knowledge, this is the first report that has investigated the 

potential role and the predictive performance of machine learning-based MRI 

radiomics for detecting the cribriform pattern in prostate cancer in the existing 

English literature. 

Our study exposed that the best three models for predicting the cribriform 
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pattern in prostate cancer were the AdaBoost, random forest, and extra trees 

classifiers. These models demonstrated high AUC and accuracy rates, indicating 

their predictive solid performance. It is important to note that increasing the number 

of training samples likely improved the generalization of these models. Therefore, 

we recommend conducting further studies with a larger patient population to 

enhance and validate our results. 

This study has several limitations that should be acknowledged. Firstly, it is 

essential to note that the study design was retrospective, which inherently carries the 

risk of data loss and potential biases. Secondly, the patient population included in the 

study was relatively small. We specifically focused on the histopathological findings 

of radical prostatectomy specimens to ensure the presence of the cribriform pattern, 

as tumor heterogeneity could lead to its absence in prostate biopsy specimens. 

However, a larger patient population would be beneficial for further validation and 

generalization of the results. To address these limitations, we recommend conducting 

a prospective, multi-center study that evaluates the predictive value of machine 

learning models for the cribriform pattern and its impact on prognosis. Such a study 

would provide more robust and reliable evidence for this purpose. 

4. Conclusion 

Qualitative radiological examinations alone are insufficient for accurately 

determining the presence of the cribriform pattern in prostate cancer lesions. 

Additionally, this pattern can be missed on preoperative histopathological specimens 

due to the inherent heterogeneity of the lesion. Therefore, there is a clear need for an 

objective method to identify and predict the cribriform pattern reliably. In our study, 

we propose that machine learning-based MRI radiomics of prostate cancer can 

effectively predict the presence of the cribriform pattern. By utilizing advanced 

algorithms and analyzing a wide range of imaging features, this approach has the 

potential to provide valuable guidance to clinicians in making informed decisions 

regarding therapy management. It offers an objective and quantifiable method to 

assist in accurately identifying and characterizing the cribriform pattern, ultimately 

improving patient care and outcomes. 
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