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THE ROBUST PID CONTROLLERS FOR 

SPECIAL PROCESSES 

 

Abstract 

The paper presents the tuning method for the PID (Proportional 

Integral Derivative) of special processes consisting of self-balance 

with overshoot and self-imbalance with inverse response. It is a 

continued study of process identification by numerical method and 

PID controller design based on robust viewpoint. The self-balance 

process with overshoot is identified by the second order plus dead 

time with a negative zero (SOPDTZ), while the self-imbalance process 

with inverse response is modeled by integrating plus first order plus 

dead time (IFOPDT). To gain robust PID for processes, it requires 

typical designs. While the SOPDTZ needs a filter of first order lag,  

the IFOPDT requires to supplement integrating element for controller.  

For illustration, the detail identification and tuning procedures are 

presented via an example for each of the processes. 
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1. Introduction 

The open-loop identification is based on process response of step input. 

The response curve of overshoot process shows an output exceeding its final 

steady state value. Figure 1(a) presents the output capacity response of a 

1200MW thermal power plant when the plant was excited by an input pulse 

of fuel. Meanwhile, Figure 1(b) expresses the response of output capacity of 

300MW thermal power plant with input pulse being the open rate of steam 

control valve. 

 

(a) 

 

(b) 

Figure 1(a). Unit load responses to a decreased pulse step of fuel flow-rate 

[3]. 

 

Figure 1(b). Unit load responses to an increased pulse step of control valve 

open rate [4]. 
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Figure 1(c). Unit load responses to an increased pulse step of control valve 

open rate [5]. 

Figure 1(c) shows the behavior of water level drum of a boiler in thermal 

power plant when feedwater flow increases. It is a self-imbalance process 

with inverse response in an initial period. 

The typical step response of self-balance process with overshoot is 

presented in Figure 2(a), while the curve of a self-imbalance process with 

inverse response is drawn in Figure 2(b). 

 

Figure 2(a). Typical step response of self-balance process with overshoot. 
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Figure 2(b). Typical step response of self-imbalance process with inverse 

response. 

The reference [1] proposed the numerical method for process 

identification based on dynamic step responses. The proposal has shown the 

efficiency and got over the drawback of the manual method. In [1], the self-

balance process with overshoot has been identified by the second order plus 

dead time with a negative zero (SOPDTZ), while the self-imbalance process 

with inverse response was modeled by integrating plus first order with dead 

time and a zero (IFOPDTZ). Moreover, the self-imbalance with inverse 

response was shown to efficiently identify by integrating plus first order 

with dead time (IFOPDT) for the convenience of controller synthesization 

[2]. 

The identified models of the two processes are used to synthesize the 

PID controller based on the robust control viewpoint presented in [2] and 

[9]. 

This study is in continuation of the works [1] and [2] which proposed the 

methodology including open-loop identification and PID controller tuning. 

The paper is aimed at: 

 to study the control errors of systems of the two special processes to 

design the PID controllers basing on robust viewpoint; 

 to apply the identification method to self-balance process with 

overshoot. 
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2. Process Identification  

2.1. Identification of the self-balance process with overshoot 

In [1], an identification method for self-balance processes including 

overshoot is presented. The overshoot process is modeled by second order 

plus dead time with a negative zero (SOPDTZ) by transfer function: 

 ( ) ( )
( ) ( ) ,
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where K is the gain factor, ,1T  ,2T  b are lag constants, τ is the dead time, 

and s is a complex variable. 

The parameters of ( )sOSOPDTZ  must satisfy the conditions: 

.0,,,0,0 21 ≥≥τ> bTTK  

These are defined by using “cleft-over-step” algorithm to solve the target 

function of the optimal problem: 
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and { }.,,,1 τ= bTKX  
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N is the number of measuring points, p and ( )XΠ  are penalty 

coefficient and penalty function, respectively, [1]. 

2.2. Identification of the self-imbalance inverse response process 

Based on [2], the self-imbalance process with inverse response is able to 

be identified by IFOPDT with transfer function: 

 ( ) ( ) ,
1

s
IFOPDT e

Tss

K
sO

τ−
+=  (5) 

where K is the gain factor, T is a lag constant, τ is the dead time, and s is a 

complex variable. 

