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ABSTRACT: Ongoing research on the temporal and spatial distribution 

of algae ecological data has caused intricacies entailing incomprehensible 

data, model overfit, and inaccurate algal bloom prediction. Relevant 

scholars have integrated past historical data with machine learning (ML) 

and deep learning (DL) approaches to forecast the advent of harmful algal 

blooms (HAB) following successful data-driven techniques. As potential 

HAB outbreaks could be predicted through time-series forecasting (TSF) 

to gauge future events of interest, this research aimed to holistically review 

field-based complexities, influencing factors, and algal growth prediction 

trends and analyses with or without the time-series approach. It is deemed 

pivotal to examine algal growth factors for useful insights into the growth 

of algal blooms. Multiple open issues concerning indicator types and 

numbers, feature selection (FS) methods, ML and DL forms, and the time 

series-DL integration were duly highlighted. This algal growth prediction 

review corresponded to various (chronologically-sequenced) past studies 

with the algal ecology domain established as a reference directory. As a 

valuable resource for beginners to internalize the algae ecological 

informatics research patterns and scholars to optimize current prediction 

techniques, this study outlined the (i) aforementioned open issues with an 

end-to-end (E2E) evaluation process ranging from FS to predictive model 

performance and (ii) potential alternatives to bridge the literature gaps. 

KEYWORDS: data-driven prediction method; harmful algal bloom; time 

series forecasting; machine learning; deep learning 

1. Introduction

The escalation of HAB trends over the past years has caused much global concern. The HABs entail

various bloom types that cause harm without exception as HAB toxins adversely impact human, 

environmental, and economic health while their non-toxic counterparts could prove detrimental to 

fishery-based resources and tools[1]. Rapid algae generation and growth, which depict its susceptibility to 

shifts in environmental conditions[2], have been thoroughly examined in ecological informatics as typical 

ecological data issues. As an emerging field that integrates computational methods for ecological 

evaluation, ecological informatics regards the intensive nature of ecological data with its valuable content 

and the necessity to convey empirical outcomes and make research-, conservation-, and resource 
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management-oriented decisions[3]. The conceptual framework associates ecological components 

(genomes, organisms, populations, communities, ecosystems, and landscapes) with data management, 

analysis, and synthesis. 

Early prevention and algae growth control were executed as various places were impacted by this 

natural phenomenon until 2015 and continue to be affected to date. Nevertheless, several prediction-

oriented issues resulting from spatial and temporal algae distribution remain unaddressed despite the 

exertion of time and effort to forecast HAB growth. The rapid generation and growth of algae under 

favorable environmental conditions could differ on short timescales ranging from several days to weeks 

or hours[4]. The concentration could shift abruptly as current chlorophyll content could occasionally be 

five times more concentrated than before and vice versa. This complexity further instigates the non-

linearities and ambiguities in ascertaining HAB-favouring conditions, thus complicating the prediction 

process and causing forecasting errors due to fluctuations and ambiguities[5]. 

Apart from the nature of algal blooms, highly non-linear data and time-varying processes that remain 

vague[6] hinder current physical prediction models from establishing a clear coefficient, thus highlighting 

the correlation between every factor in algal bloom prediction and the multiple variable data sources 

required for analysis[7]. Such shortcomings are further hampered by prolonged durations and high 

financial costs and undermine prediction accuracy. Spatial and temporal distributions are impacted by 

multiple climatic, geographical, and ecological elements. Temporal distribution, which catalyzes the 

interconnection of indicators, inevitably increases prediction-related intricacies[8]. Summarily, all the 

aforementioned concerns have rendered prediction to become more complex and imprecise. 

Effective algae bloom modeling and prediction in such an intricate system is significantly challenging 

given the presence of physical, chemical, and biological processes and their subsequent interrelations. 

Water pollution or eutrophication with algae implies an intricate operation of all potentially impacting 

factors[9]. The drawbacks could be resolved using ML or artificial intelligence (AI) for insights into the 

algal community. In line with previous studies, multiple scholars have employed past historical data to 

forecast algal bloom by integrating ML methods following the successful data-driven approach in algal 

growth prediction. Essentially, ML methods constituting artificial neural network (ANN), support vector 

machine (SVM), decision trees (DT), random forest (RF), and regression offer a principled set of 

mathematical techniques to elicit meaningful features from the data in generating distinctive patterns that 

could be manipulated for decision-making, estimating, and forecasting purposes. 

The necessity to predict future HAB events has resulted in the incorporation of time series, which 

considers the temporal aspect. Multiple time-series approaches were implemented through the traditional 

method or integration with ML techniques following past research. Regarding the primary variation 

between the time series and traditional statistical forecasting, data points in the traditional statistical 

prediction (classification) could be independent of one another while the counterparts in time series 

denote a temporal nature that induces interdependence. This time dimension adds an explicit ordering 

to data points that should be conserved to offer vital information to learning algorithms[10]. 

Traditional time-series statistical forecasting models resembling auto-regressive integrated moving 

average (ARIMA) and its variants, such as autoregressive models (AR), moving average (MA), and 

autoregressive and moving average (ARMA) is extensively employed to make predictions. The models 

prove inappropriate for non-linear data evaluation despite their capacity to determine temporal behavior 

and generate satisfactory forecasts for linear time-series data[10] given their function in assuming specific 

distribution or function types of time series, thus deterring them from ascertaining the intricate 
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underpinnings of non-linear associations and depicting reality. As most of the models disregarding 

variable interdependencies in terms of multivariate time series induced low prediction accuracy, 

initiatives to incorporate DL in environmental study problems have intensified as the DL model reflects 

optimal performance for time-series data forecasting. Research on DL, such as recurrent neural network 

(RNN) and its variant, long short-term memory (LSTM), remains scarce given the recent integration of 

time series with DL in algal growth prediction studies[7]. 

The input-output variable relationship denotes a crucial study component. Concerning aquatic 

systems, information involving the impacts of physical, chemical, and biological water quality parameters 

on algal dynamics is necessary for optimal system internalization and management. Other elements 

(meteorological) also induce algae growth parallel to the growing data. On practical grounds, an efficient 

prediction approach denotes intricate algorithms, a holistic understanding of the blooms mechanism, and 

a reliable dataset with essential components. Determining this relationship by assessing the 

aforementioned set of information would generate insightful data to unveil the interconnection between 

factors. It is crucial to review past literature on algae prediction techniques and present complexities in 

determining an optimal algal growth prediction method from various aspects as precise decision-making 

arise from a sound interpretation of forecasting in various prediction tasks. The same framework could 

be generalized across other domains if the dynamics and comprehension of algae are addressed factor-

wise. In this vein, the worldwide trend on water resource conservation and protection could be sustained.  

