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Abstract: Machine learning, a key thruster of Construction 4.0, has seen exponential 

publication growth in the last ten years. Many studies have identified ML as the future, but few 

have critically examined the applications and limitations of various algorithms in construction 

management. Therefore, this article comprehensively reviewed the top 100 articles from 2018 

to 2023 about ML algorithms applied in construction risk management, provided their strengths 

and limitations, and identified areas for improvement. The study found that integrating various 

data sources, including historical project data, environmental factors, and stakeholder 

information, has become a common trend in construction risk. However, the challenges 

associated with the need for extensive and high-quality datasets, models’ interpretability, and 

construction projects’ dynamic nature pose significant barriers. The recommendations 

presented in this paper can facilitate interdisciplinary collaboration between traditional 

construction and machine learning, thereby enhancing the development of specialized 

algorithms for real-world projects. 
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1. Introduction 

Occupational safety has always been a headache for many workers in high-risk 
industries, such as high-voltage electricians, tower crane drivers, and deep-well 
miners, to name a few [1,2]. Accidents, whether artificial or not, can cause significant 
loss of life and property, as well as immense psychological grief for families. 
According to the latest data (11 January 2024) from the International Labor 
Organization (ILO), many countries such as Costa Rica, Argentina, Chile, France, and 
Denmark had at least 9421, 3587, 3142, 3043, and 2814 injuries per 100,000 workers, 
respectively [3]. This has also led to a focus on research around risk. Construction risk 
is complex and dynamic, arising from inherent uncertainties and variability [4]. Given 
the involvement of many stakeholders in large construction projects, including 
owners, financial institutions, project managers, designers, construction crews, 
manufacturers, suppliers, labor, insurance agencies, legal counsel, and public and 
regulatory agencies [5,6]. Effective risk management is crucial for their successful 
execution. Risk assessment is a cornerstone of construction management, involving 
identifying, analyzing, and mitigating potential risks that may arise during various 
project phases [7,8]. Historically, construction risk management was regarded as a 
static process at the project initiation stage [9,10]. However, constant changes in 
construction methods, coupled with a growing recognition of risk volatility, have led 
to a paradigm shift in risk management approaches [11]. The contemporary 
perspective acknowledges that risks are not fixed but evolve over the project lifecycle 
[12]. Therefore, it is imperative to adopt a dynamic and proactive approach to risk 
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management that accounts for the evolving nature of risks and adapts to changing 
project circumstances. 

Fuzzy set theory (FST) was introduced by scholars in 1989 as a means of 
linguistic risk assessment for construction [13,14]. This approach enabled analysts to 
communicate the level of risk associated with individual project elements to 
stakeholders in easily understandable linguistic terms [15]. On the other hand, OSHA 
employs the risk matrix, a standard methodology for risk assessment. However, 
subjective approaches to risk assessment, such as those based on historical accidents, 
rely heavily on personal knowledge, experience, intuitive judgment, and rules of 
thumb. Many risk models are still based on expert opinion and emphasize linear 
causality, making it challenging to incorporate non-linear relationships such as 
security commitments and organizational culture [16,17]. Recent studies have 
highlighted the power of ML. As shown in Figure 1, according to the most recent data 
from the Scopus database, articles on ML grew exponentially from 2014 to 2023, 
reaching 131,489 from 11,264. Many scholars have also recognized that the rapidly 
changing algorithms have led to the need to regularly review research about the 
application of ML in construction risk. However, few studies critically examined the 
ML algorithm in this niche. The collective wisdom of the domain should be 
continuously constructed and updated, as knowledge is dynamically changing and 
growing and is contributed by multiple domain experts [18]. 

 
Figure 1. Machine learning annual publications (2014–2023). 

Therefore, this article enriches the knowledge system in the following ways: 1) 
provides scientific and researched empirical evidence for engineers in chaotic working 
environments by reviewing existing algorithms’ purpose, background, and limitations; 
2) promotes the iteration of machine learning knowledge in construction risk by 
critically reviewing previous research; and 3) helps practitioners choose appropriate 
computational methods to formalize complex engineering knowledge. This study 
sheds light on the current main ML algorithms in construction risk by selecting 100 
powerfully relevant and high-level research articles published between 2018 and 2023. 
The rest of the paper is structured as follows: Section 2 provides an overview of 
machine learning. Section 3 introduces the research methodology, and Section 4 
introduces each algorithm’s application, advantages, and disadvantages in 
construction risk assessment. Section 5 discusses future improvements in ML. Section 
6 summarizes the research findings of this article and gives recommendations. 
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2. Background 

Machine learning (ML) intersects several disciplines, including computer 
science, statistics, and artificial intelligence developments [19]. It addresses the 
problem of constructing computer algorithms and models that enable computer 
systems to improve automatically based on experience and increase performance on 
specific tasks [20,21]. Fundamentally, the beauty of ML is the ability to analyze, 
predict, and make decisions based on known data with increasing accuracy if the data 
sample expands [22]. As a result, it is popular in many data-intensive industries, such 
as the chemical industry, where active ML has been used to optimize the performance 
of CO2 electrocatalysts [23]. In the medical field, Warnat-Herresthal et al. [24] used 
ML to identify patients with leukemia based on their blood transcriptome. 