These values are required to satisfy: 

 .0,0,0 ≥≥τ> TK  (6) 

The parameters of ( )sOIFOPDT  are defined by using “cleft-over-step” 

algorithm to solve the target function: 

( ) ( )[ ] ( )
=

→Π+−=
M

i

Xii XpyXtyXJ

1

222
2

222 2
min,  (7) 

in which { }τ= ,,2 TKX  is the parameter vector of ( ),sOIFOPDT  while 

( ) [ ] ( ),, 02 τ>+−τ−=
τ−−

i
T

t

ii tTeTtKuXty
i

 

( ) ( ),0 τ≤∀≡ tty  (8) 

where M is the number of measuring points, 2p  and ( )22 XΠ  are penalty 

coefficient and penalty function, respectively. 

3. PID Controller for Processes 

3.1. Robust controller [2, 7-9] 

Closed-loop control in principle is shown in Figure 3 which includes 

process ( ),sO  controller ( ),sR  input z, output y and disturbance λ. 
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Figure 3. Typical control structure. 

( )sO  in general type is given by ( ) ( ) s
PL esOsO

τ−=  ( ( )sOPL  is a 

rational fraction of variable s, τ is the dead ).time  

The robust controller is determined based on the model of ( )sO  as 

follows: 

 ( ) ( ) .
1 1−
θ= sO

s
sR PL  (9) 

in which the lag constant θ is defined as 
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In equation (10), sm  is robustness index of the system shown in Figure 

3. To synthesize the controller ( ),sR  firstly, the robustness index sm  is 

chosen in the range of [ ]318.2;132.0  [8]. Secondly, the lag constant θ is 

calculated by equation (10). Finally, the controller ( )sR  is conducted by 

equation (9). 

The robustness of the system with ( )sR  controller is established in           

[2, 7-9]. 

3.2. Robust controller for the self-balance process with overshoot 

The overshoot process is identified by the model ( )sOSOPDTZ  (equation 

(1)). The robust controller for this model is given by 
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The controller ( )sR  given by (11) is not a PID structure. It is altered as 

follows: 
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in which 21 TTTI +=  is the integral constant, 
I

D T

TT
T 21=  is the derivative 

constant and 
K

T
K I

P θ=  is the gain coefficient. 

The controller ( )sR  in equation (12) consists of a PID controller and a 

first order lag. This first order is designed as a filter and the controller ( )sR  

becomes a PID and a first order filter in series. 
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Figure 4. PID controller and filter. 

The new control structure is redesigned as shown in Figure 4. In it ( )sF  

is the filter function of a first order lag: 

 ( ) ( ) .
1

1

bs
sF +=  (13) 

The filter function ( )sF  is set unchanged according to the identified 

function ( )sOSOPDTZ  in equation (1). Meanwhile, the robust controller 

( )sR  is tuned by tuning the parameters of the PID controller via varying the 

robustness index sm  of the system. 

3.3. Robust controller for the self-imbalance process with inverse 

response 

With identified model IFOPDT in equation (5), the robust controller is 

as follows: 

( ) ( ) ( )DP TKTs
K

sR +=+θ= 11
1
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21 sccs
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where 
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T
c

K
cTT

K
K DP θ=θ==θ=  

4. Control Errors of Control System 

4.1. Methods 

In control structure of Figure 3, suppose ( ) ( ) ( )sYssZ ,, Λ  and ( )sE  are 

Laplace functions of yz ,, λ  and ,ε  respectively. The output is created by 



Do Cao Trung 162 

both set point ( )z  and disturbance ( )λ  signals, calculated as below: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ).
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sY Λ+++=  (15) 

The error is given by 

( ) ( ) ( )sYsZsE −=  
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( ) ( ) ( ) ,
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1
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( ) ( )
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1 sOsR

sO
sW +−=ελ  (16) 

Set 

 ( ) ( ) ( ) ( ) ( )., sWsEsZsWsE zz Λ== ελλε  (17) 