The remaining sections are organized as follows: Section 2 provides an overview of the algae 

ecology, algal growth factor analysis, and research concerns; Section 3 highlights current literature on the 

data-driven method through ML, traditional time series, and time series with DL; Section 4 elaborates 

on open issues and future study directions; Section 5 summarizes the research. 

2. Background study of algae ecology 

Radmer[11] identified two distinct algae types that commonly live in water or damp environments: 

macroalgae and microalgae. Macroalgae imply bigger algae (seaweed) while microalgae denote the 

smaller counterpart (phytoplankton or cyanobacteria and green and red algae, red algae). Algae require 

(i) the sun as its primary source of energy, (ii) water, (iii) conducive temperature, and (iv) nutrients for 

growth: elements that could be easily found in water. Algae also require carbon dioxide, which is 

generated from pollutants (smoke, fumes from cars, and a little carbon dioxide) when plants breathe at 

night in the absence of sunlight, to produce sugar. The HAB implies an excess of harmful algae. Water 

conditions with nutrient-rich water columns (specifically phosphorus and nitrogen) following regular fish-

feeding and fertilizer (or sewage) discharge into an aquatic system catalyze HAB growth. Toxic HAB 

could prove detrimental to human health and aquatic life (including fishes) in the form of ailments and 

demise, respectively, whereas non-toxic counterparts could damage fishery resources[1]. Harmful algal 

blooms could resemble foam, scum, or mats on the water surface in different colors and release life-

threatening toxins (microcystin or MC, anatoxin, cylindropermopsin, and saxitoxin). In this regard, HAB 

has become a serious environmental concern on a global scale[12]. Discolored water could also be a HAB 

indicator. Table 1 presents common HABs and their implications on human health following Bui et al.[12]. 
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Table 1. Common HABs and health effect. 

Organism Water type Color Toxin Health effects 

Alexandrium sp. Salt Red or brown Saxitoxins Paralytic shellfish poisoning, paralysis, death 

Karenia brevis Salt Red Brevetoxins Gastrointestinal illness, muscle cramps, seizures, paralysis, 

respiratory problems 

Pseudo-nitzschia Salt Red or brown Domoic acid Amnesiac shellfish poisoning, vomiting, diarrhea, confusion, 
seizures, permanent short-term memory loss, death 

Microcystis Fresh Blue-green MC Gastrointestinal illness, liver damage 

2.1. Factor analysis affecting algae growth 

Past literature demonstrated the severity and essentiality of algae prediction as a means of early 

prevention. Based on Whigham and Recknagel[13], recent advancements in algal bloom modeling 

encounter two drawbacks: insufficient ecological information for deductive modeling and inefficient data 

analysis for inductive modeling. The HAB heterogeneity must be evaluated to derive a comprehensive 

understanding and control their formation[14]. In other words, algal growth analysis would provide an 

optimal understanding of the aquatic system. The analysis method is an initial step pre-predictive 

modeling to gain useful insights and internalize algal ecology factors and interconnections in managing 

two primary elements: algae interrelationships and dynamics. 

Many efforts have been exerted to evaluate algae ecology to comprehend the dynamics, ambiguity, 

and non-linear nature of algal growth prediction. Several studies solely emphasized this evaluation sans 

predictive work. The analysis techniques were performed by categorizing the algae. As some algorithms 

could also be utilized in pre-processing or FS, the algal bloom method analysis requires a thorough 

examination to internalize the pertinent factors and interrelations in algal ecology. 

All algae species depend on light as a fundamental input for photosynthesis and nutrients for growth 

and reproduction: nitrogen and phosphorus. Factors encompassing water temperature, turbidity, mixing, 

competition, and grazing also hold relevance to the algae population dynamics. For example, Huang and 

Zheng[15] listed 20 environmental parameters entailing water temperature (WT), ambient temperature, 

secchi disk depth (SDD), transparency, turbidity, solar radiation, total phosphorus (TP), total nitrogen 

(TN), ammonia-nitrogen (NH3–N), ammonium-nitrogen (NH4–N), nitrate nitrogen (NO3–N), 

ammonium ion concentration, dissolved oxygen (DO), conductivity, alkalinity, calcium concentration, 

total suspended solids (TSS), silica, pH, salinity, and chlorophyll-a (Chl-a) that catalyze cyanobacteria 

bloom. 

Chlorophyll, the green pigment in leaves, enables plants to create energy from light using 

photosynthesis. The amount of photosynthesizing plants are implicitly assessed by measuring chlorophyll. 

Such plants would be algae or phytoplankton in a water sample. Overall, chlorophyll denotes the measure 

of all (dead or living) green pigments while Chl-a implies the measure of a pigment portion that remains 

alive. Sunlight, temperature, nutrients, and wind collectively impact both the prevalence of algae and 

Chl-a concentration. The first algae outbreak or ‘bloom’ may occur and grow in spring when nutrients 

are in rich supply and the water temperature and days turn warm. Algae concentration prediction, which 

could be measured in total chlorophyll form with raw water, was previously executed as a robust algal 

growth indicator[16]. 

Tian et al.[17] highlighted water quality, hydrology, and climate conditions as the key determinants 

of chlorophyll dynamics while Bui et al.[12] indicated that WT, pH, and DO were positively related to 

cynobacterial community dynamics and MC concentration. Meanwhile, nutrient level, phosphate, and 
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nitrogen concentration were also identified as fundamental elements. Water quality-oriented research 

ascertains the chemical and physical attributes of water bodies and potential contaminants that reduce 

the water quality and forecast algae growth. Notably, Chl-a also constitutes the biological elements in 

water quality research. Table 2 lists the most extensively-assessed qualitative water quality parameters 

following Gholizadeh et al.[18]. 

Table 2. Common qualitative measures. 

Water quality parameter Abbreviation Units 

chlorophyll-a Chl-a mg/L 

Secchi disk depth SDD m 

Temperature T ˚C 

Coloured dissolved organic ma CDOM mg/L 

Total organic carbon TOC mg/L 

Dissolved organic carbon DOC mg/L 

Total suspended matters TSM mg/L 

Turbidity TUR NTU 

Sea surface salinity SSS PSU 

Total phosphorus TP mg/L 

Total nitrogen TN mg/L 

Ortho-phosphate PO4 mg/L 

Chemical oxygen demand  COD mg/L 

Biochemical oxygen demand BOD mg/L 

Electrical conductivity EC Μs/cm 

Ammonia nitrogen NH3-N mg/L 

Wells et al.’s[14] study extensively covered past and present algal blooms with emphasis on how 

climate shifts globally impact the marine planktonic system with elaborations on the connection of 

specific environmental aspects (temperature, stratification, light, ocean acidification, precipitation-

induced nutrient inputs, and grazing) that undergo alterations amidst climate change. The 2013 United 

States Environmental Protection Agency (EPA) analysis summarised the implications of climate change 

on HABs with multiple mechanisms: warmer WT, altered salinity and rainfall patterns, high carbon 

dioxide concentration, coastal upwelling, and rising sea levels. 