ML encompasses three fundamental types: supervised, unsupervised, and 
reinforcement learning [25]. One of the significant challenges that ML models face is 
overfitting and underfitting. Overfitting occurs when a model matches too closely to 
the training data, leading to inadequate performance on new and unseen data. On the 
other hand, underfitting occurs when a model is too simple to capture the underlying 
data patterns [26]. Supervised learning algorithms are designed to learn from labeled 
datasets, where each input data point is associated with a corresponding label [27]. 
The algorithm then learns to map input data to the correct output by adjusting its 
parameters based on the error between the prediction and the actual label [28]. Where 
features are the input variables, and labels are the outputs or predictions that the model 
is trying to learn. For example, algorithms make decisions based on historical data on 
contractor bidding opportunities, and the individual representations of project 
characteristics that enable the system to make decisions are called features. 
Unsupervised learning involves training on unlabeled datasets where the system 
automatically explores patterns in the data without guidance, such as clustering and 
lowering dimensionality. Reinforcement learning, on the other hand, trains a model 
and makes it make decisions by interacting in a scenario. The model is continually 
modified based on feedback from decisions such as rewards and penalties, aiming to 
maximize cumulative rewards over time. 

3. Methods and materials 

Compared to the traditional retrieval methods (from Scopus or WoS), we try to 
adopt a two-stage meta-analytic paper retrieval method to provide a new reference for 
future literature retrieval. In the first step, our approach used Open knowledge maps® 
to sift through the top hundred papers on “construction risk management” and 
“machine learning” efficiently [29]. By grouping these documents based on their 
metadata, including title, abstract, author, journal, and subject keywords, we can create 
a word co-occurrence matrix to determine the relevance of each article. As shown in 
Figure 2, the resulting map represents the textual similarity between each article and 
the search query. The proximity of circular regions on the map indicates how closely 
related their subjects are, with more central areas indicating more remarkable 
similarity to the overall topic. Using this method, we can effectively manage the 
number of documents to review while exploring a wide range of content. 
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Figure 2. Top 100 Strong-related articles about ML in construction risk. 

In the second step, Figure 3 comprehensively showed the top 20 citations and 
references associated with the subject matter using Litmaps®. The inner circle of the 
map represents the input, namely “Construction Risk Assessment” and “Machine 
Learning,” and its corresponding combination of citations and references. The outer 
circle demonstrates the articles’ findings that are most pertinent to the domain. After 
completing the literature search, we collected data from the selected literature, 
including key findings, methods, applications of ML techniques, challenges 
addressed, and innovations introduced [30]. This information was then systematically 
organized and cataloged for analysis. Identify patterns, trends, and common themes in 
the selected literature by analyzing the collected data. Finally, we will compare ML 
algorithms and their effectiveness in construction risk management. 

 
Figure 3. Top 20 high-cited articles about ML in construction risk. 
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4. Results 

The keyword cloud in Figure 4 is generated based on the frequency statistics of 
documents. It is intended to facilitate the reader’s understanding of the current state of 
ML in the field. Standard algorithms include SVM, logistic regression, and ANN. 
They are utilized in almost every risk management process, including risk 
identification, classification, assessment, diagnosis, and prevention. The study 
summarizes the main ML algorithms in construction risk, as illustrated in Table 1. 
Since the author’s past research has discussed artificial neural networks and Bayesian 
networks, this article will not discuss them. 

Table 1. ML in construction risk management. 

Algorithm Application Source 

Regression 

Mapping landslide sensitivity; project delay risk prediction; predicting construction duration; 
Credit risk assessment models for financial institutions; Analysis of ground settlement during 
tunnel construction; Predicting variance in construction productivity; Determination of poor 
compliance with OSH rules of construction workers; long-term probabilistic prediction of rock 
burst hazard. 

Tessema et al. [31]; Zhu et al. 
[32]; Gariazzo et al. [33]; 
Hemasinghe et al. [34]; Li and 
Jimenez [35]. 

RF 

Integrated land carrying capacity assessment; multi-objective optimization of shield construction 
parameters; Constructing a monitoring model for dam safety; Predicting BIM labor cost; 
Detecting corporate misconduct; Activity recognition of construction equipment; concrete dam 
deformation monitoring; Analyzing and adjusting EPB shield steering in real-time; hybrid 
optimization of seismic performance of mountain buildings. 

Xie et al. [36]; Hu et al. [37]; 
Wang et al. [38]; Wu et al. 
[39]; Wen et al. [40]. 

SVM 

Predicting project outcomes; Rapid building fire risk assessment; projects delay risk prediction; 
Hypertension risk assessment for steelworkers in deep foundation pits; Estimation of 
construction waste generation; Seismic hazard safety evaluation of existing buildings; Early cost 
estimates of bridges; Estimation of construction waste generation. 

Hu et al. [41]; Chen and Lin 
[42]; Tserng et al. [43]; Fan 
and Sharma [44]; Fu et al. [45]. 

GCN 

Boring machinery load prediction in tunnel excavation; Interaction Behaviors Identification of 
Construction Workers; Identification of accident-injury type and body part factors; Action 
recognition of construction workers under occlusion; Determining construction method patterns 
to automate and optimize scheduling; Monitoring and prediction of landslide-related 
deformation. 