From this, it follows that 

  ( ) ( ) ( ),sEsEsE z λ+=  (18) 

where ( )sEz  and ( )sEλ  are errors created by ( )sZ  and ( ),sΛ  respectively, 

( )sW zε  is the transfer function from set point z to ε  ( );:channel ε→zz  

( )sWελ  is the transfer function from disturbance λ  to ( ).:channel ε→λλε  

Analyzing ( )sW zε  and ( )sWελ  by Taylor chain in ,0=s  we have 

( ) ,2
210 ⋯+++=ε scsccsW z  

 ( ) ⋯+++=ελ
2

210 sdsddsW  (19) 
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with 
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0
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s
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( ) ( )
....,;0
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ds
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Put equation (14) and equation (15) into equation (12) of ( )sEz  and 

( )sEλ , and then take the inverse Laplace under the condition that ( )tz  and 

( )tλ  are continuously differentiable in the range ( ):;0 ∞∈t  

( ) ( ) ( ) ( ) ,210 ⋯+′′+′+=ε tzctzctzctz  

( ) ( ) ( ) ( ) .210 ⋯+λ ′′+λ′+λ=ελ tdtdtdt  (20) 

The functions ( )tzε  and ( )tλε  of time variable t are errors of control 

processes of z and λ channels, respectively. The values of 0c  and 0d  are 

coefficients of static errors, 1c  and 1d  are coefficients of velocity errors,     

2c  and 2d  are coefficients of acceleration errors, … Based on the dynamic 

characteristics of the system, some of coefficients are equal to zero. 

Consider the system in Figure 3 with the controller ( )sR  of PID type 

including control signal ( )tz  and disturbance ( ).tλ  Suppose that the inputs 

are step pulses meaning ( ) ( ) ( ) ( ),1.,1. 00 tttztz λ=λ=  where 0z  and 0λ  are 

constants. 

Based on equations (14) and (15), it is concluded that the error of the 

control channel z in steady state is as below: 
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Therefore, 

 ( ) ( )sWzE z
s

z ε
→

=∞
0

0 lim  (21) 

and the error of disturbance channel λ in steady state is given by 
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4.2. Control errors of the overshoot and inverse systems 

This sub-section calculates the control errors in steady state of the 

overshoot system of SOPDTZ model with robust controller in equation (12) 

and inverse system of IFOPDT model with robust controller equation (14). 

4.2.1. Errors of overshoot system of SOPDTZ and PID controller 

From equations (21) and (22), the error of z channel is derived as 
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Replacing equations (24) and (25) into equation (23), we have 
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1

1
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K
zEz  (26) 

The error of λ channel is as follows: 
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Finally, the error of control system which is created from equation (18) 

is given by 

 ( ) ( ) ( ) .000 =+=+= λ sEsEsE z  (28) 

Equations (26)-(28) show that the overshoot control system consisting of 

SOPDTZ model and PID robust controller (equation (12)) give the errors in 
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control channel z and disturbance channel λ by zero in steady state leading to 

the error of control system annulled. In other words, this control structure 

always guarantees ( ) .0zy =∞  

4.2.2. Errors of inverse system of IFOPDT and PD controller 

From equations (21) and (22), the error of λ channel is derived as 

follows: 
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From equations (29) and (30), we obtain 
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The error of λ channel is as follows: 
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From equations (29) and (30), we have 
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λ−=∞λ  (32) 

Finally, the error of control system as given by equation (18) is 

( ) ( ) ( ) .0 00

PP
z KK

sEsEsE
λ−=






 λ−+=+= λ  (33) 

Equations (31)-(33) show that the integrating inverse control system 

consisting of IFOPDT model and PD robust controller (equation (12)) gives 

the error as zero of z control channel in steady state. However, it provides 

the error of the λ disturbance channel leading to the error of control system 

not annulled. In other words, this control structure does not make ( )∞y  

equal to 0z  in the final. This means that the structure needs to be modified 

for rejection of the error of disturbance channel. The requirement is fulfilled 

by adding the anti-disturbance element to the robust controller PD. 

5. Anti-disturbance Supplement for Robust PD Controller 

Based on the analysis in Section 4, the PD controller needs to complete 

the integral element ( ).I  Besides, the proportional ( )P  is also to be 

supplemented to higher anti-disturbance of the system. It means that PIR∆  is 

to be added to original controller PD ( ).sR  New PID robust controller now 
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becomes: 
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in which 
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where parameters 21, cc  of the PD controller given by 
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6. Example 

6.1. Steps of implementation 

In this part, a self-balance process with overshoot and a self-imbalance 

with inverse response of complicated functions are considered for 

illustration. The methodology is simulated including identification technique 

and robust PID controller tuning process. 