Other elements including microclimates and the thermal, hydric, and radioactive conditions in the 

first meter above and below the Earth surface may optimize prediction performance despite the paucity 

of scholarly attention. Microclimates are frequently disregarded in ecology and evolution despite 

empirical proof of their essentiality in ecosystem dynamics and processes, such as the organism responses 

to climate change[18] although Kearney and Porter[19] emphasized the importance of understanding 

microclimates in ecology given its representation of the physical conditions experienced by organisms. 

Amsler et al.’s[20] initial work that examined algal abundance with microclimate in 1992 aimed to 

morphologically, physiologically, and behaviourally connote the early germling life-history stages of algal 

for survival. Resultantly, the planktonic environment is chemically heterogeneous on a macroalgal 

propagule scale.  

Biological oceanographers have come to acknowledge the high variability of nutrient concentration 

in water columns, which could then be assessed with classical approaches. Following Shi et al. [21], the 
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cyanobacterial dynamics sensitivity to climate conditions differed across regions based on 

hydrodynamics, morphology, and specified chemical parameters. This phenomenon exemplifies one of 

the microclimates examined in this study. Some of the crucial variables were elaborated on throughout 

the current review. All the aforementioned and additional variables were classified into several categories 

(see Table 3). 

Table 3. Categorical variables. 

Abbreviation Variables Factor category 

Chl-a Chlorophyl-a Biological factor (BF) 

BC Bloom cases (incident) 

SGR Specific growth rate 

WT Water temperature Physical factor (PF) 

Salin Salinity 

DO Dissolved oxygen 

Turb Turbidity 

pH pH 

SDD Secchi disk depth 

SS Suspended solid 

DC Depth code 

FI Freshwater inflow 

EV Estuarine velocity 

SRT Salinity recovery time 

TIN Total inorganic nitrogen Chemical factor (CF) 

PO4  Orthophosphate 

TP Total phosphorus 

TN Total nitrogen 

AN Ammonia nitrogen 

NO2–N Nitrite nitrogen 

NO3–N Nitrate nitrogen 

COD Chemical oxygen demand 

Si Silica 

Hg Mercury 

Pb Lead 

Zn Zinc 

Al Aluminum 

Rf Rainfall Meteorological factor (MF) 

Tmin Minimum temperature  

Tavg Average temperature 

Tmax Maximum temperature 

Hum Humidity 

SR Daily solar radiation 

WS Daily average wind speed 
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Algal bloom-oriented research could also include factors constituting population density and algal 

bloom cases. The elements are explicitly inspired by a distinctive domain, such as the dengue outbreak 

where population density and dengue cases are key determinants of dengue prediction[21,22]. Shi et al.[21] 

indicated that population density impacts the dengue outbreak following economic and income variances. 

Essentially, ‘dengue cases’ denote one of the key variables recognized by relevant scholars[23–26]. It could 

prove advantageous to thoroughly examine human factors for algae prediction as high nutrient loading 

and carbon dioxide concentration is induced by human activities. Careful consideration or adoption of 

additional determinants with data fusion could provide high-impact outcomes for the prediction process. 

Extensive research on whether data fusion optimizes prediction performance proves necessary to date. 

2.2. Ecological data issue and challenges 

Notably, HAB research and management struggle to ascertain species variety, life histories, 

ecosystems, and subsequent implications. The potentially-harmful algae ecology that does not fall under 

one distinctive group[1] leads to dynamic growth and complex prediction. Issues concerning dynamics 

and interconnections frequently appear in ecological modeling parallel to the aforementioned factors 

catalyzing algal growth. 

Frequently correlated algae ecological variables have caused redundant information as high algae 

data interrelations primarily result from the indicator connections that are highly associated with one 

another. For example, multiple variables in aquatic environments implicitly or explicitly rely on the 

amount of oxygen available. Algae prediction needs to consider abiotic factors and their association with 

WT and nutrient concentration[27]. This occurrence has instigated low data quality, ambiguities, and 

variabilities. The formation of algal blooms depicts high uncertainty in addition to spatial variation 

following complex mechanisms.  

Kim[28] thoroughly outlined dynamic-related issues. Specifically, dynamic algae growth, which could 

differ based on short timescales (hours to days), has rendered the identification of favorable HAB 

conditions a significant empirical effort among scholars. Algae concentration could alter abruptly when 

the present chlorophyll concentration is five times higher than before and vice versa, thus hampering 

accurate forecasting. Based on scholarly perspectives, natural factors undeniably induce impromptu 

changes in algae content. To date, ecological data are ambiguously connoted as expert knowledge 

following the presence of random variables, incomplete and inaccurate data, and approximate predictions 

(rather than measurements) that lead to data incomprehensibility[29]. 

Algae ecological data experience high missing values following their reliance on frequently-

maintained monitoring sensors or systems, which could be damaged by the presence of algae. As coral-

like algae would attach itself to the utilized equipment and damage all the installed sensors in line with 

Rostam et al.[30], early algae prediction remain essential given the extended timeframe offered for coastal 

water facilities to shut down before the equipment is damaged[31,32]. 

Highly non-linear behavior and dynamics emphasize conventional approaches resembling model-

fitting[33]. Regarding aquatic systems, holistic knowledge of the physical, chemical, and biological water 

quality parameter impacts on algal dynamic proves necessary for optimal system comprehensibility and 

management. One measure of interest implies the examination of dynamic algae criteria within the algae 

domain where it is pivotal to disclose the input-output variable link: an essential algae ecological study 

element, particularly for precise prediction. 

Ecological data typically appear in time-series format[34]. Time-series problems add to the order 
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complexity or frequently encompass temporal dependency, which causes two otherwise identical time 

points to fall under distinct classes or forecast different behaviors, unlike simpler classification and 

regression problems[35]. This attribute could prove challenging given the necessity for specialized data 

management in model fitting and assessment where the time series data need to be formatted or framed 

as a supervised machine learning pre-forecasting, hence increasing data evaluation complexities.  

The ML techniques could function optimally on more intricate time-series forecasting issues with 

various input variables, intricate non-linear associations, and missing data. Such approaches frequently 

require hand-engineered features from domain experts or practitioners with domain backgrounds for 

enhanced performance. To date, time-series forecasting with DL serves to gauge temporal dependence 

from the data, efficiently determine past pivotal observations, and grasp their relevance to the present 

prediction process[35]. In this vein, crucial information could be derived from the input and dynamically 

shift the context as required. Feature engineering also constitutes one of the ML disciplines that could 

transform and engineer raw data into the fitting format for time-series forecasting. 