Mostofi et al. [46]; Khalili et 
al. [47]; Mostofi et al. [48]; Fu 
et al. [49]; Li et al. [50]; Zhang 
et al. [51] 

KNN 

Projects delay risk prediction; Safety risk evaluations of deep foundation construction schemes; 
Estimation of management reserve; Assessing worker perceived risk; Analysis of factors 
influencing rockfall runout distance; Short-term rockburst risk prediction for profound 
underground works;  

Chen et al. [52]; Pandey and 
Bandhu [53]; Jaber et al. [54]; 
Lee et al. [55]. 

Apriori 
Analysis of deformation response to landslide disaster; Mining geological disaster sensitivity 
evaluation indicators; Mining Construction Cross-Operation Risk Association Rules. 

Linwei et al. [56]; Chen et al. 
[57]; Chen et al. [58] 

PCA 
Extraction of construction accident characteristics; Analysis of crucial behavioral risk factors for 
construction practitioners; Explore construction settlement data; Identify and remove outliers. 

Shao et al. [59]; Xiang et al. 
[60]; Siddiqui et al. [61] 

XGBoost 
Handling large datasets; Predicting enterprise financial management risks; Investment Estimates 
for Assembled Concrete Buildings; Predict construction cost overruns; Investment estimation of 
prefabricated concrete buildings. 

Yan et al. [62]; Cherif and 
Kortebi [63]; Coffie and 
Cudjoe [64]; Liu et al. [65] 

K-Means 

Identifying clusters of projects with similar risk profiles; Early warning of risks in government 
investment and construction projects; Supplier risk assessment; Risk assessment of integrated 
pipeline corridor construction projects; BIM performance assessment system; Identifying high 
frequency-low severity construction safety risks. 

Liu and Li [66]; Wang et al. 
[67]; Ayhan and Tokdemir [68]  

ARIMA 
Predicting construction cost index; Predicting construction material prices; Forecasting the ratio 
of a low bid to owner’s estimate for highway construction; Effect of dam construction on the 
lake; Structural health monitoring and identification; Predicting perceived fatigue levels. 

Kim et al. [69]; Moon et al. 
[70]; Ghashghaie and Nozari 
[71]; Kaloop et al. [72]; Hajifar 
et al. [73] 
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Figure 4. Keyword cloud of the documents. 

4.1. Linear and logistic regression 

Linear regression (LiR) is a statistical technique that models the connection 
between a dependent variable and one or more independent variables [74]. It aims to 
create a linear equation that predicts the dependent variable based on the independent 
variable values [75]. Equation (1) shows that multiple regression analysis integrates 
numerous independent variables throughout the dataset without considering shared 
variance, and R2 assesses reliability. LiR helps analyze the impact of various factors 
(independent variables) on a specific risk outcome (dependent variable). Huang & 
Hsieh [76] employed LiR to forecast BIM labor costs. It produces a simple and 
understandable model that explains each independent variable’s influence on 
predicting risk outcomes. Secondly, LiR is computationally efficient and 
straightforward, suitable for swift analysis and evaluation. Thirdly, LiR equation 
coefficients measure the strength and direction of the relationship between the 
independent and dependent variables. Still, it is unsuitable for capturing complex, 
variable relationships or interactions. Additionally, linear regression is sensitive to 
outliers, which can significantly affect model parameters and predictions [77]. 
Therefore, LiR is not ideal for nonlinear relationships. 

𝑌 = 𝑎 + 𝑏ଵ𝑥ଵ + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥 ± 𝑒 (1)

here 𝑌 could be the risk factor variable, a is a constant, 𝑏ଵ through 𝑏 are estimated 

regression coefficients, 𝑥ଵ through 𝑥  are predictor or independent variable values, 

and e is the closure error. 
Logistic regression (LoR) is a statistical technique that predicts the probability of 

a binary outcome (0 or 1) based on one or more predictor variables, as demonstrated 
in Equation (2). LoR can be utilized to model and predict the probability of a specific 
risk event happening or not [78]. Levy and Baha [79] employed LoR models to 
anticipate borrower solvency. Akboğa and Baradan [80] employed LoR modeling to 
identify factors contributing to construction injury severity. Bhattacharjee et al. [81] 
used an interval based LoR and FMEA to assess potential failures. Both regression 
coefficients are interpretable, making it easy to understand how each predictor variable 
impacts the probability of a risk event occurring. LoR is restricted to binary outcomes, 
designed for binary outcomes, and needs to be modified or expanded for multi-
category outcomes [82]. 
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𝑦 =
1

1 + 𝑒ି௭
=

1

1 + 𝑒ି(௪௫ା)
 (2)

where 𝑧 is a real number, 𝑤 is a column vector, 𝑥 is a row vector, and 𝑏 is a real 

number. 𝑤்𝑥  denotes the inner product of 𝑤  and 𝑥 . 𝑒  is the base of the natural 

logarithm. The function 𝑦 has a range of (0,1). When 𝑦 is greater than 0.5, we consider 
the input data belong to the positive category; otherwise, we consider the input data to 
belong to the negative category. In addition, the loss function of logistic regression is 
the cross-entropy loss function. 