The procedure is implemented via three steps as below: 

• 1st step_Process identification (model deduction): 

The open-loop unit step responses of the processes are drawn to extract 

parameters for building the target functions. We solve the optimal functions 

(equation (2) and (7)) to define parameters of models (equations (1) and (5)). 

Finally, the unit step and frequency responses of original and identified 

models are drawn for comparison. 



The Robust PID Controllers for Special Processes 169 

• 2nd step_Robust controller tuning: 

By using the identified models and chosen robustness indexes, the robust 

controller for each process is calculated. After that, the qualitative control 

indexes including steady time, overshoot and decay are withdrawn from the 

closed-loop step response. 

• 3rd step_PID controller tuning: 

Analyzing qualitative indexes, perhaps some factors need to be 

improved. This will be fulfilled by resetting the sm  robustness index of the 

system leading to tune the parameters of PID controllers. 

6.2. Self-balance process with overshoot 

6.2.1. Process identification 

Examine the overshoot process with complex transfer function as below: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

s
e

sssss

sss
sO

3
1 10181715141

5.515.41251 −
+++++

+++= . (35) 

Its unit step response is drawn in Figure 5. 

 

Figure 5. Unit step response of ( ).1 sO  
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The identification process is based on Section 2 whose detail is available 

in [1]. 

Sub step 1. Target function 

The curve has inflection point ( )ff ytU ,  with .377.0=fy  Since 

( )( ) ,264.0377.01377.00 >==∞= uyyg f  in model (1), choose .21 TT =  

The unconstraint optimization function equation (2) uses the value of 

( )1, Xty i  in equation (4). 

Take 30 measuring points of the curve in Figure 5 shown in Table 1. 

Table 1. Parameters extracted from the curve 

1t  2t  3t  4t  5t  6t  

0 2.5 5 10 15 20 

1y  2y  3y  4y  5y  6y  

0 0 0.087 0.587 0.995 1.201 

7t  8t  9t  10t  11t  12t  

25 30 35 40 45 50 

7y  8y  9y  10y  11y  12y  

1.262 1.249 1.206 1.157 1.115 1.080 

13t  14t  15t  16t  17t  18t  

55 60 65 70 75 80 

13y  14y  15y  16y  17y  18y  

1.055 1.037 1.025 1.016 1.010 1.007 

19t  20t  21t  22t  23t  24t  

85 90 95 100 105 110 

19y  20y  21y  22y  23y  24y  

1.004 1.003 1.002 1.001 1.001 1.001 

25t  26t  27t  28t  29t  30t  

115 120 125 130 135 140 

25y  26y  27y  28y  29y  30y  

1.001 1.001 1.001 1.001 1 1 
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Replace parameters in Table 1 into target function equation (2) to get     

the optimization function ( ).XJ  The roots are the parameters of the model 

described by equation (1). 

Sub step 2. Solving the target function 

The optimal function equation (2) is solved by cleft-over algorithm [1]. 

It needs the start vector of model parameters { }.,,, 00000 τ= bTKX  This 

vector is set based on the unit step response in Figure 5. 

The start vector { }00000 ,,, τ= bTKX  is 

.3;18;9;1 0000 =τ=== bTK  (36) 

The gain factor K is set unchangingly, means K is not an optimizing 

variable. 

After 1034 iterative steps of optimal algorithm, the root is achieved: 

.291.5;475.30;458.12;1 =τ=== bTK  (37) 

Replace above values into (1) gaining the identified model as 

 ( )
( )

.
458.121

475.301 291.5

21
s

e
s

s
sO

−

+
+=′  (38) 

The result means that the step response curve in Figure 5 is 

approximated by model in equation (38) or the original complex model in 

equation (35) is deducted to simple model in equation (38). 

Sub step 3. Comparison 

The quality of identified model ( )sO1′  is tested by comparing its        

time response and frequency response with those of original model ( )sO1  

(equation (35)). 
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Figure 6. Unit step responses of ( )sO1  and ( )sO1′ : ( )sO1 _Black, 

( )sO1′ _Blue. 