As this section only highlights current algae ecological data complexities, the aforementioned 

methods would be extensively reviewed in another section. The current section serves to examine 

regression problems or concerns involving real-value predictions and empirical works that employ raw 

numerical static and time-series data. This review does not cover research on spatial data image-

processing as the methodology constitutes distinctive terms of feature extraction or selection, which 

slightly differs from previous descriptions for easier comparison. 

3. Data-driven prediction model 

The algorithms currently incorporated into algal bloom prediction are categorized into data- and 

process-driven models. Process-driven model typically requires several parameters, such as initial 

conditions and ecological variables. The models, which occasionally encounter the uncertainty of kinetic 

coefficients, require optimal system knowledge[12] although process-driven models reflect highly-precise 

predictions. Data derivation intricacies in the simulation process have instigated drawbacks in process-

driven method implementation. 

Past research documented the successful implementation of the data-driven AI-based method. 

Essentially, data-driven models rely on computational astuteness and ML techniques[36]. An ML 

algorithm serves to identify the system input-output association with a training dataset that characterizes 

all system behaviors. The trained model could be subsequently tested with an independent dataset to 

ascertain the extent to which it could be generalized across unseen data. Algae prediction would be more 

precise upon identifying the optimal parameter level through past ecological data insights. 

Appropriate FS is mandatory in this case. The ML for unsupervised techniques, such as clustering 

could facilitate data discovery or elicit useful insights rather than merely relying on domain knowledge. 

As such, unsupervised ML was also reviewed. Sections for the algae prediction model through ML 

(presented in distinctive parts) are classified into unsupervised and supervised ML and time-series 

forecasting. 

3.1. Algal growth prediction with unsupervised ML 

Traditional clustering approaches are unsupervised given the absence of outcome variables and 

knowledge of the associations between the dataset observations[37]. Ecological data classification 

facilitates notable pattern and feature identification. Despite the abundance of clustering methods, such 

as hierarchical clustering, self-organizing map (SOM), and K-means, both SOM and K-means denote the 
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common clustering technique within this domain. Kohonen’s[38] SOM, a useful feature extraction tool 

with a series of known patterns[39], represents multi-dimensional data in a relatively lower (one or two) 

dimensional space. Neurons on the grid would eventually merge around areas with high-density data 

points using multiple iterations. Overall, SOM denotes an efficient instrument in high-dimensional data 

visualization that proves adequate for the data comprehension stage in the knowledge discovery process. 

Following Li et al.’s[40] recent research on SOM implementations in algae analysis and forecasting, 

the proposed SOM perceivably selects the most influential input variables for Chl-a. The K-means 

approach was subsequently integrated to define the cluster boundaries. Resultantly, SOM and GA-BPNN 

functioned as an FS instrument and efficiently performed clustering and predictions. In the study of 

Malek et al.[41], SOM was also utilized as an analysis tool of limnological time-series in the Putrajaya 

Lake and wetlands for algae growth identification. An expert system was subsequently established 

following the rules elicited from SOM for algal growth modeling and prediction. 

Generally, K-means clustering is incorporated into datasets where all the variables are quantitative 

and the distance between observations is evaluated with the squared euclidean distance. Table 4 presents 

past studies with SOM and K-means that are applied in this domain and the number of employed features 

(#F), water source types, method, and factors category connected to Table 3. 

Table 4. Unsupervised ML prediction method. 

Article (s) #F Sources Method Factors category 

BF PF CF MF 

[27] 5 Lake SOM-fuzzy / / / - 

[39] 6 Coastal SOM / / / - 

[40] 24 Lake, reservoir SOM, K-means GABPN / / / - 

[42] 4 Lake SOM-FL - / / - 

[43] 13 Lake RNN-SOM / / / - 

[44] 11 Lake SOM / / / - 

Coastal dataset clustering is few compared to other water sources (see Table 4), thus implying the 

lack of SOM and K-means application to coastal ecological datasets. The SOM benefits and effectiveness 

regarding information extraction without background knowledge of the examined ecosystem reflect a 

potential unsupervised learning approach. 

3.2. Algal growth prediction with supervised ML 

Supervised learning implies the ML task of learning a function that outlines input to output following 

sample input-output pairs. A function is inferred from the labeled training data encompassing a set of 

training samples. Methods involving regression and time-series analysis and AI are implemented to 

evaluate the historical dataset for algal bloom prediction[27]. Such approaches adequately model the HAB 

dynamics[45]. This review, which emphasized previous studies on the algal growth prediction model, is 

sequenced based on ML approaches (fuzzy, ANN, and SVM) and includes hybrid techniques alongside 

a group of other approaches classified under the ‘other’ category: genetic algorithm (GA), naïve bayes 

(NB), RF, evolutionary algorithm (EA), hybrid evolutionary algorithm (HEA), multilayer perceptron 

(MLP) and DT. Lastly, the TSF method was thoroughly reviewed in a separate section. Table 5 

demonstrates the trend of algae prediction approaches between 2014 and 2020. 
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Table 5. The trend of algae prediction method (2014–2020). 

Article (s) Fuzzy ANN SVM Hybrid Other TSF 

[7] - / - - - / 

[12] - / - - - - 

[15] - - - - / - 

[17] - / - - / - 

[23] - - - - - / 

[28] / - - - / - 

[29] - - - - - / 

[34] - - - - - / 

[41] - / / - - - 

[46] - - - - / - 

[47] - - - - - / 

[48] - - / - - - 

[49] - / - - - - 

[50] - / - - - - 

[51] - / - - - - 

[52] - / - - - - 

[53] - / - - - - 

[54] - - / - - - 

[55] - / - - - - 

[56] - / - - - / 

[57] - / - - - - 

[58] - / / / / - 

[59] - - - - - / 

[60] - - - - - / 

[61] - - - - - / 

[62] - / - - - / 

[63] - / - - / / 

[64] - - / - / - 

[65] - - - - / - 

[66] - - - - - / 

[67] - - - - - - 

[68] - / / - / / 

[69] - - - / / - 

[70] - / / - - / 

[71] - / - - - / 

[72] - - - - - / 

3.2.1. Fuzzy approach 

The fuzzy approach successfully resolves ecological data ambiguity due to its dynamic nature. 

Zadeh’s[72] fuzzy set theory in 1965 follows an extension of the classical connotation of the term ‘set’, 

which enables the processing of fuzzy premises in the ‘IF-THEN’ form with fuzzy sets in the premise and 



Computing and Artificial Intelligence 2023; 1(1): 100. 