4.2. Principal component analysis 

Principal Component Analysis (PCA) is a statistical technique used for 
dimensionality reduction in multivariate data analysis. Its primary purpose is to 
transform the original variables into a new set of uncorrelated variables, known as 
principal components, which capture the maximum variance in the data. PCA can 
identify the data set’s most influential patterns or features by arranging these 
components in descending order of variance. This dimensionality reduction method 
simplifies the data while preserving its essential features, making it valuable in various 
fields such as image processing, pattern recognition, and data compression. The 
specific formula is as follows: 

𝑥 =
1

𝑛
  

ே

ୀଵ

𝑥 (3)

𝑆ଶ =
1

𝑛 − 1
  



ୀଵ

(𝑥 − �̅�)ଶ (4)

Cov(𝑋, 𝑌) =
1

𝑛 − 1
  



ୀଵ

(𝑥 − 𝑥)(𝑦 − 𝑦) (5)

here, 𝑥 is mean, 𝑆ଶ isvariance, Cov(𝑋, 𝑌) is covariance. 
Zhang et al. [83] proposed the weight calculation method of Group Analytic 

Hierarchy Process-Principal Component Analysis to rank the critical construction risk 
factors. Most studies use PCA as a data preprocessing tool [84,85]. Nevertheless, it 
also has some disadvantages. First, it is often difficult to directly interpret the specific 
meaning of the principal components obtained by PCA. Although it can map high-
dimensional data to a low-dimensional space, the meaning of the comprehensive 
evaluation function is unclear when the sign of the factor loading of each principal 
component is positive or negative. Secondly, PCA is sensitive to outliers, which may 
cause the extracted principal components to deviate from the actual situation. Finally, 
PCA assumes that the data follows a Gaussian distribution. If the data distribution does 
not conform to this assumption, it may result in inaccurate analysis. 

4.3. Support vector machines 

The Support Vector Machine (SVM) is a powerful binary classification model 
that utilizes a linear classifier to optimize the feature space [86]. SVM’s primary 
learning strategy involves interval maximization, which can be formulated as a convex 
quadratic programming problem [87]. This is also equivalent to minimizing a 
regularized hinge loss function. It is also an optimization algorithm used to solve 
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convex quadratic programming. The fundamental idea behind SVM is to locate a 
separating hyperplane that accurately separates the training dataset while maximizing 
the geometric intervals [88]. The basic idea is to solve for a separating hyperplane that 
correctly divides the training dataset and maximizes the geometric separation [89]. As 

shown in Equation (6), w ⋅ x୧ + b = 0 is the separating hyperplane, and there are 
infinitely many such hyperplanes (i.e., perceptual machines) for a linearly divisible 
dataset. Still, the geometrically maximally spaced separating hyperplane is unique. 
The algorithmic formulation of the SVM is as follows [90]: 

minw, b
1

2
∥ w ∥ଶ

s.t. y୧(w ⋅ x୧ + b) ≥ 1, i = 1,2, … , n
 (6)

here xi is the feature vector of the ith sample; y୍ is the category labeling of the ith 
sample, taking the value of +1 or −1. 

It can be applied to classify risks such as credit into different categories based on 
input features [91,92]. Gong et al. [93] used a binary particle swarm optimization 
algorithm to reduce the redundancy of information in the dataset. Then, they modified 
the classification algorithm using an Adaboost-enhanced support vector machine 
classifier, which overcame the difficulties of correctly classifying a small number of 
samples in an unbalanced dataset. SVM has gained popularity in recent years due to 
its effectiveness in high-dimensional feature space and its ability to handle complex 
patterns in data. It is well-suited for scenarios where a clear margin of separation exists 
between different classes or categories, making it a valuable tool for risk classification 
tasks such as credit risk assessment. 

Several studies have explored the use of SVM in various risk assessment 
applications. For example, Liu et al. [94] developed an SVM model based on particle 
swarm optimization to predict the safety risk of metro construction, achieving an 
average accuracy of 85.26%. Wei et al. [95] proposed a new rapid-fire risk assessment 
method based on fuzzy mathematics and an SVM algorithm. Additionally, researchers 
have attempted to enhance the performance of SVM by integrating it with other 
algorithms, such as the firefly algorithm and Gradient Boosting Decision Tree [96–
98]. While SVM has several advantages, it also has some limitations that should be 
carefully considered. For instance, SVM is computationally intensive, especially for 
large data sets or complex kernel functions, which may affect scalability. It is also 
sensitive to noisy data, outliers, and mislabeled instances, which can significantly 
impact model performance and generalization [99]. Finding the optimal set of 
hyperparameters for SVM requires careful tuning, which can be challenging. 