 

Figure 7. Frequency characteristics of ( )sO1  and ( )sO1′ : ( )sO1 _Black, 

( )sO1′ _Blue. 

The unit step responses of ( )sO1  and ( )sO1′  are expressed in Figure 6. 

The frequency characteristics of ( )sO1  and ( )sO1′  are shown in Figure 7, in 

which the curve of ( )sO1  is in black and that of ( )sO1′  is in blue. 
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The curves show that approximated model ( )sO1  is acceptable to design 

controller. 

6.2.2. Robust controller design 

In this step, the robust controller ( )sR  equation (9) is synthesized for 

( )sO1  and robust PID controller equation (12) is solved for identified model 

(38). In both the cases, the robustness index is set the same. 

The robustness index sm  of the control system varies in the range from 

0.132 to 2.318 [8]. Based on this value, the lag coefficient θ  is determined 

by equation (10). 

Sub step 4. Robust controller for ( )sO1  

Choose ,71.0=sm  and replace into equation (10) ( )3with =τ  to 

obtain the lag coefficient .049.5=θ  From this value, the controller ( )sR1  

by (9) becomes 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) .

5.515.41251

10181715141
198.01 ssss

sssss
sR +++

+++++=  (39) 

Sub step 5. Robust controller for ( )sO1′  

Choose ,71.0=sm  and replace into (10) ( )291.5with =τ  to obtain the 

lag coefficient .905.8=θ  From this value, the controller ( )sR1′  by (12) is 

given as follows: 

 ( ) .229.61
916.24

1

475.301

791.2
1 






 +++=′ s

ss
sR  (40) 

In (40), the PID controller is given by 

 





 ++ s

s
229.61

916.24

1
791.2  (41) 

and the filter function by 

 ( ) .
475.301

1

s
sF +=  (42) 
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Sub step 6. Closed-loop control qualities 

To test the control qualities of ( )sR1′  controller equation (14), both 

controller equations (13) and (14) are used for closed control loop of ( )sO1  

process. 

The unit step responses of ( )sO1  closed-loop for each ( )sR1  and ( )sR1′  

controllers are shown in Figure 8. 

 

Figure 8. Closed-loop step responses of ( )sR1  and ( )sR1′ : ( )sR1 _Blue, 

( )sR1′ _Red. 

Three qualitative factors of ( )sR1′  are as follows: 

+ Steady time (time from active moment to process value reaching 

( )%5100 ±  of set point: .67.41=qT  

+ Overshoot: 

( )
( ) %.4.16max =∞

∞−=δ
y

yy
 

+ Decay (ratio of second and first peaks): %.90=D  
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In comparison, the ( )sR1′  controller gives better qualitative factors         

but the factor expressed by ( )sR1′  is fairly good. It suggests that ( )sR1′  is 

acceptable for initial setting of the PID controller for process. 

Sub step 7. Retuning controller for better qualities 

For detail requirements of each process, it may be needed to improve 

some factors. This is fulfilled by modifying the robustness index sm  of the 

system. For example, to reduce the overshoot δ  factor, higher sm  from 0.71 

to 0.972, the θ  lag coefficient now is 10.317. It gives the new controller 

( )sR1′′  as follows: 

 ( ) .229.61
916.24

1

475.301

417.2
1 






 +++=′′ s

ss
sR  (43) 

The PID controller with smaller gain becomes 

 ,229.61
916.24

1
417.2 






 ++ s

s
 (44) 

while the filter still remains unchanged in equation (42). 

Now, the control qualities of the three controllers are compared. 

 

Figure 9. Closed-loop step responses of ( ) ( ) ( )sRsRsR 111 ,, ′′′ : ( )sR1 _Blue, 

( )sR1′ _Red, ( )sR1′′ _Violet. 
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Figure 9 shows ( )sO1  closed-loop response to unit step input of ( ),1 sR  

( )sR1′  and ( ).1 sR ′′  

The result shows that ( )sR1′′  gives lower δ  about 10% in comparison 

with those of ( ).sR′  In practice, parameters of controller are able to tune for 

a better control qualitative factor according to the real requirement. 

6.3. Self-imbalance process with inverse 

After the detailed presentation above of the self-balance process with 

overshoot, a brief procedure is expressed for self-imbalance process with 

inverse. 