11 

conclusive parts. The implementation of algal bloom prediction was scarcely documented despite the 

theory prevalence in uncertainty analysis. Most of the studies emphasized data clustering into specified 

classes or categories for pre-prediction rather than actual forecasting. In this regard, the fuzzy approach 

complements classification as opposed to regression and time-series prediction problems. Nevertheless, 

this method could establish comprehensible rules or offer useful insights owing to logical descriptions of 

the FL system action. Only three empirical works have been documented to date. 

Chen and Mynett[73] employed nine parameters (pH, conductivity, BOD, DO, NH4+, NO3−, NO2−, 

TIP, Chl-a) with the fuzzy approach in lakes. The SOM sought appropriate fuzzy set connotations and 

explicit inference rules that are supported by heuristic knowledge amidst data unavailability. Chen et al.[27] 

utilized the fuzzy method through SOM to ascertain the multivariate structure and provide insights into 

the spatial-temporal dynamics of algal blooms. Notwithstanding, both techniques only offered a one-way 

procedure that focused on understanding instead of actual prediction and disregarded model output 

feedback for further optimization. The study of Malek et al.[42] highlighted four variables for lake-based 

research: pH, SD, dissolved oxygen, and nitrate nitrogen. The method might not prove successful for 

large datasets and intricate features given the absence of empirical evaluation despite its practicality and 

efficiency in managing insufficient datasets with complex correlations and ambiguous interconnections. 

3.2.2. Artificial neural network (ANN) 

The ANN implies a computational non-linear model entailing artificial neurons or processing 

elements that is organized in three interconnected layers: input, hidden layer (middle). Each neuron 

constitutes weighted inputs (synapses), an activation function (denotes the output given an input), and 

one output. The weighted input sum generates the activation signal transferred to the activation function 

in obtaining one neuron output. The extensively employed activation functions encompass linear, step, 

sigmoid, tanh, and rectified linear unit (ReLu) functions. Backpropagation, which computes the loss 

function gradient, is the most commonly utilized approach to identify the error contribution of every 

neuron. In 1997, Recknagel et al.[74] pioneered the modeling of algal blooms in freshwaters through ANNs. 

Backpropagation was employed in training where inputs and outputs imply palpable water quality 

parameters and the biomass quantities of particular algal groups, respectively. Table 6 summarizes other 

algal growth studies using ANN and its ensuing variants. 

Table 6. Supervised ML prediction using ANN. 

Article (s) #F Sources Method Results Factors category 

BF PF CF MF 

[12] 8 Reservoir FFBP-ANN RMSE: 0.108 - / / - 

[17] 1 Reservoir ANN MSE: 1.303 

R: 0.774 

/ - - - 

[49] 9 Reservoir MLP 
TDNN 

MSE: 1.76 - / - - 

[50] 12 River ANN 
Sensitivity 

analysis 

R2: 0.82  / / / / 

[52] 11 Coastal RBMDBN RSME: 0.0475 
MAE: 18.72% 

/ / / - 

[53] 17 Fresh water ELM RSME: 0.3013 
MAE: 0.2366 
R2: 0.8322 

/ / / - 
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Table 6. (Continued). 

Article (s) #F Sources Method Results Factors category 

BF PF CF MF 

[56] 12 Coastal DBN-ARIMA RMSE: 0.154 

MAE: 0.123 
MAPE: 17.21 
R: 0.798 

/ / / - 

[57] 1 Lake DDBN 

TDBN 
DBN 

RMSE: 1.48 

RMSE: 1.53 
RMSE: 1.55 

/ - - - 

[62] 7 River ELM 
ANFIS 
LR 

RMSE: 13.8 
RMSE: 16.7 
RMSE: 17.5 

/  / / 

3.2.3. Support vector machine (SVM) 

The SVM denotes a linear decision boundary that operates by mapping data to high-dimensional 

feature space for data point classification despite not being linearly isolated. Data would be transformed 

in such a way that the separator could be drawn as a hyperplane upon identifying a distinction between 

the categories. In SVR, it serves to forecast the output by fitting the maximum number of output points 

(from the training data) between the boundary lines and simultaneously remaining as flat as possible[75]. 

Essentially, SVM regression is a non-parametric approach following its dependence on the function of 

kernel: the employment of a linear classifier to address a non-linear classification task. Several works 

recommended SVM application in algae forecasting. Xie et al.[75] suggested an SVM-oriented prediction 

to internalize and predict a dynamic algae population shift in freshwater reservoirs and resolve the 

complex non-linearity of water variables with their interactions. Resultantly, SVM generates high 

prediction accuracy despite utilizing a small sample number. The modeling outcomes demonstrated that 

SVM outperformed ANN. Table 7 highlights previous studies on algal growth prediction with SVM. 

Table 7. Supervised ML prediction using SVM. 

Article (s) #F Sources Method Results Factors category 

BF PF CF MF 

[47] 9 Coastal SVM 

GRNN 

RMSE: 5.436 

RMSE: 9.966 

/ / / - 

[54] 10 Fresh water SVM R2: 067 / / / - 

[69] 9 Reservoir SVM RMSE: 1.04 
R2: 0.71 
MAE: 0.40 

/ / / - 

[75] 16 Reservoir SVM R2: 0.863 
RMSE: 0.264 

MAE: 0.226 

- / / - 

[76] 11 Lake SVM 
BPNN 
MRS 

RMSE: 13.4822 
RMSE: 14.8427 
RMSE: 15.3446 

/ / / - 

3.2.4. Other approaches to algal growth prediction 

The hybrid method integrates multiple algorithms for high performance. Specifically, the 

incorporation of various ML algorithms could significantly enhance the overall outcome by refining one 

another, generalizing, or adapting to unknown tasks as most of the algorithms are developed for a 
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particular dataset or task[76,77]. The NN was integrated with another approach in the study by Wang et 

al.[78] where a hybrid model constituting BPNN, rough decision model, and decision rule were structured 

to forecast cyanobacteria bloom. The rough reduction method omits irrelevant characteristics without 

losing pivotal knowledge by only choosing key neural network determinants. Intriguing results were 

outlined in the research of Li et al.[61] who recommended an approach to forecast algae bloom with FS: 

minimum redundancy maximum relevance (mRMR) with RF, which is resistant to overfitting problems. 

Likewise, the study by Serry et al.[55] primarily employed FS for algae bloom prediction in the 

improvement phase. Regrettably, the RMSE and correlation coefficient outcomes remained low. The 

SVM algorithm could be further enhanced with a metaheuristic approach, such as GA in line with Wang 

et al.[58]. Several other methods as in Table 8 are also portrayed similar performance. 

Table 8. Other supervised approaches in algal growth prediction. 