4.4. Random forest 

Random Forest (RF) is an ensemble ML algorithm that has become increasingly 
popular in various ML applications, including classification and regression tasks [100]. 
As shown in Figure 5, the algorithm constructs many decision trees during training 
and outputs pattern (classification) or mean (regression) predictions for individual 
decision trees [101]. In construction risk, RF has been used to predict and classify 
different types of risks based on relevant input features, such as falls from heights 
[102,103]. Studies have shown that RF models can effectively estimate the 
relationship between monitoring values and pit safety risk and predict and prevent 
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occupational accidents [104,105]. RF has also been used to develop risk indicators 
with high accuracy in various fields, such as supply chain finance risk [106], flood risk 
[107], and landslide risk assessment [108]. These studies have demonstrated that RF 
is a robust algorithm that can handle missing data efficiently, including incomplete 
data sets in the assessment process [109–111]. Scholars have also proposed a fractional 
RF method with low dependency on a comprehensive training dataset that can predict 
extensive device activities using a small amount of training data [112,113]. 

 
Figure 5. Random forest model. 

Furthermore, RF provides a measure of feature importance that can help identify 
the most influential risk factors [114]. It is also robust to noisy data and outliers, and 
aggregating predictions from multiple trees eliminates individual errors and outliers 
[115]. Additionally, training individual trees in an RF can be done in parallel, making 
it computationally more efficient, especially for large data sets [116]. However, it is 
essential to note that RF may be biased toward the dominant class in the training data, 
leading to imbalanced predictions if the class distribution is imbalanced [117]. 
Moreover, while individual trees can be trained in parallel, the overall construction of 
an RF can be computationally expensive, particularly for large numbers of trees [118]. 
The diversity measure between the decision trees improves the model’s generalization, 
but it is still necessary to minimize the number of trees to find the optimal subset [119]. 

4.5. K-nearest neighbor 

The K-nearest neighbor (KNN) algorithm is a powerful instance-based learning 
method that can be utilized for both classification and regression problems. The 
fundamental concept behind the KNN algorithm is to locate the k closest instances to 
a new input instance in the training set and subsequently predict the instance’s class 
based on the classes of these k instances. The Equation (4) of the KNN algorithm is as 
follows [120]: 

y = argmax
ୡౠ

  

୩

୧ୀଵ

w(i) ⋅ I൫y୧ = c୨൯ (7)

here y denotes the predicted category, c୨ denotes the jth category, w(i) denotes the 

weight of the distance d(x, 𝐼) from the input instance x, and I൫y୧ = c୨൯ is the indicator 

function, when y୧ = c୨, I൫y୧ = c୨൯ = 1, otherwise I൫y୧ = c୨൯ = 0. 

In KNN, an object is classified by the majority class of its k nearest neighbors, 
where “k” is a user-defined parameter. Construction risk can be applied to categorize 
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risks or predict risk outcomes based on the characteristics of similar historical cases. 
Lee et al. [121] used it to retrieve similar projects and a genetic algorithm to optimize 
the retrieved cases with an error rate of less than 5%. Kamran et al. [122] reduced the 
magnification of the original database using the state-of-the-art method of the 
Isometric Mapping (ISOMAP) algorithm; it then used the Fuzzy c-Mean (FCM) 
algorithm to classify the datasets obtained from ISOMAP, and thirdly, employed it to 
predict the short-term rock burst datasets at different levels of accuracy, with an 
accuracy of 96%. Liu et al. [123] constructed an improved fusion KNN model to 
evaluate the posture state of workers. 

KNN is a straightforward and practical method for quickly assessing risk, mainly 
when interpretability is crucial. Moreover, it is suitable for analyzing data with an 
unknown or complicated distribution since it does not rely on making assumptions 
about the underlying data [124]. KNN can also detect local patterns, making it an 
effective tool for identifying risks with spatial or temporal clustering. However, it is 
computationally demanding, mainly when applied to large datasets, as it requires 
computing the distance between the query and all training instances. KNN is also 
sensitive to outliers, as extreme values in the dataset can affect the nearest neighbors. 
In addition, irrelevant or redundant features can introduce noise into distance 
calculations and compromise the performance of KNN [125,126]. In high-dimensional 
space, the distance between instances tends to become more uniform, which may 
reduce the effectiveness of KNN. Finally, the choice of parameter “k” (number of 
neighbors) can impact KNN’s performance and may need to be adjusted based on the 
data’s specific characteristics [127]. For instance, Zhang et al. [128] used a weighted 
k-value to plan deep foundation pits. 

4.6. XGBoost 

XGBoost is a refined algorithm rooted in GBDT. While sharing the basic concept 
of GBDT, it incorporates several enhancements, including second-order derivatives 
for greater loss function accuracy, regularization terms to address tree overfitting, and 
block storage for parallel computation [129]. Its objective function comprises a loss 
function and a regularization term. The loss function can be the mean square error 
(MSE) for regression problems or cross-entropy for classification problems. Qin [130] 
predicted corporate financial risk and found that the model’s errors were all within 3%, 
with the maximum prediction error of only 2.68%. In another study, Liu et al. [131] 
assessed pipeline safety using it and achieved an accuracy of 91.8%. The algorithm 
analyzes the feature’s importance, which helps prioritize risk factors in decision-
making. Including regularization terms in the objective function helps prevent 
overfitting and improves the model’s generalization [132]. It is designed for parallel 
and distributed computing, efficiently handling large building datasets [133]. However, 
it faces the challenge of interpretability, and data preprocessing is necessary to handle 
missing values and outliers for optimal performance. 