6.3.1. Process identification 

The integrating process with inverse response is presented in equation 

(45). This model is similar to the one studied by Kaya in [10] but added the 

inverse response. In [2], the model of Pai et al. [6] was also studied giving 

good result: 

( ) ( )
( ) ( ) ( ) ( ) .

10115.0125.01

5.11 5.3
2

s
e

sssss

s
sO

−
++++

−=  (45) 

The step response of ( )sO2  is shown in Figure 10. 

 

Figure 10. Unit step pulse response of ( ).2 sO  
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This process is identified by IFOPDT model by using data from the 

response curve in Figure 10. The identified model is as follows: 

 ( ) ( ) .
202.61

759.0 093.7
2

s
e

ss
sO

−
+=′  (46) 

 

Figure 11. Time responses of ( )sO2  and ( ).2 sO′  

 

Figure 12. Frequency responses of ( )sO2  and ( ).2 sO′  
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The time and frequency responses of ( )sO2  and ( )sO2′  to unit step pulse 

are shown in Figures 11 and 12. It can be seen that the identification gets 

high quality. 

6.3.2. Original robust controller 

The PD robust controller (14) with ( )838.271.0 =θ=sm  for ( )sO2′  is 

given by 

 ( ) ( ).445.51069.02 ssR +=  (47) 

The system of robust controller ( )sR2  in equation (47) and process 

( )sO2  (equation (45)) give closed-loop responses presented in Figure 13 

including z (control) and λ (disturbance) channels. 

 

Figure 13. Closed-loop responses of PD controller ( )sR2  in z and λ 

channels. 

In z channel, the qualities are: 

+ Steady time (time from active moment to process value reaching 

( )%5100 ±  of set point: .433.60=qT  
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+ Overshoot: 

( )
( ) %.61.13max =∞

∞−=δ
y

yy
 

+ Decay (ratio of second and first peaks): %.100=D  

The result shows that the error in disturbance channel is not nulled 

complying with the demonstration above. 

6.3.3. Anti-disturbance robust controller 

The PID robust controller (34) with ( )838.271.0 =θ=sm  for ( )sO2′  is 

as follows: 

 ( ) .445.5
532.42

1
1098.02 






 ++=′ s

s
sR  (48) 

 

Figure 14. Responses of ( )sR2  in z and λ channels: z channel_black, λ 

channel_blue. 



Do Cao Trung 180 

The system of robust controller ( )sR2  in equation (48) and process 

( )sO2  (equation (45)) give closed-loop responses presented in Figure 14 

including z (control) and λ (disturbance) channels. 

In z channel, the qualities are: 

+ Steady time (time from active moment to process value reaching 

( )%5100 ±  of set point: .25.167=qT  

+ Overshoot: 

( )
( ) %.89.48max =∞

∞−=δ
y

yy
 

+ Decay (ratio of second and first peaks): %.100=D  

In the λ (disturbance) channel, the error is nulled due to PIR∆  (in 

equation (34)) element added to ( ).2 sR  However, the element also makes 

the steady time in z (control) channel of the system to be longer and the 

overshoot value to be higher. 

7. Conclusions 

The paper is in continuation of the work on process identification and 

PID tuning based on robust viewpoint. For identification, it is based on 

numerical technique of cleft-over optimal algorithm presented in [1] which 

applied the method for self-balance process without overshoot. In this study, 

the method continuously applied for overshoot process with identified model 

of second order plus dead time with a negative zero (SOPDTZ), and self-

imbalance process with inverse response by integrating first order plus dead 

time (IFOPDT). The results show that the technique is fairly good for the 

identification of overshoot and inverse processes. 

For tuning work, the robust-based controller synthesized from SOPDTZ 

model needs to be modified to get PID controller. This is carried out by 
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analyzing the controller into a PID controller and a first order lag filter 

connected in series. Meanwhile, the PD controller from IFOPDT model is 

supplemented for the P and I elements for anti-disturbance. 

The closed-loop control quality of the PID controllers in both the cases 

is acceptable and the qualitative control factors are able to improve with the 

modification of the robustness index of the system. 

The methodology of identification and tuning works for overshoot 

process is comprehensive, reliable and promising for application. 
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