Article (s) #F Sources Method Results Factors category 

BF PF CF MF 

[6] 5 Lake ADHDP-AGM RMSE: 1.0363 / / / - 

[52] 7 Mortar 
surface 

LS-SVR RMSE: 4.55 
R2: 0.94 

- - - - 

[55] 4 River Meta-learning: 

CFS & GA 

RMSE:0.2 

MAPE:0.14 
Corr.:0.8 

- / / - 

[57] 8 Freshwater GA-BP  
GA-LSSVM 

BP 
TS 

Error: 40.7 
Error: 35.4 

Error 64.2 
Error:116.9 

/ / / - 

[60] 11 Satellite 
coastal data 

Multi-variate 
regression 

Accuracy 
1-day: 65.6 
2-day: 72.1 

3-day: 71.9 

/ / / / 

[61] 24 Lakes, 
reservoir 

GA-BPNN RMSE 
CI: 0.0030  
CII: 0.0006 

CIII: 0.012 
CIV: 0.0040 

/ / / - 

[62] 13 Lake RF with mRMR 
(FS) 

CE:0.33 
RMSE:2.12 

MAE:7.57 

/ / / - 

[64] 1 Coastal Wavelet 
transform  
multistep 1–20 

RMSE: 
2.010-4.696, 
MAPE:0.375-1.266 

/ - - - 

[65] 14 Lake, 
reservoir 

ABC-RBF-SVM RMSE:0.0030 MAE: 
0.0020 R2:90 

/ / / - 

[66] 9 Reservoir DCCPI, PCA, 

cusp catastrophe  

R: 0.873 / / / - 

[68] 34 Freshwater Hybrid moth 
search algorithm 
(MSA) (RVFL) 

RMSE:0.187  
Data Partition (50:50) 
RMSE: 0.0446 

Data Partition (70:30) 

/ / / - 

[79] 8 Lake SMR-GP RMSE:37.9 / / / / 

The GA denotes an approach to resolving both constrained and unconstrained optimization 

problems in line with natural selection, which catalyzes biological evolution. This algorithm reiteratively 
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refines a population of individual solutions and arbitrarily chooses individuals from the present 

population to be parents at every step to produce children for the next generation. In this regard, the 

population ‘evolves’ towards an optimal solution over successive generations. Essentially, GAs could 

address various optimization problems that do not complement standard optimization algorithms, 

including counterparts in which the objective function is discontinuous, not differentiable, stochastic, or 

highly non-linear. Wang et al.[57] incorporated GA to enhance the BP network and least squares SVM 

generalization capacity. Meanwhile, Wang et al.[57] recommended a prediction method of bloom 

combined with the time series and intelligent non-linear models to optimize the error caused by time-

series analysis. The influencing factors and forecasting data of chlorophyll-a time-series prediction error 

were modeled by BP, GA-BP, LSSVM, and GA-LSSVM. Consequently, the suggested model optimized 

time-series prediction. Wang et al.[58] eventually integrated SVM with GA and a relevance vector machine 

(GA-RVM) to forecast the abundance of phytoplankton in association with algal blooms at a Macau 

freshwater reservoir and compare their performance with an ANN model. The GA-SVM models 

outperformed other approaches. Evidently, GA-oriented research is applied to or integrated with SVM. 

Further studies are necessary to perceive whether GA could still demonstrate a competitive performance 

for other algal blooms prediction. 

3.3. Time series forecasting (TSF) 

Although current literature on prediction techniques elaborates on supervised ML, including simple 

classification or regression problems, the processes could not forecast algal growth beyond or prior to the 

present period, which is pivotal in the early prevention of HAB disasters or potential outbreaks. Based 

on the review, the ML models recommended in this domain failed to represent temporal data attributes, 

which proves essential when the time dimension adds explicit ordering to data points that should be 

conserved given their provision of additional or vital information to learning algorithms. Furthermore, 

Xie et al.[75] indicated the forecasting model to demonstrate higher performance than the prediction 

counterpart. Following the research outcomes, the algal bloom is a complex, non-linear, and dynamic 

system that is impacted by water variables in previous and current months. Such problems should be 

resolved with time series. 

A time series implies a series of chronologically indexed (listed or graphed) data points. Generally, 

time series denotes a successive sequence of discrete-time data taken at equally-spaced points in time. 

Time series encompassing univariate and multivariate forms have evolved across various disciplines, 

specifically in hydrological and ecological modeling and oceanography. Univariate time series constitutes 

a series with a single time-dependent variable while the multivariate counterpart depicts multiple single 

time-dependent variables that rely on past values and other variables. Notably, this dependence serves to 

predict future values. 

Much algae prediction research encompasses various intricate variables. Time series data could be 

broadly categorized into (i) stationary time series and (ii) non-stationary time series. In stationary time 

series, statistical components resembling mean value or variance prove constant over time and stay in 

relative equilibrium based on their corresponding mean values as opposed to their non-stationary 

counterpart. Time series data could be framed as supervised learning through the value at the previous 

time-step to forecast the value at the following time-step[80]. The time series forecast horizons are defined 

as follows: short-, medium-, and long-term forecast ranges from one hour to one week, one week to one 

year, and over a year, respectively. A one-step prediction only forecasts the training dataset of the 

following day, whereas multi-step TSF predicts multiple time-steps in the future. Multistep-ahead TSF 
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enables the prediction of algae growth duration for the following year and the maximum and minimum 

temperature for algal growth in the following month or years. Typically, multivariate TSF models are 

sensitive to multi-step (short-, mid-, and long-term) horizons as in-depth predictions lead to the complex 

modeling of multi-step forecasting following accumulated errors and low performance[81]. 

Traditional direct, recursive strategies, hybrid and multiple input multiple output (MIMO) strategies 

were employed for multi-step forecasting[82]. The recursive strategy aims to train a model that exclusively 

emphasizes a one-step-ahead prediction. The predictions are recursively forecasted post-model training. 

In other words, intermediate predictions are utilized as inputs to forecasting the following values until 

the time horizon prediction[83]. 

The direct strategy establishes a set of different N models for various time steps with the same input 

data employed to feed all the models, unlike the recursive counterpart that utilizes one model. Meanwhile, 

MIMO implies a multiple output strategy where the prediction model output denotes a vector of future 

values forecasted with only one model. The MIMO strategy could conserve the temporal stochastic 

dependency of sequential data to address the drawbacks of recursive and direct methods given that the 

objective function during model training simultaneously alleviates the prediction errors on multiple 

horizons[83]. The computational costs of MIMO are also lower than that of the direct strategy following 

its prerequisite of only one model to be trained. 

Some scholars from other disciplines who compared distinctive multi-type forecasting types[84–86] 

proved that such variations elicited multiple outcomes. Nevertheless, current forecasting in the algal 

growth prediction domain typically emphasized a single-step prediction. Research on multi-step 

forecasting has failed to thoroughly describe the aforementioned approach. Traditional time series and 

DL in time series would be extensively discussed in the following subsections. 