In the future, it may be possible to use more superficial ensemble structures to 
enhance the interpretability of XGBoost models. The development of automatic 
hyperparameter tuning methods can simplify the model development process and 
improve the algorithm’s ease of use [134]. Construction projects involve data that 
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changes over time, and improving XGBoost’s ability to process time series data 
directly could enhance its applicability to construction risk management. However, 
the complexity and dynamic interrelationships of the studied attributes make it 
difficult for the XGBoost model to predict residual values [135]. 

4.7. K-means 

The k-means algorithm is a distance-based clustering algorithm. Its steps include 
[136]: 1) randomly initialize k centers of mass, i.e., the centroids of the k clusters; 2) 
for each sample, calculate its distance from the k centers of mass and assign it to the 
cluster with the closest distance; 3) for each cluster, recalculate its center of mass; 4) 
repeat steps 2 and 3 until the center of mass no longer changes or a preset number of 
iterations is reached. Distance can be used as Euclidean distance, Manhattan distance, 
etc. K-means can group construction projects based on shared risk characteristics, 
which allows risk profiles to be created for different projects and can also help identify 
geographic or project-specific “hot spots” where specific risks are more prevalent 
[137]. This information is valuable for resource allocation. Many academics use K-
mean clustering to identify similarities between different construction projects based 
on risk factors, which can help with benchmarking. Evolving risk patterns are 
uncovered by regularly updating clusters and reassessing risks. 

K-means is computationally efficient and relatively simple to implement, making 
it suitable for quick analyses and real-time applications. The algorithm scales to large 
datasets, making it ideal for large-scale complex projects [138]. Being an unsupervised 
learning algorithm means it does not require labeled data, making it adaptable to 
situations where comprehensive risk labeling is not readily available. Each item is 
assigned to a cluster, providing precise categorization and simplifying the 
interpretation of results. However, the results of K-means are sensitive to the initial 
position of the centroids. Different initializations may lead to other solutions and 
finding the optimal centroids can be challenging. The algorithm assumes that the 
clusters are spherical and of equal size, making it difficult to identify irregularly 
shaped clusters or clusters with different densities, which are common in construction 
risk datasets [139]. Improvements have also been made to the K-means method to deal 
with non-spherical or irregularly shaped clusters, improving its applicability in various 
construction risk situations. For example, developing strategies to automatically 
determine the optimal number of clusters (K) could alleviate the sensitivity to the 
initial choice of centroids and improve the usability of the algorithm. 

4.8. ARIMA 

ARIMA (Autoregressive Integrated Moving Average) is a time-series forecasting 
algorithm that can make time-series forecasts of construction-related variables such as 
project cost, completion time, or other performance indicators [140]. Equation (8) of 
the ARIMA model is given below: 

𝑌௧ = 𝑐 + 𝜙ଵ𝑌௧ିଵ + ⋯ + 𝜙𝑌௧ି + 𝜃ଵ𝜖௧ିଵ + ⋯ + 𝜃𝜖௧ି + 𝜖௧ (8)

here, 𝑌௧  denotes the observed value at time t and c is a constant; 𝜙ଵ, ⋯ , 𝜙  is the 

autoregressive coefficient; 𝜖௧  is white noise; 𝜃ଵ, ⋯ , 𝜃  is the moving average 
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coefficient. The parameters 𝑝, 𝑑, 𝑞  of the ARIMA model denote the number of 
autoregressive terms, difference order and moving average terms, respectively. 

ARIMA provides a quantitative basis for assessing the likelihood of delays, cost 
overruns, or other adverse events. It can assist in resource planning by predicting the 
demand for construction materials, labor, and equipment based on historical usage 
patterns [141]. ARIMA explicitly accounts for the time dependence of the data and is, 
therefore, well-suited to modeling construction-related variables that evolve [142]. 
Secondly, ARIMA is very robust when dealing with noisy time series data and is, 
therefore, suitable for situations where construction project data may be subject to 
variability and uncertainty [143]. The parameters and results of the model can usually 
be interpreted to give an understanding of the impact of past observations on future 
projections. It is very effective for univariate time series data, which is common in 
construction risk analysis, where univariate variables (e.g., project duration or cost) 
are often the focus of the study. However, ARIMA assumes that the underlying data 
patterns are linear and require the time series data to be static, which is challenging in 
dynamic yet complex construction systems. In addition, because it focuses primarily 
on internal time-series patterns, it is easy to overlook external factors or unexpected 
shocks to a construction project. Therefore, incorporating suitable exogenous 
variables is a topic worth considering. 

4.9. Graph convolutional network 

Graph Convolutional Network (GCN) is a deep learning algorithm that operates 
on graph-structured data. Equation (9) demonstrates the algorithm of GCN [144]: 

𝐻(ାଵ) = 𝜎 ൬𝐷෩ି
ଵ
ଶ𝐴ሚ𝐷෩ି

ଵ
ଶ𝐻()𝑊()൰ (9)

here 𝐻(୪) is the node feature matrix of the lth layer, W(୪) is the weight matrix of the lth 

layer, 𝐴ሚ = 𝐴 + I, I is the unit matrix, and D෩ is the degree matrix of A෩. 
It can model the complex relationships and dependencies between various risk 

factors in a construction project and represent them as a graph [145]. Nodes can 
represent project risk components, while edges represent their relationships [146]. It 
can help identify critical nodes in a construction project, such as unsafe interactions 
between people, machines, and materials [147]. Temporal information can be 
integrated to enable dynamic risk assessment by considering the evolution of risk 
factors at different stages in the construction. Mostofi and Toğan [148] combined a 
GCN to account for the dependency information between accidents and predicted the 
severity outcome of each construction activity with 94% accuracy. 

GCN can improve the efficiency of risk assessment by using transfer learning to 
train models on one construction project that apply to new projects with similar risk 
structures. However, GCNs require large amounts of labeled data to learn effectively, 
which may not always be readily available. The raw recorded data may contain noise, 
which reduces the prediction accuracy of the GCN deep learning model [149]. 
Integrating external data sources such as weather patterns, economic indicators, or 
regulatory changes into GCN can enhance its ability to capture external influences on 
building risk [150]. 
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4.10. Apriori 

Apriori algorithm is a classical association rule mining technique used in data 
mining and machine learning. It aims to discover frequent item sets in transaction 
databases and extract meaningful associations between items. The algorithm uses a 
bottom-up approach, starting with a single item and progressively identifying larger 
item sets through iterative concatenation and pruning based on a predefined support 
threshold. Support measures how often the itemset appears in the dataset. The strength 
of association rules can be measured by their support and confidence, as shown in 
Equations (10) and (11). 

Support(𝑋, 𝑌) =
num(𝑋𝑌)

num(allsamples)
 (10)

Confidence(𝑋𝑌) =
𝑃( 𝑋 ∣ 𝑌 )

𝑃(𝑌)
 (11)

Xie et al. [151] used it to mine disaster information and prevent incorrect 
reference management. Deng et al. [152] analyzed subway operation accident cause 
association rules based on the Apriori algorithm and network method. This algorithm 
needs to scan the data set multiple times and calculate frequent item sets, so the 
calculation complexity is high and the speed is slow. On large data sets, the efficiency 
may not be high enough. Secondly, it must store many intermediate results, requiring 
ample memory space. Finally, it can only handle discrete data and is powerless for 
continuous data. 

5. Discussion 

Construction projects often involve heterogeneous and incomplete data, leading 
to inaccurate model predictions. Much of the quantitative data is difficult to collect 
without the full assistance of site managers and workers, especially in China, where 
disruptions to the construction schedule can hinder researchers [153]. It has become 
the norm to model multiple ML tools simultaneously, compare their associated fit 
parameters, such as F1 and RSMEA, recall rate, and then select the “best performing” 
tool [154]. Accurately capturing and modeling this complexity is a significant 
challenge for traditional algorithms. Taking safety risks as an example, the 
construction industry lacks standardized incident text data formats and reporting 
practices [155]. Different data sources and formats make integrating information 
effectively difficult for many ML models. Construction projects change over time, 
with changing conditions, requirements, and stakeholders, and the many human 
decisions involved are not so easily quantifiable [156]. However, computer vision 
attempts to understand human behavior and incorporate it into ML models. Many 
state-of-the-art ML algorithms lack transparency, interpretability, and complex deep 
learning models. In risk management, stakeholders often require explanations of 
predictions, which can hinder adopting specific algorithms. In addition, limited 
computer literacy and a lack of awareness of potential advantages among construction 
industry practitioners in most developing countries can similarly hinder the 
widespread adoption of ML technologies. Data for many projects is subject to 
confidential contractual terms and regulatory norms, and complying with these 
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regulations while implementing ML models can be challenging, especially if the 
models are seen as “black box” systems [157]. 

Improving the use of ML in construction risk management requires a 
combination of data-driven approaches, advanced algorithms, and integration with 
existing processes. First, there is data collection and integration. Consider collecting 
comprehensive, high-quality data from various sources, including project management 
systems, sensor data, historical project data, weather conditions, etc. Then, data from 
different departments and systems will be integrated to create a holistic view of the 
project and its associated risks. Next, fostering collaboration between building 
technicians and machine learning experts requires promoting mutual understanding of 
expertise and goals. Launching an interdisciplinary training program can help bridge 
the knowledge gap, enabling building technicians to grasp basic machine learning 
concepts and machine learning experts to understand the intricacies of building 
processes. In addition, joint project planning sessions and interdisciplinary teams can 
facilitate a holistic approach, allowing building technicians to provide real-world 
insights and machine learning experts to deliver tailored solutions. Construction 
companies need to adjust their corporate structure and set up AI represented by ML as 
a specialized function, which not only creates sustainable returns for the company but 
is also an inevitable choice not to be eliminated by the times. Besides ML, other 
methods also made sustained contributions, as shown in Table 2. It is also an excellent 
option to integrate ML with these techniques to form a new approach. 

Table 2. Other methods in construction risk evaluation. 