3.3.1. Traditional TSF 

Stochastic time series models, such as ARIMA that constitute subclasses of other models (AR, MA, 

and ARMA) are one of the most renowned and extensively utilized time series techniques. Box and 

Jenkins suggested a fairly successful variation of the ARIMA model, such as the seasonal ARIMA 

(SARIMA) for seasonal TSF. This model has garnered much scholarly attention following its versatility 

in representing several time series variations with simplicity and the associated Box-Jenkins methodology 

for robust model development. Nevertheless, the models encountered specific drawbacks in terms of pre-

assuming a linear form of the associated time-series data, which proves inadequate in various practical 

circumstances[10], and the inability to determine complex interactions from non-linear data[87]. The AI and 

DL approaches are becoming increasingly common in empirical studies. Based on the literature review, 

RNN and LSTM denote two DL techniques that demonstrate a more optimal performance compared to 

other algorithms in TSF. 

3.3.2. Deep TSF 

Deep learning is an ML subdiscipline that concerns algorithms, such as ANN that are inspired by 

the brain structure and function. Several DL model types, such as RNN and its ensuing variant (LSTM) 

are typically employed in TSF. The RNN, which entails a network with feedback connections from 

hidden and output layers to the preceding counterparts, is recommended when managing dynamic 

datasets[83]. In this regard, sequential data dynamics could be ascertained with previous pattern memories 

retained through network cycles. Meanwhile, LSTM implies a novel form of neural network that 

performs predictions based on the data derived from previous times. 
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The LSTM is a specified RNN architecture developed to model temporal sequences and their long-

range dependencies more precisely than conventional RNNs. Notably, LSTM does not utilize activation 

functions in its recurrent components. The stored values are not altered while the gradient is retained 

during RNN-oriented training. The LSTM units are implemented in ‘blocks’ with several units with three 

or four ‘gates’ (input, forget, and output) that regulate the information flow based on the logistic function. 

This architecture facilitates the learning of longer-term dependence. The GRUs resemble LSTMs 

albeit with a more simplified structure and utilize a set of gates to control information flow despite not 

employing separate memory cells and incorporating fewer gates[88]. Although the recently-evolved LSTM 

has been implemented across various disciplines, specifically in TSF, only a few studies adopted the 

LSTM algorithm for algae prediction. For example, Lee and Lee[7] incorporated the LSTM model 

involving algal bloom prediction for a short-term (one week) prediction on newly-constructed water 

quality on 16 rivers. Wang et al.[60] employed the time series non-linear model to rectify the error induced 

by traditional time series analysis. Although LSTM has reflected much improvement and undergone 

multiple integrations with other DL approaches (Bi-LSTM, Encoder-Decoder, and CNN-LSTM) to date, 

the algorithms are yet to be examined in terms of algal prediction. Table 9 presents past studies within 

the TSF domain. 

Table 9. Time series with DL forecasting. 

Author (s) #F Sources Method Results Factors Category 

BF PF CF MF 

[7] 10 River MLP 
RNN 
LSTM 

RMSE: 9.28 
RMSE: 7.93 
RMSE: 7.67 

/ / / - 

[22] 10 River LSTM RMSE 

1-D Pred.: 0.04868 
4-D Pred.: 0.08015 

/ / / - 

[28] 6 River MPUM RMSE: 16.89 
R2: 0.74 

/ / / - 

[33] 9 Coastal CCM MAE: 0.55–0.35 - / / / 

[43] 13 Lake RNN-SOM RMSE: 19.0 

R: 0.7 
Accuracy: 87% 

/ / / - 

[56] 12 Coastal DBN-ARIMA RMSE: 0.154 
MAE: 0.123 

MAPE: 17.21 
R: 0.798 

/ / / - 

[60] 7 Reservoir GLM R: 0.71 / - / - 

[66] 12 River Merge LSTM RMSE: 0.0459 / / / / 

[70] 13 Coastal RNN RMSE: 1.269 
MAE: 0.79 

/ / / / 

[71] 4 Reservoir LSTM RMSE 1–10: 27–16 

(decrease) 

- / - / 

4. Analysis and discussion 

This study review has outlined several unresolved concerns and knowledge gaps for optimal 

prediction performance. The first issue denotes FS where most of the selections are performed arbitrarily 

or based on domain knowledge following Rahman and Shahriar[89]. Despite the implementation of other 
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approaches, such as MA, mRMR, and influence matrix, the techniques only emphasized vital FS without 

insights into the reason underpinning pivotal FS selection. The aforementioned complexities garnered 

much scholarly attention when some researchers began employing sensitivity analysis or the clustering 

approach for data discovery with SOM and K-means. Despite a rise in the utilization of other clustering 

techniques, only two counterparts appear to be extensively employed by relevant researchers. This 

knowledge gap has led the current research to examine other unsupervised ML approaches. 

Features that are regarded as extremely high or low could lead to model fitting intricacies and 

performance fluctuations following the arbitrary FS. Arguments on model fitting and performance 

correspond to McGowan et al.[33], Li et al.[40], and Lu et al.[16] where dataset arbitrariness has instigated 

model overfitting and prediction errors. Inappropriate FS techniques for time series might also hinder or 

degrade the time-series forecasting performance. The employed features differ in number with a 

maximum of 34 indicators and a minimum of one. This research classified the number of utilized 

indicators into the following categories: low (1–11), medium (12–22), and high (over 22). Figure 1 depicts 

the percentage of studies under the aforementioned categories. Specifically, a low number of (parameters) 

or indicators reflected over 50%, followed by the incorporation of a medium number of indicators, and a 

high number of indicators at 7%. 

 
Figure 1. Range of indicators percentage. 

Correlational research could be performed between parameter behaviors and the amount of Chl-a 

or algal growth predictors with an unsupervised method (clustering), which is typically regarded as the 

fundamental notion in pattern discovery. This conundrum has left a grey area where insights into the 

forecasting approach based on associations in an intricate ecological time-series data might catalyze 

forecasting-oriented decision-making. 

Based on the current research, most of the water sources included in past studies involved lakes and 

reservoirs. As such, future works prove necessary for other sources, such as freshwater bodies, coastal 

areas, and estuaries as presented in Figure 2. Most of the studies only emphasized one water source at a 

time following their distinctive attributes and variations owing to hydrologic, geographic, climatic, 

morphologic, physical, chemical, geochemical, and biological aspects. Accommodating all water source 

types would imply the customization of study indicators to specified sources. Assumably, past empirical 

works were primarily reliant on data availability.  
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Figure 2. Trend of type of water sources. 

Insufficient data following frequency updates would deter the forecasting process. Some high-

volume data entail update frequencies that are consistently taken in minutes, hours, or on a daily basis. 

Nevertheless, sporadic data prevents pattern identification when (i) data is only gathered once a month, 

(ii) a substantial amount of data is missing, and (iii) the data is on a small scale. Such complexities could

be resolved through large-scale data to complement the learning and training process. Concerning the

factors category, this review has only observed a few studies that fully employed the four aforementioned

factors despite the necessity of climates under the meteorological factor. Several open issues or gaps in

managing different data size ranges and integrating data with adequate approaches remain unaddressed.

The third issue denotes algorithm performance where measurements that disregard water source 

types demonstrated overall or average TSF performance with DL compared to basic ML. Based on the 

empirical outcomes, current ML data-driven models could not sufficiently extract multi-factor timing 

data features with most of the models not depicting temporal data attributes. The LSTM has consistently 

outperformed other approaches with minimal prediction errors. 

In terms of analysis method, specific performance measures, such as RMSE, the coefficient of 

determination (R2), correlation coefficient (R), the mean absolute error (MAE), mean-square-error (MSE), 

and mean absolute percentage error (MAPE) were utilized with RMSE as the most favored and 

extensively utilized counterpart to assess the forecasted model-actual data value variance. The prevalence 

of past literature that employed RMSE has catalyzed the comparison process across domains. Much 

research has proven the deep time-series performance with RNN and LSTM to determine and depict 

temporal data attributes following the reviewed evaluation techniques. 

Although data-driven methods offer versatility in FS to make predictions, this liberty to perform 

variable selection could instigate over-fitting and under-fitting complexities if carelessly ascertained. 

Discussions on feature engineering were not extensively throughout this review, specifically in the time-

series prediction approach, following the need for non-trivial and time-consuming efforts[90] although 

feature engineering is pivotal in developing lag value and minimum or maximum horizon to forecast in 

TSF.  

The fourth issue concerns improvement. The LSTM was primarily applied to river- and reservoir-

oriented data despite its overall efficiency. As such, further works prove crucial to examine other water 

source types. Fluctuations in LSTM performance following the number of employed indicators and 

method-based shortcomings could also be observed. Although LSTM is capable of retaining information 

in the long run, the sequence-to-sequence LSTM architecture can only receive the input sequence to a 

fixed-length internal representation owing to the categorization of specific knowledge into small parts for 

easy remembrance. The LSTMs are impacted by multiple random weight initializations and behave akin 

to the feed-forward neural network where small weight initializations are favored. In this vein, other open 

issues require examination to resolve current circumstances. Feature engineering with LSTM and a 
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comprehensive understanding of the temporal aspect entailing algal growth data could induce optimal 

performance. Additional parameter tuning and learning approaches could similarly enhance present 

LSTM performance. 

The fifth and final concern constitutes the engagement or data integration of various categories as 

one dataset is a complex task. A different data update and intricacies regarding the frequency taken would 

also vary. Such differences would result in the incorporation of multiple pre-processing approaches in 

data cleaning. Future studies should consider different factor categories as data fusion is primarily 

disregarded based on the aforementioned reasons. Different factors were classified following specific 

attributes: CF, BF, PF, and MF (see Table 3). Although several past studies did not include specific 

categorical factors, particularly MF, recent research from 2016 has incorporated MF following much 

scholarly attention. Figure 3 depicts the overall trend of past studies regarding factor (BF, PF, CF, and 

MF) usage between 2009 and 2020. 

Figure 3. Trend of using categorical factors from 2009–2020. 

The MF factor category, which only began considering and employing algae prediction from 2016 

onwards, is palpably illustrated in Figure 3. Additionally, different predictors or factors began increasing 

between 2016 and 2020. This phenomenon might be associated with the advent of Internet of Things 

(IoT), which evolved with the development of sensors and utilization of multiple technologies that 

catalyze the data acquisition process. Such assumptions corroborated with Ande et al.[91] who disclosed 

that over 450 organizations have provided IoT platforms specializing in end-to-end solutions, system 

security, application enablement, device management, analytics, cloud storage, and back-end 

connectivity in 2017. These reasons further strengthen the notions underpinning multiple factor 

utilization with large-scale data based on the different factors gathered through various sensors. Overall, 

most of the employed factors attained the highest peak in 2017 or were significantly regarded from 2016 

to 2018. 

The benefits of data integration and dataset design are comprehensively performed in feature 

engineering, which typically requires expert knowledge to develop designs in terms of data and temporal 

elements, such as minimum or maximum past value prediction. Feature engineering provides such 

contributions based on the type of information that proves crucial from the input, which is vital for 

mapping and dynamic shifts as contextually required. Feature engineering implies one of the ML 

domains that could convert and engineer raw data into a fitting format for the prediction process, 

particularly in TSF[61]. 

Previous scholars emphasized single-step multivariate prediction with little research on modeling 
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the multi-step forecasting technique and no in-depth descriptions of multi-step methodology in their 

respective works although a long-term forecast could prove advantageous in future outbreak prediction. 

Various multi-step methods that were performed across different disciplines yielded distinctive outcomes. 

This inconsistency has resulted in another knowledge gap concerning the most adequate method for 

multi-step algal growth prediction. This approach proves more challenging as opposed to the normal 

counterpart given the presence of performance issues, particularly on cumulative errors and low 

performance in the wake of extended prediction. Multi-step performance in TSH, which is crucial in 

preventing algal growth, requires further investigation. Specific studies on enhancing the multi-step 

forecasting approach have been duly identified. Regarding the time-series domain, Venkatraman[92] 

incorporated several stages (prediction and optimization) in the predictive model build. Relevant works 

to resolve the aforementioned intricacies remain lacking despite the challenges encountered in advocating 

this multi-step method. 

5. Conclusion

Prediction constitutes the core research concern in HAB-oriented research. Early prevention and 

awareness are pivotal following the HAB outbreaks and the increase in algae growth. The present 

prediction process could be enhanced through DL with time series by evaluating specific open issues that 

must be resolved based on comprehension and prediction performance given the high capacity in 

managing the non-linearity, ambiguities, and dynamics of algal growth. This method could be optimized 

by examining the prediction part and considering key features by improving the present selection 

approach and revealing the factor interconnections between the factors for a robust predictive algorithm. 

The capacity to forecast blooms (even if just a week in advance) by fully incorporating the multi-step 

method could enable public health authorities to address human health issues[30,31] and provide adequate 

time for water facilities to shut down before the equipment is damaged. The current study has holistically 

reviewed contemporary algal growth forecasting techniques. Particular open issues were also indicated 

for future research. Summarily, in-depth examination proves necessary to develop workable strategies in 

the future. 
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