Source Method Contribution 
Zhu et al. [158] 4D simulation The methodology provides a 4D simulation environment for modeling drone 

interactions on a dynamic construction site. 
Zhong et al. [159] Finite Element Model (FEM) The methodology can assess the seismic risk of bridges throughout their life cycle, 

including construction and use. 
Nguyen et al. [160] Hierarchical regression The methodology provides a comprehensive list of GB risks, categorized and 

assessed according to the project life cycle. 
Sohrabi and Noorzai 
[161] 

PLS-SEM The methodology is based on a project life-cycle perspective that considers the 
link between the risks leading to claims and the main parties involved. 

Hatamleh et al. [162] Factor analysis The methodology identifies the risks developing countries face and emphasizes 
how risks can benefit industry practitioners. 

Al-Mhdawi et al. 
[163] 

Deductive and inductive reasoning The methodology proposes new risk models for analyzing the risks associated 
with extreme situations such as pandemics. 

Gashaw and Jilcha 
[164] 

Fuzzy Synthesis Evaluation (FSE) 
and System Dynamics (SD) 

The methodology considers the overall dynamics, interrelationships, and 
uncertainties of risks to inform the assessment of the impact of project objectives. 

Do et al. [165] Expert scoring The methodology simultaneously examines the chain of risk factors, the sources 
of risk, and the scope of influence of risk factors. 

He et al. [166] AHP and Fuzzy Comprehensive 
Evaluation (FCE) 

The method quantitatively evaluates the risk level of pyrotechnic operations and 
rationally ranks the importance of various risk factors. 

Mohandes et al. [167] AHP The methodology is based on a fuzzy hybrid multidimensional model that 
considers the context of construction-related activities that lead to accidents and 
provides a comprehensive ranking system for project risk. 

Badi et al. [168] Grey Theory The methodology identifies the risks of construction projects through preliminary 
research, extensive interviews with construction experts, and site visits. 

Zhang and Li [169] Projection Pursuit Method and 
Improved Set Pair Analysis 

The method is based on the risk decomposition structure matrix, which considers 
the risk dynamics and establishes the deep foundation pit risk evaluation index 
system. 

Ju et al. [170] Best worst method (BWM) and 
game theory and extension cloud 

The methodology considers disaster-causing factors when assessing building 
safety risks. 

Sadeghi et al. [171] Trapezoidal fuzzy ordinal priority 
approach (OPA-F) 

The methodology constructs a new OPA-F using trapezoidal fuzzy numbers, 
assesses the blockchain risks faced by construction organizations, and develops a 
framework. 
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6. Conclusion 

The number of machine learning papers is growing exponentially, and regular 
review is essential to promote the dissemination of interdisciplinary knowledge in the 
industry. This study’s significance is critically reviewing ten machine learning 
algorithms that have been popular in construction risk over the last five years to inform 
new researchers. Machine learning has great potential in construction risk 
management but requires combining technology, data, and domain knowledge to 
achieve better results. Linear regression is suitable for predicting continuous numerical 
outcomes, such as project cost or completion time. However, it is assumed that there 
is a linear relationship between the variables, which may not always be accurate in 
complex construction projects. Logistic regression is suitable for binary classification 
problems, such as predicting whether a project will be completed on time or delayed. 
However, assuming linear decision boundaries may not capture more complex 
relationships in the data. SVMs are adequate for regression and classification tasks, 
especially when working with nonlinear and high-dimensional data. However, the 
choice of kernel and parameters can be sensitive, and different kernel functions, such 
as the triangular kernel function and the Gaussian kernel function, may perform 
differently or poorly on large data sets. RF is suitable for classification and regression 
tasks, robust enough to overfit, and can handle large datasets with many features. 
However, it lacks interpretability, and the training time for extensive forests can be 
extended. KNN is simple and effective for classification and regression tasks, 
especially when dealing with localized patterns. However, it is sensitive to irrelevant 
or redundant features and computationally expensive to predict for large datasets. PCA 
in construction risk analysis offers the advantage of reducing dimensionality and 
aiding in identifying key risk factors and patterns; however, it may oversimplify 
complex interactions and might not capture non-linear relationships in the data. On the 
other hand, the Apriori algorithm enables the discovery of association rules among 
construction risk factors, enhancing understanding; nevertheless, it may face 
challenges with large datasets and requires careful parameter tuning. XGBoost is very 
effective for classification and regression tasks and is often used in competitions due 
to its high predictive performance. However, it is computationally expensive and is 
easy to overfit if not correctly adjusted. K-Means is suitable for clustering similar 
construction projects based on characteristics such as project size, location, or 
complexity. However, it must be assumed that the clusters are spherical, sensitive to 
the initial cluster center, and may not work well for clusters of uneven size. ARIMA 
is suitable for time series forecasting in construction risk analysis, such as predicting 
future project delays or cost overruns. However, it requires assumptions of linearity 
and stationarity and may not capture complex nonlinear trends in time series data.  

The study recommends using a combination of these algorithms to address 
construction risks. The choice of algorithm should depend on the specific 
characteristics of the data and the nature of the risk being analyzed. Proper data 
preprocessing, feature engineering, and hyperparameter tuning are critical to achieving 
optimal model performance. In addition, there is a distinct lack of standardization 
across the industry, leading to challenges in actual data collection. Therefore, future 
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research should prioritize standardization efforts and seek consensus on best practices 
to meet project-specific needs, such as tight deadlines and confidentiality agreements. 
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